Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54456
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙坤茂(Kun-Mao Chao)
dc.contributor.authorAlbert Jhih-Heng Huangen
dc.contributor.author黃志恒zh_TW
dc.date.accessioned2021-06-16T02:57:58Z-
dc.date.available2017-09-30
dc.date.copyright2015-09-30
dc.date.issued2015
dc.date.submitted2015-07-07
dc.identifier.citation[1] P. K. Agarwal and M. Sharir. Planar geometric location problems. Algorithmica,
11(2):185–195, 1994.
[2] P. K. Agarwal, M. Sharir, and E. Welzl. The discrete 2-center problem. Discrete and
Computational Geometry, 20(3):287–305, 1998.
[3] B. Ben-Moshe, B. Bhattacharya, and Q. Shi. An optimal algorithm for the continuous/
discrete weighted 2-center problem in trees. Latin American Theoretical
Informatics, pages 166–177, 2006.
[4] B. Bhattacharya and Q. Shi. Optimal algorithms for the weighted p-center problems
on the real line for small p. Workshop on Algorithms and Data Structures, pages
529–540, 2007.
[5] P. Bose and Q. Wang. Facility location constrained to a polygonal domain. Latin
American Theoretical Informatics, pages 153–164, 2002.
[6] P. Brass, C. Knauer, H.-S. Na, C.-S. Shin, and A. Vigneron. The aligned k-center
problem. International Journal of Computational Geometry and Applications, 21(2):
157–178, 2011.
[7] T. M. Chan. More planar two-center algorithms. Computational Geometry, 13:189–
198, 1999.
[8] Z. Drezner. The planar two-center and two-median problems. Transportation
Science, 18:351–361, 1984.
[9] M. E. Dyer. On a multidimensional search technique and its application to the euclidean
one-centre problem. SIAM Journal on Computing, 15(3):725–738, 1986.
[10] M. E. Dyer and A. M. Frieze. A simple heuristic for the p-centre problem. Operations
Research Letters, 3:285––288, 1985.
[11] D. Eppstein. Faster construction of planar two-centers. Symposium on Discrete
Algorithms, pages 131–138, 1997.
[12] T. Feder and D. H. Greene. Optimal algorithms for approximate clustering.
Symposium on the Theory of Computing, pages 434–444, 1988.
[13] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in
the plane are np-complete. Information Processing Letters, 12:133––137, 1981.
[14] M. Hoffmann. A simple linear algorithm for computing rectilinear 3-centers.
Computational Geometry, 31(3):150–165, 2005.
[15] F. Hurtado, V. Sacristn, and G. Toussiant. Some constrainted minimax and maxmin
location problems. Studies in Location Analysis, 5:17–35, 2000.
[16] R. Z. Hwang, R. C. Chang, and R. C. T. Lee. The searching over separators strategy
to solve some np-hard problems in subexponential time. Algorithmica, 9(4):398–
423, 1993.
[17] J. W. Jaromczyk and M. Kowaluk. An efficient algorithm for the euclidean twocenter
problem. Symposium on Computational Geometry, pages 303–311, 1994.
[18] A. Karmakar, S. Das, S. C. Nandy, and B. Bhattacharya. Some variations on constrained
minimum enclosing circle problem. Journal of Combinatorial Optimization,
25(2):176–190, 2013.
[19] M. J. Katz and M. Sharir. An expander-based approach to geometric optimization.
Symposium on Computational Geometry, pages 198–207, 1993.
[20] S. K. Kim and C.-S. Shin. Efficient algorithms for two-center problems for a convex
polygon. Computing and Combinatorics, pages 299–309, 2000.
[21] A. Marchetti-Spaccamela. The p-center problem in the plane is np-complete. In
Proceedings of the 19th Annual Allerton Conference on Communication, Control,
and Computing, pages 31–40, 1981.
[22] S. Masuyama, T. Ibaraki, and T. Hasegawa. The computational complexity of them-
center problems on the plane. Trasaction on the Institute of Electronic, Information
and Communication Engineers, E64(2):57–64, 1981.
[23] N. Megiddo. Combinatorial optimization with rational objective functions.
Symposium on the Theory of Computing, pages 1––12, 1978.
[24] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852–865, 1983.
[25] N. Megiddo. Linear-time algorithms for linear programming in r3 and related problems.
SIAM Journal on Computing, 12(4):759–776, 1983.
[26] N. Megiddo. The weighted euclidean 1-center problem. Mathematics of Operations
Research, 8:498–504, 1983.
[27] N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal
of the ACM, 31(1):114–127, 1984.
[28] N. Megiddo and K. J. Supowit. On the complexity of some common geometric
location problem. SIAM Journal on Computing, 13(1):182–196, 1984.
[29] N. Megiddo and E. Zemel. An O(n log n) randomizing algorithm for the weighted
euclidean 1-center problem. Journal of Algorithms, 7(3):358–368, 1986.
[30] M. Sharir. A near-linear algorithm for the planar 2-center problem. Discrete and
Computational Geometry, 18(2):125–134, 1997.
[31] H. Wang and J. Zhang. Line-constrained k-median, k-means, and k-center problems
in the plane. International Symposium on Algorithms and Computation, pages 3–14,
2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54456-
dc.description.abstract給定一個點集合和一條直線L,求出k個設施在L上的最佳位置,
使得所有點與最近設施的距離中的最大值為最小。我們稱以上問題為
二維直線上多個中心的設置問題。對任意的常數定值k,我們利用削減
與搜尋的方法解此問題,且此演算法的時間複雜度為O(n)。
zh_TW
dc.description.abstractIn this thesis, we study the line-constrained k-center problem in the Euclidean
plane. Given a set of demand points and a line L, the problem asks for
k points, called center facilities, on L, such that the maximum of the distances
between the demand points to their closest center facility is minimized. For
any fixed k, we propose an algorithm with running time linear to the number
of demand points.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:57:58Z (GMT). No. of bitstreams: 1
ntu-104-R02922077-1.pdf: 749025 bytes, checksum: 12a925eab0b1d3c1e97238c5b90740f4 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures v
List of Tables vii
1 Introduction 1
2 Preliminaries 5
3 An O(n2 log n)-time algorithm for conditional k-center problem 9
4 An O(n)-time algorithm for fixed k 14
4.1 Big region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Solving the problem recursively . . . . . . . . . . . . . . . . . . . . . . 18
4.3 The analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Concludions 30
Bibliography 31
dc.language.isoen
dc.subject直線上多中心設置問題zh_TW
dc.subject計算幾何zh_TW
dc.subject最小圓的覆蓋問題zh_TW
dc.subject削減與搜尋zh_TW
dc.subject設施設置問題zh_TW
dc.subject演算法設計zh_TW
dc.subject計算幾何zh_TW
dc.subject最小圓的覆蓋問題zh_TW
dc.subject削減與搜尋zh_TW
dc.subject直線上多中心設置問題zh_TW
dc.subject設施設置問題zh_TW
dc.subject演算法設計zh_TW
dc.subjectminimum enclosing circleen
dc.subjectalgorithm designen
dc.subjectprune and searchen
dc.subjectcomputational geometryen
dc.subjectalgorithm designen
dc.subjectfacility location problemen
dc.subjectline-constrained k-center problemen
dc.subjectcomputational geometryen
dc.subjectminimum enclosing circleen
dc.subjectprune and searchen
dc.subjectline-constrained k-center problemen
dc.subjectfacility location problemen
dc.title二維直線上多個中心的設置問題zh_TW
dc.titleComputing the line-constrained k-center Problem in the plane for small ken
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃耀廷(Yao-Ting Huang),王弘倫(Hung-Lung Wang)
dc.subject.keyword計算幾何,最小圓的覆蓋問題,削減與搜尋,直線上多中心設置問題,設施設置問題,演算法設計,zh_TW
dc.subject.keywordcomputational geometry,minimum enclosing circle,prune and search,line-constrained k-center problem,facility location problem,algorithm design,en
dc.relation.page34
dc.rights.note有償授權
dc.date.accepted2015-07-07
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
731.47 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved