Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭宗甫(Tzong-Fu Kuo)
dc.contributor.authorChen-Hao Liaoen
dc.contributor.author廖政豪zh_TW
dc.date.accessioned2021-06-16T02:58:42Z-
dc.date.available2015-07-20
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-06
dc.identifier.citationAggarwal, R., Lu, J., Kanji, S., Joseph, M., Das, M., Noble, G. J., . . . Das, H. (2012). Human umbilical cord blood-derived CD34+ cells reverse osteoporosis in NOD/SCID mice by altering osteoblastic and osteoclastic activities. PLoS One, 7(6), e39365. doi: 10.1371/journal.pone.0039365
Agren, M. S., Rasmussen, K., Pakkenberg, B., & Jorgensen, B. (2014). Growth factor and proteinase profile of Vivostat(R) platelet-rich fibrin linked to tissue repair. Vox Sang, 107(1), 37-43. doi: 10.1111/vox.12120
Aleman, M. M., Walton, B. L., Byrnes, J. R., & Wolberg, A. S. (2014). Fibrinogen and red blood cells in venous thrombosis. Thromb Res, 133 Suppl 1, S38-40. doi: 10.1016/j.thromres.2014.03.017
Anitua, E., Prado, R., & Orive, G. (2013). Endogenous morphogens and fibrin bioscaffolds for stem cell therapeutics. Trends Biotechnol, 31(6), 364-374. doi: 10.1016/j.tibtech.2013.04.003
Antebi, B., Pelled, G., & Gazit, D. (2014). Stem cell therapy for osteoporosis. Curr Osteoporos Rep, 12(1), 41-47. doi: 10.1007/s11914-013-0184-x
Ayatollahi, M., Hesami, Z., Jamshidzadeh, A., & Gramizadeh, B. (2014). Antioxidant Effects of Bone Marrow Mesenchymal Stem Cell against Carbon Tetrachloride-Induced Oxidative Damage in Rat Livers. Int J Organ Transplant Med, 5(4), 166-173.
Baba, K., Yamazaki, Y., Ishiguro, M., Kumazawa, K., Aoyagi, K., Ikemoto, S., . . . Uchinuma, E. (2013). Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study. J Craniomaxillofac Surg, 41(8), 775-782. doi: 10.1016/j.jcms.2013.01.025
Beane, O. S., Fonseca, V. C., Cooper, L. L., Koren, G., & Darling, E. M. (2014). Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS One, 9(12), e115963. doi: 10.1371/journal.pone.0115963
Benisch, P., Schilling, T., Klein-Hitpass, L., Frey, S. P., Seefried, L., Raaijmakers, N., . . . Jakob, F. (2012). The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One, 7(9), e45142. doi: 10.1371/journal.pone.0045142
Bidwell, J. P., Alvarez, M. B., Hood, M., Jr., & Childress, P. (2013). Functional impairment of bone formation in the pathogenesis of osteoporosis: the bone marrow regenerative competence. Curr Osteoporos Rep, 11(2), 117-125. doi: 10.1007/s11914-013-0139-2
Bielby, R., Jones, E., & McGonagle, D. (2007). The role of mesenchymal stem cells in maintenance and repair of bone. Injury, 38 Suppl 1, S26-32. doi: 10.1016/j.injury.2007.02.007
Biver, G., Wang, N., Gartland, A., Orriss, I., Arnett, T. R., Boeynaems, J. M., & Robaye, B. (2013). Role of the P2Y13 receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes. Stem Cells, 31(12), 2747-2758. doi: 10.1002/stem.1411
Blanton, M. W., Hadad, I., Johnstone, B. H., Mund, J. A., Rogers, P. I., Eppley, B. L., & March, K. L. (2009). Adipose stromal cells and platelet-rich plasma therapies synergistically increase revascularization during wound healing. Plast Reconstr Surg, 123(2 Suppl), 56S-64S. doi: 10.1097/PRS.0b013e318191be2d
Boeloni, J. N., Ocarino, N. M., Goes, A. M., & Serakides, R. (2014). Comparative study of osteogenic differentiation potential of mesenchymal stem cells derived from bone marrow and adipose tissue of osteoporotic female rats. Connect Tissue Res, 55(2), 103-114. doi: 10.3109/03008207.2013.860970
Bolukbasi, N., Yeniyol, S., Tekkesin, M. S., & Altunatmaz, K. (2013). The use of platelet-rich fibrin in combination with biphasic calcium phosphate in the treatment of bone defects: a histologic and histomorphometric study. Curr Ther Res Clin Exp, 75, 15-21. doi: 10.1016/j.curtheres.2013.05.002
Brown, J. P., Morin, S., Leslie, W., Papaioannou, A., Cheung, A. M., Davison, K. S., . . . Adachi, J. (2014). Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician, 60(4), 324-333.
Burnouf, T., Goubran, H. A., Chen, T. M., Ou, K. L., El-Ekiaby, M., & Radosevic, M. (2013). Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev, 27(2), 77-89. doi: 10.1016/j.blre.2013.02.001
Burnouf, T., Lee, C. Y., Luo, C. W., Kuo, Y. P., Chou, M. L., Wu, Y. W., . . . Su, C. Y. (2012). Human blood-derived fibrin releasates: composition and use for the culture of cell lines and human primary cells. Biologicals, 40(1), 21-30. doi: 10.1016/j.biologicals.2011.09.017
Burnouf, T., Tseng, Y. H., Kuo, Y. P., & Su, C. Y. (2008). Solvent/detergent treatment of platelet concentrates enhances the release of growth factors. Transfusion, 48(6), 1090-1098. doi: 10.1111/j.1537-2995.2008.01691.x
Cary, R. L., Waddell, S., Racioppi, L., Long, F., Novack, D. V., Voor, M. J., & Sankar, U. (2013). Inhibition of Ca(2)(+)/calmodulin-dependent protein kinase kinase 2 stimulates osteoblast formation and inhibits osteoclast differentiation. J Bone Miner Res, 28(7), 1599-1610. doi: 10.1002/jbmr.1890
Chandra, A., Lan, S., Zhu, J., Lin, T., Zhang, X., Siclari, V. A., . . . Qin, L. (2013). PTH prevents the adverse effects of focal radiation on bone architecture in young rats. Bone, 55(2), 449-457. doi: 10.1016/j.bone.2013.02.023
Chang, J. K., Li, C. J., Wu, S. C., Yeh, C. H., Chen, C. H., Fu, Y. C., . . . Ho, M. L. (2007). Effects of anti-inflammatory drugs on proliferation, cytotoxicity and osteogenesis in bone marrow mesenchymal stem cells. Biochem Pharmacol, 74(9), 1371-1382. doi: 10.1016/j.bcp.2007.06.047
Chen, F. P., Hu, C. H., & Wang, K. C. (2013). Estrogen modulates osteogenic activity and estrogen receptor mRNA in mesenchymal stem cells of women. Climacteric, 16(1), 154-160. doi: 10.3109/13697137.2012.672496
Chen, H. T., Lee, M. J., Chen, C. H., Chuang, S. C., Chang, L. F., Ho, M. L., . . . Chang, J. K. (2012). Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med, 16(3), 582-593. doi: 10.1111/j.1582-4934.2011.01335.x
Chen, Q., Shou, P., Zhang, L., Xu, C., Zheng, C., Han, Y., . . . Shi, Y. (2014). An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells, 32(2), 327-337. doi: 10.1002/stem.1567
Chen, X. D., Dusevich, V., Feng, J. Q., Manolagas, S. C., & Jilka, R. L. (2007). Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res, 22(12), 1943-1956. doi: 10.1359/jbmr.070725
Chen, Y., Niu, Z., Xue, Y., Yuan, F., Fu, Y., & Bai, N. (2014). Improvement in the repair of defects in maxillofacial soft tissue in irradiated minipigs by a mixture of adipose-derived stem cells and platelet-rich fibrin. Br J Oral Maxillofac Surg, 52(8), 740-745. doi: 10.1016/j.bjoms.2014.06.006
Chiellini, C., Cochet, O., Negroni, L., Samson, M., Poggi, M., Ailhaud, G., . . . Amri, E. Z. (2008). Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol, 9, 26. doi: 10.1186/1471-2199-9-26
Cho, S. A., Lee, B. K., Park, S. H., & Ahn, J. J. (2014). The bone integration effects of platelet-rich fibrin by removal torque of titanium screw in rabbit tibia. Platelets, 25(8), 562-566. doi: 10.3109/09537104.2013.856398
Cho, S. W., Sun, H. J., Yang, J. Y., Jung, J. Y., An, J. H., Cho, H. Y., . . . Shin, C. S. (2009). Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol Ther, 17(11), 1979-1987. doi: 10.1038/mt.2009.153
Choi, Y. A., Seol, M. Y., Shin, H. I., & Park, E. K. (2014). Bobby Sox homology regulates odontoblast differentiation of human dental pulp stem cells/progenitors. Cell Commun Signal, 12, 35. doi: 10.1186/1478-811X-12-35
Choukroun, J., Diss, A., Simonpieri, A., Girard, M. O., Schoeffler, C., Dohan, S. L., . . . Dohan, D. M. (2006). Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part IV: clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 101(3), e56-60. doi: 10.1016/j.tripleo.2005.07.011
Chung, M. E., Lee, J. I., Im, S., & Park, J. H. (2012). Ischemic stroke in rats enhances bone resorption in vitro. J Korean Med Sci, 27(1), 84-88. doi: 10.3346/jkms.2012.27.1.84
Conwell, L. S., & Chang, A. B. (2014). Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev, 3, CD002010. doi: 10.1002/14651858.CD002010.pub4
de Freitas, P. H., Hasegawa, T., Takeda, S., Sasaki, M., Tabata, C., Oda, K., . . . Amizuka, N. (2011). Eldecalcitol, a second-generation vitamin D analog, drives bone minimodeling and reduces osteoclastic number in trabecular bone of ovariectomized rats. Bone, 49(3), 335-342. doi: 10.1016/j.bone.2011.05.022
De Pascale, M. R., Sommese, L., Casamassimi, A., & Napoli, C. (2015). Platelet derivatives in regenerative medicine: an update. Transfus Med Rev, 29(1), 52-61. doi: 10.1016/j.tmrv.2014.11.001
Dohan Ehrenfest, D. M., Doglioli, P., de Peppo, G. M., Del Corso, M., & Charrier, J. B. (2010). Choukroun's platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Arch Oral Biol, 55(3), 185-194. doi: 10.1016/j.archoralbio.2010.01.004
Dohan Ehrenfest, D. M., Rasmusson, L., & Albrektsson, T. (2009). Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol, 27(3), 158-167. doi: 10.1016/j.tibtech.2008.11.009
Donoso, O., Pino, A. M., Seitz, G., Osses, N., & Rodriguez, J. P. (2015). Osteoporosis-associated alteration in the signalling status of BMP-2 in human MSCs under adipogenic conditions. J Cell Biochem, 116(7), 1267-1277. doi: 10.1002/jcb.25082
Dragojevic, J., Logar, D. B., Komadina, R., & Marc, J. (2011). Osteoblastogenesis and adipogenesis are higher in osteoarthritic than in osteoporotic bone tissue. Arch Med Res, 42(5), 392-397. doi: 10.1016/j.arcmed.2011.08.005
Duque, G., Huang, D. C., Dion, N., Macoritto, M., Rivas, D., Li, W., . . . Kremer, R. (2011). Interferon-gamma plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. J Bone Miner Res, 26(7), 1472-1483. doi: 10.1002/jbmr.350
Fei, Q., Guo, C., Xu, X., Gao, J., Zhang, J., Chen, T., & Cui, D. (2010). Osteogenic growth peptide enhances the proliferation of bone marrow mesenchymal stem cells from osteoprotegerin-deficient mice by CDK2/cyclin A. Acta Biochim Biophys Sin (Shanghai), 42(11), 801-806. doi: 10.1093/abbs/gmq086
Fu, Y., Li, R., Zhong, J., Fu, N., Wei, X., Cun, X., . . . Lin, Y. (2014). Adipogenic differentiation potential of adipose-derived mesenchymal stem cells from ovariectomized mice. Cell Prolif, 47(6), 604-614. doi: 10.1111/cpr.12131
Gao, Y., Jiao, Y., Nie, W., Lian, B., & Wang, B. (2014). In vitro proliferation and differentiation potential of bone marrow-derived mesenchymal stem cells from ovariectomized rats. Tissue Cell, 46(6), 450-456. doi: 10.1016/j.tice.2014.08.006
Gassling, V., Douglas, T. E., Purcz, N., Schaubroeck, D., Balcaen, L., Bliznuk, V., . . . Dubruel, P. (2013). Magnesium-enhanced enzymatically mineralized platelet-rich fibrin for bone regeneration applications. Biomed Mater, 8(5), 055001. doi: 10.1088/1748-6041/8/5/055001
Geng, S., Zhou, S., Bi, Z., & Glowacki, J. (2013). Vitamin D metabolism in human bone marrow stromal (mesenchymal stem) cells. Metabolism, 62(6), 768-777. doi: 10.1016/j.metabol.2013.01.003
Gimble, J. M., & Nuttall, M. E. (2012). The relationship between adipose tissue and bone metabolism. Clin Biochem, 45(12), 874-879. doi: 10.1016/j.clinbiochem.2012.03.006
Girish Rao, S., Bhat, P., Nagesh, K. S., Rao, G. H., Mirle, B., Kharbhari, L., & Gangaprasad, B. (2013). Bone regeneration in extraction sockets with autologous platelet rich fibrin gel. J Maxillofac Oral Surg, 12(1), 11-16. doi: 10.1007/s12663-012-0370-x
Gomez-Barrena, E., Sola, C. A., & Bunu, C. P. (2014). Regulatory authorities and orthopaedic clinical trials on expanded mesenchymal stem cells. Int Orthop, 38(9), 1803-1809. doi: 10.1007/s00264-014-2332-z
Gray, S. K., McGee-Lawrence, M. E., Sanders, J. L., Condon, K. W., Tsai, C. J., & Donahue, S. W. (2012). Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice. Bone, 51(3), 578-585. doi: 10.1016/j.bone.2012.05.003
Gurkan, U. A., & Akkus, O. (2008). The mechanical environment of bone marrow: a review. Ann Biomed Eng, 36(12), 1978-1991. doi: 10.1007/s10439-008-9577-x
Halcsik, E., Forni, M. F., Fujita, A., Verano-Braga, T., Jensen, O. N., & Sogayar, M. C. (2013). New insights in osteogenic differentiation revealed by mass spectrometric assessment of phosphorylated substrates in murine skin mesenchymal cells. BMC Cell Biol, 14, 47. doi: 10.1186/1471-2121-14-47
Haleem, A. M., Singergy, A. A., Sabry, D., Atta, H. M., Rashed, L. A., Chu, C. R., . . . Abdel Aziz, M. T. (2010). The Clinical Use of Human Culture-Expanded Autologous Bone Marrow Mesenchymal Stem Cells Transplanted on Platelet-Rich Fibrin Glue in the Treatment of Articular Cartilage Defects: A Pilot Study and Preliminary Results. Cartilage, 1(4), 253-261. doi: 10.1177/1947603510366027
Hayward, C. P. M., & Moffat, K. A. (2013). Platelet Aggregation. 559-580. doi: 10.1016/b978-0-12-387837-3.00028-6
He, L., Lin, Y., Hu, X., Zhang, Y., & Wu, H. (2009). A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 108(5), 707-713. doi: 10.1016/j.tripleo.2009.06.044
Hokugo, A., Sawada, Y., Hokugo, R., Iwamura, H., Kobuchi, M., Kambara, T., . . . Tabata, Y. (2007). Controlled release of platelet growth factors enhances bone regeneration at rabbit calvaria. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 104(1), 44-48. doi: 10.1016/j.tripleo.2006.11.032
Holmes, C., Khan, T. S., Owen, C., Ciliberti, N., Grynpas, M. D., & Stanford, W. L. (2007). Longitudinal analysis of mesenchymal progenitors and bone quality in the stem cell antigen-1-null osteoporotic mouse. J Bone Miner Res, 22(9), 1373-1386. doi: 10.1359/jbmr.070604
Honda, H., Tamai, N., Naka, N., Yoshikawa, H., & Myoui, A. (2013). Bone tissue engineering with bone marrow-derived stromal cells integrated with concentrated growth factor in Rattus norvegicus calvaria defect model. J Artif Organs, 16(3), 305-315. doi: 10.1007/s10047-013-0711-7
Hotwani, K., & Sharma, K. (2014). Platelet rich fibrin - a novel acumen into regenerative endodontic therapy. Restor Dent Endod, 39(1), 1-6. doi: 10.5395/rde.2014.39.1.1
Hunter, P. J. (2013). Platelet-rich blood clots. Biophys J, 104(8), 1641. doi: 10.1016/j.bpj.2013.02.056
Ikehara, S. (2005). Intra-bone marrow-bone marrow transplantation: a new strategy for treatment of stem cell disorders. Ann N Y Acad Sci, 1051, 626-634. doi: 10.1196/annals.1361.107
Ikehara, S. (2009). A new bone marrow transplantation method for stem cell disorders. Ann N Y Acad Sci, 1173, 774-780. doi: 10.1111/j.1749-6632.2009.04644.x
Ito, H. (2014). Clinical considerations of regenerative medicine in osteoporosis. Curr Osteoporos Rep, 12(2), 230-234. doi: 10.1007/s11914-014-0201-8
Jeong, S. M., Lee, C. U., Son, J. S., Oh, J. H., Fang, Y., & Choi, B. H. (2014). Simultaneous sinus lift and implantation using platelet-rich fibrin as sole grafting material. J Craniomaxillofac Surg, 42(6), 990-994. doi: 10.1016/j.jcms.2014.01.021
Jiang, Z. Q., Liu, H. Y., Zhang, L. P., Wu, Z. Q., & Shang, D. Z. (2012). Repair of calvarial defects in rabbits with platelet-rich plasma as the scaffold for carrying bone marrow stromal cells. Oral Surg Oral Med Oral Pathol Oral Radiol, 113(3), 327-333. doi: 10.1016/j.tripleo.2011.03.026
Johnston, J. C., Haile, A., Wang, D., Ronnett, G., & Jones, L. C. (2014). Dexamethasone treatment alters function of adipocytes from a mesenchymal stromal cell line. Biochem Biophys Res Commun, 451(4), 473-479. doi: 10.1016/j.bbrc.2014.07.063
Joseph, V. R., Sam, G., & Amol, N. V. (2014). Clinical evaluation of autologous platelet rich fibrin in horizontal alveolar bony defects. J Clin Diagn Res, 8(11), ZC43-47. doi: 10.7860/JCDR/2014/9948.5129
Jung, S. R., Song, N. J., Yang, D. K., Cho, Y. J., Kim, B. J., Hong, J. W., . . . Park, K. W. (2013). Silk proteins stimulate osteoblast differentiation by suppressing the Notch signaling pathway in mesenchymal stem cells. Nutr Res, 33(2), 162-170. doi: 10.1016/j.nutres.2012.11.006
Jung, Y., Song, J., Shiozawa, Y., Wang, J., Wang, Z., Williams, B., . . . Taichman, R. S. (2008). Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells, 26(8), 2042-2051. doi: 10.1634/stemcells.2008-0149
Kananen, K., Volin, L., Laitinen, K., Alfthan, H., Ruutu, T., & Valimaki, M. J. (2005). Prevention of bone loss after allogeneic stem cell transplantation by calcium, vitamin D, and sex hormone replacement with or without pamidronate. J Clin Endocrinol Metab, 90(7), 3877-3885. doi: 10.1210/jc.2004-2161
Kang, Y. H., Jeon, S. H., Park, J. Y., Chung, J. H., Choung, Y. H., Choung, H. W., . . . Choung, P. H. (2011). Platelet-rich fibrin is a Bioscaffold and reservoir of growth factors for tissue regeneration. Tissue Eng Part A, 17(3-4), 349-359. doi: 10.1089/ten.TEA.2010.0327
Kawase, T., Kamiya, M., Kobayashi, M., Tanaka, T., Okuda, K., Wolff, L. F., & Yoshie, H. (2015). The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation. J Biomed Mater Res B Appl Biomater, 103(4), 825-831. doi: 10.1002/jbm.b.33262
Kikuta, S., Tanaka, N., Kazama, T., Kazama, M., Kano, K., Ryu, J., . . . Matsumoto, T. (2013). Osteogenic effects of dedifferentiated fat cell transplantation in rabbit models of bone defect and ovariectomy-induced osteoporosis. Tissue Eng Part A, 19(15-16), 1792-1802. doi: 10.1089/ten.TEA.2012.0380
Kim, B. J., Kwon, T. K., Baek, H. S., Hwang, D. S., Kim, C. H., Chung, I. K., . . . Shin, S. H. (2012). A comparative study of the effectiveness of sinus bone grafting with recombinant human bone morphogenetic protein 2-coated tricalcium phosphate and platelet-rich fibrin-mixed tricalcium phosphate in rabbits. Oral Surg Oral Med Oral Pathol Oral Radiol, 113(5), 583-592. doi: 10.1016/j.tripleo.2011.04.029
Kim, D., Cho, S. W., Her, S. J., Yang, J. Y., Kim, S. W., Kim, S. Y., & Shin, C. S. (2006). Retrovirus-mediated gene transfer of receptor activator of nuclear factor-kappaB-Fc prevents bone loss in ovariectomized mice. Stem Cells, 24(7), 1798-1805. doi: 10.1634/stemcells.2005-0480
Kim, H. J., Nam, H. W., Hur, C. Y., Park, M., Yang, H. S., Kim, B. S., & Park, J. H. (2011). The effect of platelet rich plasma from bone marrow aspirate with added bone morphogenetic protein-2 on the Achilles tendon-bone junction in rabbits. Clin Orthop Surg, 3(4), 325-331. doi: 10.4055/cios.2011.3.4.325
Kim, H. J., Park, J. B., Lee, J. K., Park, E. Y., Park, E. A., Riew, K. D., & Rhee, S. K. (2008). Transplanted xenogenic bone marrow stem cells survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits. Eur Spine J, 17(11), 1515-1521. doi: 10.1007/s00586-008-0784-9
Kim, T. H., Kim, S. H., Sandor, G. K., & Kim, Y. D. (2014). Comparison of platelet-rich plasma (PRP), platelet-rich fibrin (PRF), and concentrated growth factor (CGF) in rabbit-skull defect healing. Arch Oral Biol, 59(5), 550-558. doi: 10.1016/j.archoralbio.2014.02.004
Klop, C., Gibson-Smith, D., Elders, P. J., Welsing, P. M., Leufkens, H. G., Harvey, N. C., . . . de Vries, F. (2015). Anti-osteoporosis drug prescribing after hip fracture in the UK: 2000-2010. Osteoporos Int. doi: 10.1007/s00198-015-3098-x
Komori, T. (2015). Animal models for osteoporosis. Eur J Pharmacol, 759, 287-294. doi: 10.1016/j.ejphar.2015.03.028
Kretlow, J. D., Spicer, P. P., Jansen, J. A., Vacanti, C. A., Kasper, F. K., & Mikos, A. G. (2010). Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects. Tissue Eng Part A, 16(12), 3555-3568. doi: 10.1089/ten.TEA.2010.0471
Kuo, T.-F., Lin, M.-F., Lin, Y.-H., Lin, Y.-C., Su, R.-J., Lin, H.-W., & Chan, W. P. (2011). Implantation of platelet-rich fibrin and cartilage granules facilitates cartilage repair in the injured rabbit knee: preliminary report. Clinics, 66(10), 1835-1838. doi: 10.1590/s1807-59322011001000026
Kwak, J., Zara, J. N., Chiang, M., Ngo, R., Shen, J., James, A. W., . . . Soo, C. (2013). NELL-1 injection maintains long-bone quantity and quality in an ovariectomy-induced osteoporotic senile rat model. Tissue Eng Part A, 19(3-4), 426-436. doi: 10.1089/ten.TEA.2012.0042
Lee, B. (2011). Rehmannia glutinosa Ameliorates Scopolamine-Induced Learning and Memory Impairment in Rats. Journal of Microbiology and Biotechnology, 21(8), 874-883. doi: 10.4014/jmb.1104.04012
Lee, K., Kim, H., Kim, J. M., Kim, J. R., Kim, K. J., Kim, Y. J., . . . Jeong, D. (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J Cell Mol Med, 15(10), 2082-2094. doi: 10.1111/j.1582-4934.2010.01230.x
Lekovic, V., Milinkovic, I., Aleksic, Z., Jankovic, S., Stankovic, P., Kenney, E. B., & Camargo, P. M. (2012). Platelet-rich fibrin and bovine porous bone mineral vs. platelet-rich fibrin in the treatment of intrabony periodontal defects. J Periodontal Res, 47(4), 409-417. doi: 10.1111/j.1600-0765.2011.01446.x
Levi, B., & Longaker, M. T. (2011). Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells, 29(4), 576-582. doi: 10.1002/stem.612
Li, J., Zhang, N., Huang, X., Xu, J., Fernandes, J. C., Dai, K., & Zhang, X. (2013). Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis, 4, e832. doi: 10.1038/cddis.2013.348
Li, Q., Pan, S., Dangaria, S. J., Gopinathan, G., Kolokythas, A., Chu, S., . . . Luan, X. (2013). Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation. Biomed Res Int, 2013, 638043. doi: 10.1155/2013/638043
Li, Q., Reed, D. A., Min, L., Gopinathan, G., Li, S., Dangaria, S. J., . . . Diekwisch, T. G. (2014). Lyophilized platelet-rich fibrin (PRF) promotes craniofacial bone regeneration through Runx2. Int J Mol Sci, 15(5), 8509-8525. doi: 10.3390/ijms15058509
Li, X. D., Wang, J. S., Chang, B., Chen, B., Guo, C., Hou, G. Q., . . . Du, S. X. (2011). Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. J Ethnopharmacol, 134(2), 268-274. doi: 10.1016/j.jep.2010.11.075
Li, Y., Li, J., Zhu, S., Luo, E., Feng, G., Chen, Q., & Hu, J. (2012). Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells. Biochem Biophys Res Commun, 418(4), 725-730. doi: 10.1016/j.bbrc.2012.01.088
Li, Z. W., Piao, C. D., Sun, H. H., Ren, X. S., & Bai, Y. S. (2014). Asiatic acid inhibits adipogenic differentiation of bone marrow stromal cells. Cell Biochem Biophys, 68(2), 437-442. doi: 10.1007/s12013-013-9725-2
Liao, H. T., Chen, C. T., Chen, C. H., Chen, J. P., & Tsai, J. C. (2011). Combination of guided osteogenesis with autologous platelet-rich fibrin glue and mesenchymal stem cell for mandibular reconstruction. J Trauma, 70(1), 228-237. doi: 10.1097/TA.0b013e3181e12b56
Liao, H. T., Marra, K. G., & Rubin, J. P. (2014). Application of platelet-rich plasma and platelet-rich fibrin in fat grafting: basic science and literature review. Tissue Eng Part B Rev, 20(4), 267-276. doi: 10.1089/ten.TEB.2013.0317
Liu, B., Tan, X. Y., Liu, Y. P., Xu, X. F., Li, L., Xu, H. Y., . . . Chen, F. M. (2013). The adjuvant use of stromal vascular fraction and platelet-rich fibrin for autologous adipose tissue transplantation. Tissue Eng Part C Methods, 19(1), 1-14. doi: 10.1089/ten.TEC.2012.0126
Liu, C. L., Cheng, L., Ko, C. H., Wong, C. W., Cheng, W. H., Cheung, D. W., . . . Bik-San Lau, C. (2012). Bioassay-guided isolation of anti-inflammatory components from the root of Rehmannia glutinosa and its underlying mechanism via inhibition of iNOS pathway. J Ethnopharmacol, 143(3), 867-875. doi: 10.1016/j.jep.2012.08.012
Liu, C. L., Cheng, L., Kwok, H. F., Ko, C. H., Lau, T. W., Koon, C. M., . . . Lau, C. B. (2011). Bioassay-guided isolation of norviburtinal from the root of Rehmannia glutinosa, exhibited angiogenesis effect in zebrafish embryo model. J Ethnopharmacol, 137(3), 1323-1327. doi: 10.1016/j.jep.2011.07.060
Liu, H. Y., Chiou, J. F., Wu, A. T., Tsai, C. Y., Leu, J. D., Ting, L. L., . . . Deng, W. P. (2012). The effect of diminished osteogenic signals on reduced osteoporosis recovery in aged mice and the potential therapeutic use of adipose-derived stem cells. Biomaterials, 33(26), 6105-6112. doi: 10.1016/j.biomaterials.2012.05.024
Liu, H. Y., Liu, M. C., Wang, M. F., Chen, W. H., Tsai, C. Y., Wu, K. H., . . . Deng, W. P. (2013). Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice. Evid Based Complement Alternat Med, 2013, 161976. doi: 10.1155/2013/161976
Liu, H. Y., Wu, A. T., Tsai, C. Y., Chou, K. R., Zeng, R., Wang, M. F., . . . Deng, W. P. (2011). The balance between adipogenesis and osteogenesis in bone regeneration by platelet-rich plasma for age-related osteoporosis. Biomaterials, 32(28), 6773-6780. doi: 10.1016/j.biomaterials.2011.05.080
Liu, M., Xiao, G. G., Rong, P., Zhang, Z., Dong, J., Zhao, H., . . . Ju, D. (2012). Therapeutic effects of radix dipsaci, pyrola herb, and Cynomorium songaricum on bone metabolism of ovariectomized rats. BMC Complement Altern Med, 12, 67. doi: 10.1186/1472-6882-12-67
Liu, Y., Berendsen, A. D., Jia, S., Lotinun, S., Baron, R., Ferrara, N., & Olsen, B. R. (2012). Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest, 122(9), 3101-3113. doi: 10.1172/JCI61209
Liu, Y., Wang, L., Liu, S., Liu, D., Chen, C., Xu, X., . . . Shi, S. (2014). Transplantation of SHED prevents bone loss in the early phase of ovariectomy-induced osteoporosis. J Dent Res, 93(11), 1124-1132. doi: 10.1177/0022034514552675
Liu, Y., Wu, J., Zhu, Y., & Han, J. (2014). Therapeutic application of mesenchymal stem cells in bone and joint diseases. Clin Exp Med, 14(1), 13-24. doi: 10.1007/s10238-012-0218-1
Lo, W. C., Chiou, J. F., Gelovani, J. G., Cheong, M. L., Lee, C. M., Liu, H. Y., . . . Deng, W. P. (2009). Transplantation of embryonic fibroblasts treated with platelet-rich plasma induces osteogenesis in SAMP8 mice monitored by molecular imaging. J Nucl Med, 50(5), 765-773. doi: 10.2967/jnumed.108.057372
Luu, Y. K., Capilla, E., Rosen, C. J., Gilsanz, V., Pessin, J. E., Judex, S., & Rubin, C. T. (2009). Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. J Bone Miner Res, 24(1), 50-61. doi: 10.1359/jbmr.080817
Matsumoto, T., Ito, M., Hayashi, Y., Hirota, T., Tanigawara, Y., Sone, T., . . . Nakamura, T. (2011). A new active vitamin D3 analog, eldecalcitol, prevents the risk of osteoporotic fractures--a randomized, active comparator, double-blind study. Bone, 49(4), 605-612. doi: 10.1016/j.bone.2011.07.011
McClune, B. L., & Majhail, N. S. (2013). Osteoporosis after stem cell transplantation. Curr Osteoporos Rep, 11(4), 305-310. doi: 10.1007/s11914-013-0180-1
Mikami, Y., Matsumoto, T., Kano, K., Toriumi, T., Somei, M., Honda, M. J., & Komiyama, K. (2014). Current status of drug therapies for osteoporosis and the search for stem cells adapted for bone regenerative medicine. Anat Sci Int, 89(1), 1-10. doi: 10.1007/s12565-013-0208-8
Mirsaidi, A., Genelin, K., Vetsch, J. R., Stanger, S., Theiss, F., Lindtner, R. A., . . . Richards, P. J. (2014). Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis. Biomaterials, 35(26), 7326-7335. doi: 10.1016/j.biomaterials.2014.05.016
Miura, Y., Miura, M., Gronthos, S., Allen, M. R., Cao, C., Uveges, T. E., . . . Zhang, L. (2005). Defective osteogenesis of the stromal stem cells predisposes CD18-null mice to osteoporosis. Proc Natl Acad Sci U S A, 102(39), 14022-14027. doi: 10.1073/pnas.0409397102
Mohanty, S. T., Kottam, L., Gambardella, A., Nicklin, M. J., Coulton, L., Hughes, D., . . . Bellantuono, I. (2010). Alterations in the self-renewal and differentiation ability of bone marrow mesenchymal stem cells in a mouse model of rheumatoid arthritis. Arthritis Res Ther, 12(4), R149. doi: 10.1186/ar3098
Murrills, R. J., Fukayama, S., Boschelli, F., Matteo, J. J., Owens, J., Golas, J. M., . . . Bodine, P. V. (2012). Osteogenic effects of a potent Src-over-Abl-selective kinase inhibitor in the mouse. J Pharmacol Exp Ther, 340(3), 676-687. doi: 10.1124/jpet.111.185793
Nicolaidou, V., Wong, M. M., Redpath, A. N., Ersek, A., Baban, D. F., Williams, L. M., . . . Horwood, N. J. (2012). Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One, 7(7), e39871. doi: 10.1371/journal.pone.0039871
Oh, H. J., Park, J. E., Park, E. J., Kim, M. J., Kim, G. A., Rhee, S. H., . . . Lee, B. C. (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev Growth Differ, 56(9), 595-604. doi: 10.1111/dgd.12159
Oliveira, M. R., de, C. S. A., Ferreira, S., Avelino, C. C., Garcia, I. R., Jr., & Mariano, R. C. (2015). Influence of the association between platelet-rich fibrin and bovine bone on bone regeneration. A histomorphometric study in the calvaria of rats. Int J Oral Maxillofac Surg, 44(5), 649-655. doi: 10.1016/j.ijom.2014.12.005
Papapoulos, S. E. (2015). Anabolic bone therapies in 2014: New bone-forming treatments for osteoporosis. Nat Rev Endocrinol, 11(2), 69-70. doi: 10.1038/nrendo.2014.214
Papathanasopoulos, A., Kouroupis, D., Henshaw, K., McGonagle, D., Jones, E. A., & Giannoudis, P. V. (2011). Effects of antithrombotic drugs fondaparinux and tinzaparin on in vitro proliferation and osteogenic and chondrogenic differentiation of bone-derived mesenchymal stem cells. J Orthop Res, 29(9), 1327-1335. doi: 10.1002/jor.21405
Passaretti, F., Tia, M., D'Esposito, V., De Pascale, M., Del Corso, M., Sepulveres, R., . . . Sammartino, G. (2014). Growth-promoting action and growth factor release by different platelet derivatives. Platelets, 25(4), 252-256. doi: 10.3109/09537104.2013.809060
Pripatnanont, P., Balabid, F., Pongpanich, S., & Vongvatcharanon, S. (2015). Effect of osteogenic periosteal distraction by a modified Hyrax device with and without platelet-rich fibrin on bone formation in a rabbit model: a pilot study. Int J Oral Maxillofac Surg, 44(5), 656-663. doi: 10.1016/j.ijom.2014.12.004
Qiu, W., Andersen, T. E., Bollerslev, J., Mandrup, S., Abdallah, B. M., & Kassem, M. (2007). Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res, 22(11), 1720-1731. doi: 10.1359/jbmr.070721
Raisz, L. G. (2005). Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest, 115(12), 3318-3325. doi: 10.1172/JCI27071
Rinker, T. E., Hammoudi, T. M., Kemp, M. L., Lu, H., & Temenoff, J. S. (2014). Interactions between mesenchymal stem cells, adipocytes, and osteoblasts in a 3D tri-culture model of hyperglycemi
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54468-
dc.description.abstract骨質疏鬆症是一種漸進性疾病,其特徵是骨骼組織的質量和數量異常,進而導致骨骼強度受損和易增加骨折的風險。雖然詳細的病理機制還需要更進一步去研究探討,但大致上可將骨質疏鬆症歸咎於雌性激素分泌降低,使得原本成骨細胞和破骨細胞之間保持的平衡急劇失衡,造成了骨質疏鬆症的發生。
目前骨質疏鬆症的治療主要是著重在降低骨質耗損速率或是促進新骨質的生成,使用的藥物包括了雙磷酸鹽、降鈣素、雌激素和激素替代療法(HRT)…等。雖然這些藥物現在仍然在臨床上使用以預防或治療骨質疏鬆症,但往往有較大的副作用。例如HRT可以預防骨質疏鬆症,但這些藥物卻會刺激子宮內膜增生,增加罹患子宮內膜癌或乳腺癌的風險。因此目前迫切需要開發用於預防和治療骨質疏鬆的替代方法。
幹細胞是一種未分化的細胞,可以無限分裂成原始幹細胞系,也還有分化成其它類型細胞之潛能。我們收集了小鼠腿骨的骨髓幹細胞,經過流式細胞儀篩選後,於誘導分化為成骨細胞的環境中培養。
富血小板纖維蛋白(PRF)是一種天然生長因子的來源,裡面含有大量會影響骨質再生的生長因子。包含:TGFb-1(Transforming growth factor)、PDGF (platelet-derived growthfactor)、VEGF (vascular endothelial growth factor)及Matrix proteins (thrombospondin-1、fibronectin)。這些PRF所釋放的生長因子,會透過促進細胞增生、基質形成、骨質生成、膠原蛋白的合成等。最近研究顯示,富血小板纖維蛋白(PRF)會非常緩慢地釋放出生長因子至少持續7天甚至最長達28天,這意味著PRF可以在傷口癒合過程中對周圍環境造成長時間的刺激影響。
我們將富含血小板纖維蛋白釋放液(PRFr)添加在進行培養的小鼠骨髓幹細胞,以探討釋放液是否能提高幹細胞的增殖能力及促進細胞分化潛能。結果顯示加入釋放液組別的骨髓幹細胞增殖速率較快速,細胞存活率也高出許多。因此我們推斷富含血小板纖釋放液對骨髓幹細胞生長及分化有極大幫助。
在完成細胞實驗之後,我們接著利用動物實驗,去探討富含血小板纖釋放液對骨質疏鬆症之治療成效。骨質疏鬆症模型建立是利用卵巢切除(OVX)小鼠, 16週齡的 ICR小鼠隨機分配至不手術、卵巢切除或假手術三個類別,不手術組也就是做為Pos.Control的正常小鼠,假手術組是將皮膚劃開後再縫合回去,不摘除卵巢,卵巢摘除組則在卵巢摘除後,分別接受八種不同的治療方法:(1)對照組:不注射任何物質,作為Neg.Control;(2)注射ㄧ次BMSCs組 3x105 BMSCs/0.6ml PBS(3)注射ㄧ次PRFr組,0.6ml PRFr ;(4)注射ㄧ次BMSCs+ PRFr組,3x105 BMSCs/0.6ml PRFr;(5)注射四次BMSCs組 1.2x106 BMSCs/0.6ml PBS ;(6)注射四次PRFr組,2.4ml PRFr;(7)注射四次BMSCs+ PRFr組,1.2x106 BMSCs/2.4ml PRFr ;(8)骨內注射四次BMSCs+ PRFr組,1.2x106 BMSCs/2.4ml PRFr。所使用的骨髓間葉幹細胞是從健康同種異體小鼠取得,而富含血小板纖維蛋白釋放液PRFr則是從健康兔子抽取血液製備而成。治療時將幹細胞或富含血小板纖維蛋白釋放液注射至小鼠的薦尾靜脈中,以調查其用於骨量恢復與骨質再生的治療潛力。
完成注射後之小鼠會再飼養八週,使其骨骼完整生長,最後將其犧牲並利用Micro CT 血清檢測 以及組織切片染色去評估治療成效。Micro CT掃描部位為左腿脛骨近端生長板下0.5~1.5mm處,分析項目包含骨礦物質密度、骨組織百分比、骨小樑數目、骨小樑厚度及骨小樑間距。分析後將腿骨先利用中性脫鈣液脫鈣,在以石蠟包埋切片,並染H&E染劑以放置於顯微鏡下觀察。
由實驗結果得之,僅僅注射一次BMSC或是PRF的治療小鼠,皆無明顯治療效果,骨質疏鬆症現象和不治療組小鼠相似。而注射四次BMSC或是PRF的治療小鼠,骨礦物質密度、骨組織百分比、骨小樑數目、骨小樑厚度及骨小樑間距等數據都明顯高於不治療組小鼠,顯示體內骨質疏鬆症現象減緩。另外在注射部位方面,我們也發現了雖然差異不大,但是直接將幹細胞注射進入小鼠脛骨骨髓腔,比注射在小鼠薦尾靜脈治療成效來的好。最後探討注射物質對治療成效差異,經過注射PRF+ BMSC治療的小鼠骨骼比那些單純只使用PRF或骨髓幹細胞的小鼠骨密度更加緊密。所以本研究結果證實使用PRF及BMSC可以達成骨質疏鬆症的治療效果。
zh_TW
dc.description.abstractStem cells are a kind of undifferentiated cells which may differentiate into other cell types. And they can also divide indefinitely into stem cell line, but may become cancer cells at about the tenth generation. We collect the bone marrow stem cells (BMSCs) and differentiate BMSCs into osteoblast in vitro after cell sorting by flow cytometer.
Platelet-rich fibrin (PRF) is a natural source of growth factors, which contains a large amount of growth factors that can facilitate bone regeneration, Such as: TGFb-1 (Transforming growth factor) , PDGF (platelet-derived growth factor) , VEGF (vascular endothelial growth factor) and Matrix proteins (thrombospondin-1, fibronectin, vitronectin). The growth factors secreted from PRF will cause cell transformation by promoting cell proliferation、matrix formation、bone formation and synthesis of collagen.
We co-cultured mouse bone marrow stem cells with platelet-rich fibrin releasate (PRFr), to investigate whether the release would improve stem cell proliferation and promote cell differentiation or not. The results show that proliferation rate of the bone marrow stem cells which co-cultured with releasate were more rapid, and cell viability was much higher. Therefore, we deduced that platelet-rich fiber release solution have significant assistance on the growth and differentiation of bone marrow stem cells.
To evaluate therapeutic efficacy of cell-based therapy in osteoporosis: a bone marrow stem cells (BMSCs) and platelet-rich fibrin releasate (PRFr) were used for osteoporosis treatment. An osteoporosis was established with a mouse model by ovariectomy (OVX). Transplantation of BMSCs, PRFr and BMSCs + PRFr into OVX mice for investigating the therapeutic potential for bone regeneration and recovered bone mass loss. OVX or sham operations were performed on virgin ICR mice at 16-weeks old, which were randomLy divided into three parts: Non-surgical, SHAM, and OVX. 6 mice in Non-surgical group was no surgery, 6 mice in SHAM group was subjected to sham surgery, and 30 mice in OVX group mice will accept four different treatments (1)Control group,non injection (2)BMSC-I group, injected BMSCs 3x105 cells/0.6mL PBS once a week for one weeks ; (3)PRF-I group, injected PRFr 0.6mL once a week for one weeks ; (4)BMSCs + PRF-I group, injected BMSCs 3x105 cells combine 0.6 mL PRFr) once a week for one weeks. (5)BMSC-IV group, injected BMSCs 1.2x106 BMSCs/0.6mL PBS once a week for four weeks; (6)PRF-IV group, injected 2.4mL PRFr once a week for four weeks; (7)BMSCs + PRF-IV group, injected 1.2x106 BMSCs / 2.4mL PRFr once a week for four weeks; (8)BMSCs + PRF-IV-i group, intra bone injected 1.2x106 BMSCs/ 2.4 mL PRFr once a week for four weeks. At 8 weeks after implantation, bone mass and its turnover were analyzed by micro CT, We use scanned the left tibia portion of the growth plate at the proximal 0.5-1.5mm, and analyzed bone mineral density, the percentage of bone tissue, trabecular number, trabecular thickness and trabecular separation. Then sacrifice to analyze their efficacy by histomorphometry.
A statistically significant difference between the experimental and control groups was observed. BMSCs + PRFr transplants were shown effective in restoring bone mineral density. These findings indicated that the mixture of BMSC and PRF releasate could potentially be an effective agent in the treatment for osteoporosis
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:58:42Z (GMT). No. of bitstreams: 1
ntu-104-R02629008-1.pdf: 5128931 bytes, checksum: ee4d4c216fc131b31ec7e508f02fdcbb (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝..............................................................................................................................Ⅱ
英文縮寫對照表..........................................................................................................Ⅲ
目錄..............................................................................................................................Ⅵ
圖目錄..........................................................................................................................Ⅸ
表目錄..........................................................................................................................XI
中文摘要....................................................................................................................XⅡ
Abstract..................................................................................................................... XⅣ
第一章:緒言...................................................................................................................1
第二章:文獻回顧...........................................................................................................4
第一節:骨骼介紹...................................................................................................4
1.1骨骼的功能......................................................................................4
1.2骨骼的類型......................................................................................4
1.3骨骼的結構及其相關成份..............................................................5
1.4骨骼之發育......................................................................................6
1.5骨質疏鬆症....................................................................................10
第二節:富血小板纖維蛋白.................................................................................14
2.1血液的成份....................................................................................14
2.2富含血小板纖維蛋白....................................................................18
第三節:再生醫學與組織工程三角模式.............................................................20
第四節:骨髓間葉幹細胞.....................................................................................25
第三章:材料與方法.....................................................................................................27
第一節:培養骨髓幹細胞之相關藥品配製.........................................................27
1.1細胞培養液....................................................................................27
1.1.1一般培養液...........................................................................27
1.1.2誘導培養液...........................................................................27
1.2磷酸鹽緩衝溶液............................................................................28
1.3 0.25 %胰蛋白酵素- 0.02 %乙烯二氨酸.......................................28
第二節:實驗動物.................................................................................................29
2.1實驗動物來源及飼養管理............................................................29
2.2實驗動物分組................................................................................30
第三節:富含血小板纖維蛋白之製備.................................................................31
3.1兔子血液抽取................................................................................31
3.2富含血小板纖維蛋白製備............................................................31
3.3富含血小板纖維蛋白釋放液收取................................................31
第四節:骨髓抽取及幹細胞培養.........................................................................32
4.1 小鼠骨髓抽取...............................................................................32
4.2 骨髓幹細胞之純化.......................................................................32
4.3 骨髓幹細胞培養及細胞計數.......................................................33
4.4 骨髓幹細胞分化能力...................................................................34
4.5 骨髓幹細胞添加富含血小板纖維蛋白釋放液培養及細胞計
數……………………………………………………………......34
4.6骨髓幹細胞添加富含血小板纖維蛋白釋放液培養分化能力....34
第五節:實驗動物手術.........................................................................................36
5.1小鼠卵巢摘除手術........................................................................36
5.2小鼠卵巢摘除假手術....................................................................36
第六節:幹細胞及富含血小板纖維蛋白釋放液注射.........................................38
6.1 注射幹細胞數量及富含血小板纖維蛋白釋放液劑量統計.......38
6.2 小鼠注射.......................................................................................38
6.3 體溫量測.......................................................................................38
6.4 不良反應觀察...............................................................................39
第七節:骨骼生長評估.........................................................................................40
7.1微電腦斷層掃描............................................................................40
7.2血清生化檢測................................................................................40
7.3組織切片染色分析........................................................................40
第八節:統計分析.................................................................................................41
第四章:實驗結果.........................................................................................................42
第一節:幹細胞培養結果.....................................................................................42
1.1 骨髓幹細胞純化...........................................................................42
1.2 骨髓幹細胞生長情形...................................................................42
1.3 骨髓幹細胞數量及死亡率...........................................................43
1.4 骨髓幹細胞分化潛能...................................................................43
1.5 骨髓幹細胞添加富含血小板纖維蛋白釋放液培養生長情形...44
1.6 骨髓幹細胞添加富含血小板纖維蛋白釋放液培養細胞數量及
細胞死亡率..................................................................................44
1.7 骨髓幹細胞添加富含血小板纖維蛋白釋放液培養分化潛能...45
第二節:注射後免疫排斥評估.............................................................................47
2.1小鼠體溫量測................................................................................47
2.2小鼠不良反應觀察........................................................................47
第三節:骨質疏鬆症治療實驗結果.....................................................................48
3.1小鼠體重量測................................................................................48
3.2微電腦斷層掃描分析....................................................................48
3.2.1骨質礦物密度Bone Mineral Density (BMD)分析..............48
3.2.2骨體積百分比Percentage of bone volume (BV/TV)分析...49
3.2.3骨小樑間距Trabecular spacing (Tb.Sp)分析......................50
3.2.4骨小樑厚度Trabecular thickness (Tb.Th)分析...................50
3.2.5骨小樑數量Trabecular number (Tb.N)分析........................51
3.3血清生化檢測................................................................................52
3.3.1血清-鈣分析結果..................................................................52
3.3.2血清-磷分析結果..................................................................53
3.4 組織切片染色...............................................................................53
第五章:討論.................................................................................................................55
第六章:參考文獻.........................................................................................................67
附件............................................................................................................................117
dc.language.isozh-TW
dc.subject富含血小板纖維蛋白zh_TW
dc.subject骨髓間葉幹細胞zh_TW
dc.subject骨質疏鬆zh_TW
dc.subject細胞分化zh_TW
dc.subject組織工程zh_TW
dc.subject富含血小板纖維蛋白zh_TW
dc.subject骨髓間葉幹細胞zh_TW
dc.subject骨質疏鬆zh_TW
dc.subject組織工程zh_TW
dc.subject細胞分化zh_TW
dc.subjectCell differentiationen
dc.subjectOsteoporosisen
dc.subjectMesenchymal stem cellsen
dc.subjectPlatelet-rich fibrinen
dc.subjectTissue engineeringen
dc.subjectOsteoporosisen
dc.subjectMesenchymal stem cellsen
dc.subjectPlatelet-rich fibrinen
dc.subjectTissue engineeringen
dc.subjectCell differentiationen
dc.title以富含血小板纖維蛋白(PRF)釋放液伴隨骨髓幹細胞治療骨質疏鬆症之成效:小鼠模式zh_TW
dc.titleThe Effect of Platelet-rich Fibrin (PRF) Releasate Combined with Bone Marrow Stem Cells on Osteoporosis with a Mouse Modelen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇正堯(Chen-Yao Su),王家義(Chia-Yih Wang)
dc.subject.keyword骨質疏鬆,骨髓間葉幹細胞,富含血小板纖維蛋白,組織工程,細胞分化,zh_TW
dc.subject.keywordOsteoporosis,Mesenchymal stem cells,Platelet-rich fibrin,Tissue engineering,Cell differentiation,en
dc.relation.page119
dc.rights.note有償授權
dc.date.accepted2015-07-06
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
5.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved