Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54457
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔
dc.contributor.authorPo-Kuan Hoen
dc.contributor.author何柏寬zh_TW
dc.date.accessioned2021-06-16T02:58:02Z-
dc.date.available2015-07-20
dc.date.copyright2015-07-20
dc.date.issued2014
dc.date.submitted2015-07-06
dc.identifier.citation[1] R. R. Schaller, Spectrum, IEEE, 53 (1997)
[2] D. Hisamoto, W. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. King, J. Bokor, and C. Hu, IEEE Transactions on Electron Devices, Vol. 47, No. 12, 2320 (2000)
[3] M. Bohr, Intel Crop., IDF (2011)
[4] H. Liu, A. T. Neal, and P. D. Ye, Vol. 6, No. 10, 8563–8569, ACS Nano (2012)
[5] F. Schwierz, Nature Nanotechnology, Vol. 5, 487 (2010)
[6] K. S. Novoselov, Reviews of Modern Physics, Volume 83, 837 (2011)
[7] T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, Applied Physics Letters 102, 023112 (2013)
[08] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A.A. Firsov, Vol. 306, No. 5696, Science (2004)
[09] Z. Yan, A. R. Barron, Characterization of Graphene by Raman Spectroscopy, m34667, cnx.org (2010)
[10] A. K. Geim, Vol. 324, No. 5934, 1530-1534, Science (2009)
[11] A. Varykhalov, M. R. Scholz, Timur K. Kim, and O. Rader, 82, 121101(R), Physical Review B (2010)
[12] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Vol. 3, 206-209, Nature Nanotechnology (2008)
[13] T. Fang, A. Konar, H. Xing, and D. Jena, 91, 092109, Applied Physics Letters (2007)
[14] K. Nagashio, T. Nishimura, K. Kita and A. Toriumi, 09-565, IEDM IEEE (2009)
[15] K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, 97, 143514, Applied Physics Letters (2010)
[16] H. Liu, K. Xu, X. Zhang, and P. D. Ye, 97, 043107, Applied Physics Letters (2010)
[17] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, 6, 147–150, Nature Nanotechnology (2011)
[18] Y-M. Lin et al., 9, 422-426, Nano Letters (2009)
[19] J. G. Son, M. Son, K. J. Moon, B. H. Lee, J. M. Myoung, M. S. Strano, M. H. Ham, and C. A. Ross, 25, 4723-4728, Advanced Materials (2013)
[20] F. Xia, D. B. Farmer, Y. M. Lin, P. Avouris, 10, 715-718, Nano Letters (2010)
[21] Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, Z. X. Shen, 2, 2301, ACS Nano (2008)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54457-
dc.description.abstract石墨烯(Graphene)為一種二維材料,具有高導電性與高載子遷移率等特性,因此石墨烯被視為次世代電晶體的候選材料。本論文探討其材料特性與電晶體的電性表現,材料製備是利用化學氣相沉積於銅箔上成長石墨烯,再透過轉印的方式將石墨烯轉移到目標基板上。因為光學干涉的特性使石墨烯能在特定基板上以光學顯微鏡觀察,並透過拉曼頻譜的量測,可以分析石墨烯的厚度和品質。利用電流電壓量測和霍爾量測下,以化學氣相沉積成長的單層石墨烯具有2000 Ω/square的片電阻,其電洞載子遷移率為317 cm^2/V∙s,片電洞濃度為8.8×10^12 cm^(-2),並在低溫霍爾量測下,得到活化能為24 meV。石墨烯與金屬的接觸阻抗是以TLM方式量測,其與Au/Ti的接觸電阻率為5.60×10^3 Ω∙μm,而與Au的接觸電阻率為6.65×10^2 Ω∙μm。
不同結構的電晶體設計於提升石墨烯電晶體的電性與製程的可靠性,通道上的保護層使場效載子遷移率從126 cm^2/V∙s 增加至226 cm^2/V∙s,而石墨烯最後轉印的方式減少了製程對石墨烯的影響,並提供更好的接觸阻抗,將場效載子遷移率提升至435 cm^2/V∙s。在降低了介電層的厚度後,閘極電場的控制能力增加,電流的開關比約為2.7倍,而量測的場效載子遷移率達834 cm^2/V∙s。
zh_TW
dc.description.abstractThe characteristics of single-layer graphene material and transistors was discussed in this thesis. The graphene grown by chemical vapor deposition was transferred from Cu foil to the target substrate. The single-layer graphene is visible on specific substrate due to the light interference, and Raman spectroscopy was used to certify the thickness and the quality of the graphene. Measured by I-V measurement and Hall measurement, the sheet resistance is 2000 Ω/square, hole mobility is 317 cm^2/V∙s, and sheet hole concentration is 8.8×10^12 cm^(-2) for single-layer graphene. Hall measurement was conducted with varied temperature as well, and the activation energy of 24 meV was fitted. The contact resistivity was calculated by transmission line measurement, and it is 5.60×10^3 Ω∙μm and 6.65×10^2 Ω∙μm with the contact metal of Au/Ti and Au respectively.
The transistors with different structure were fabricated to improve the electrical performance and the reliability of the procedures. Protection of channel and Graphene-last structure enhanced the field effect mobility from 126 cm^2/V∙s to 226 cm^2/V∙s and 435 cm^2/V∙s respectively. Furthermore, the insulator capacitance was increased with thinner dielectric layer. The on/off current ratio of 2.7 was observed, and the field effect mobility of 834 cm^2/V∙s was measured.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:58:02Z (GMT). No. of bitstreams: 1
ntu-103-R01941031-1.pdf: 2083285 bytes, checksum: 0427698006229f5068a9ae4045108c98 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsChapter 1 Introduction……………………………………………1
Chapter 2 Experiment………………………………………………5
2.1 Deposition System…………………………………………5
2.1.1 PECVD……………………………………………………5
2.1.2 Radio Frequency Sputter System…………………10
2.2 Substrate Preparation……………………………………12
2.3 Transfer Procedures………………………………………12
2.4 Deposition Procedures………………………………………13
2.5 Measurement Techniques……………………………………15
2.5.1 Raman Spectroscopy……………………………………15
2.5.2 IR Absorption Spectra…………………………………15
2.5.3 Hall measurement…………………………………………16
2.5.4 Current – Voltage Characteristics…………………17
Chapter 3 The Characteristics of Graphene…………………19
3.1 Film Morphology Observed by Optical Microscopy………19
3.2 Raman Spectroscopy……………………………………………21
3.3 Conductivity………………………………………………… 23
3.4 Hall Measurement………………………………………………25
3.4.1 Hall Measurement at Room Temperature……………25
3.4.2 Hall Measurement at Low Temperature……………27
3.5 Contact Resistivity…………………………………………31
3.5.1 Contact Resistivity of Au/Ti and Graphene…………32
3.5.2 Contact Resistivity of Au and Graphene………………34
Chapter 4 Graphene Transistors…………………………………36
4.1 Fabrication of Graphene Transistor………………………36
4.2 Bottom Gate Graphene Transistor…………………………41
4.3 Protection of Channel………………………………………45
4.4 Graphene-last Transistors…………………………………48
4.5 Insulator Improvement………………………………………54
Chapter 5 Conclusions……………………………………………58
References……………………………………………………………61
dc.language.isoen
dc.subject電晶體zh_TW
dc.subject化學氣相沉積zh_TW
dc.subject石墨烯zh_TW
dc.subject材料zh_TW
dc.subject轉印zh_TW
dc.subject化學氣相沉積zh_TW
dc.subject石墨烯zh_TW
dc.subject材料zh_TW
dc.subject電晶體zh_TW
dc.subject轉印zh_TW
dc.subjectGraphene-lasten
dc.subjectGrapheneen
dc.subjectChemical Vapor Depositionen
dc.subjectTransferen
dc.subjectGraphene-lasten
dc.subjectTransistorsen
dc.subjectMaterialsen
dc.subjectTransferen
dc.subjectChemical Vapor Depositionen
dc.subjectGrapheneen
dc.subjectMaterialsen
dc.subjectTransistorsen
dc.title化學氣相沉積石墨烯材料與單層石墨烯電晶體之研究zh_TW
dc.titleThe Study of Graphene Materials Grown by Chemical Vapor Deposition and the Single-layer Graphene Transistorsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄,陳敏璋,劉致為,林時彥
dc.subject.keyword化學氣相沉積,石墨烯,材料,電晶體,轉印,zh_TW
dc.subject.keywordChemical Vapor Deposition,Graphene,Materials,Transistors,Graphene-last,Transfer,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2015-07-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved