請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54410完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張煥宗(Huan-Tsung Chang) | |
| dc.contributor.author | Po-Cheng Chen | en |
| dc.contributor.author | 陳柏誠 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:55:18Z | - |
| dc.date.available | 2020-07-20 | |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-09 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54410 | - |
| dc.description.abstract | 發光奈米材料具有高靈敏度、選擇性、以及高光穩定性之特性,故具有應用於生物感測器、細胞顯影劑及顯示器等之潛力。相較於傳統發光半導體量子點使用有毒重金屬為前驅物,此研究主要是以綠色化學方法來合成貴金屬奈米團簇(nanoclusters)以及碳奈米量子點,並應用於不同領域例如環境樣品中重要離子檢測、發光薄膜和催化劑等。整篇論文共分成七個章節,第一章回顧貴金屬奈米團簇和碳奈米量子點的背景知識包含合成、光學性質以及已開發之應用。第二章節,合成可調控放光之氧化鋁奈米及金奈米團簇複合材料並用於改善金奈米團簇的純化過程。經純化的氧化鋁金奈米團簇對於銀離子有更佳的靈敏度,其偵測極限降低了約六倍(從10 nM 降低到1.5 nM)。第三章,於有機溶劑中合成銅奈米團簇聚集體,並進一步研究溶劑對銅奈米團簇”聚集-誘導放光”之影響。此銅奈米團簇聚集體更被用來檢測硫化氫,其偵測極限為500 nM,並被證明能用來分析環境中溫泉水的硫化氫濃度。在第四章,以一鍋合成法(one-pot)來合成金銅奈米團簇,此金銅奈米團簇的螢光對於不同的酸鹼程度會有不同的螢光強度,具有作為pH 感測器潛力。此外,此金銅奈米團簇可用來催化有機染料還原反應。第五章,開發一快速合成法來合成牛血清蛋白金奈米團簇。並利用質譜法以及螢光光譜法被來研究牛血清蛋白金奈米團簇的生長機制。更進一步,牛血清蛋白金奈米團簇被用來檢測汞離子其靈敏度為4 nM。第六章,以一鍋水熱合成法(one-pot hydrothermal route)合成有機矽修飾之碳奈米量子點,此矽修飾之碳奈米量子點的螢光對於溫度293-343 K具有線性響應,此外藉由矽氧鍵(Si–O–S)的作用力,此矽修飾之碳奈米量子點能輕易地被均勻塗覆在玻璃上。第七章,以有機矽修飾之碳奈米量子點為前驅物合成發光矽碳奈米與二氧化矽的奈米複合物(SiC-dots/SiO2 nanocomposites)。藉由控制加熱時間,可合成藍色、綠色、黃褐色放光之矽碳奈米與二氧化矽的奈米複合物。此矽碳奈米與二氧化矽的奈米複合物更被運用於彩色玻璃、電催化材料以及熱微影術。 | zh_TW |
| dc.description.abstract | Photoluminescent nanomaterials exhibit great potential for sensing, imaging and visual display because they have advantages of high selectivity and sensitivity, and outstanding photostability. In comparison with conventional semiconductor quantum dots, which use heavy metal ions as precursors, we have developed a series of green approaches for preparation of photoluminescent noble metal and carbon nanomaterials. As-prepared photoluminescent nanomaterials were applied in various fields such as detection of important ions in environmental samples, fabrication of photoluminescent thin films and as catalysts. This dissertation is structured in seven chapters. In Chapter 1, the background of noble metal nanoclusters (NCs) and C-dots including their synthetic routes, optical properties and applications is reviewed in detail. In Chapter 2, alumina nanoparticle supported Au NCs with tunable emission wavelengths were prepared to simplify the purification process. Purified Al2O3 NPs@Au NCs revealed six-fold better sensitivity (from limit of detection (LOD) 10 nM to 1.5 nM) towards silver ions. In Chapter 3, luminescent Cu NC aggregates were prepared in the presence of organic solvent. The relation between aggregation-induced emission behavior and organic solvent was investigated. As-prepared Cu NC aggregates were utilized to detect hydrogen sulfide (LOD: 500 nM), and their practicality was validated by detection of hydrogen sulfide in hot spring water samples. In Chapter 4, a one-pot approach to synthesize bimetallic AuCu NCs was developed. The AuCu NCs revealed interesting pH-dependent photoluminescent behavior, and exhibited their potential as pH sensors and organic dye reduction catalysts. In Chapter 5, a facile method to prepare bovine serum albumin gold nanoclusters (BSA-Au NCs) is reported. The growth mechanism of BSA-Au NCs was studied by mass spectroscopy and photoluminescence measurements. The work laid solid foundation for synthesis of dual-emission metal NCs. In Chapter 6, organosilane-functionalized carbon nanodots (SiC-dots) were synthesized by a simple one-pot hydrothermal route. The photoluminescence of SiC-dots revealed reversible temperature response (293–343 K). Through Si–O–Si bonding, temperature-sensitive photoluminescent SiC-dot films could be easily fabricated on glass substrates without aggregation. In Chapter 7, SiC-dots/SiO2 nanocomposites were prepared from SiC-dots (in Chapter 6). By controlling the heat treatment time, blue, green, and tan (yellow-brown) photoluminescent SiC-dots/SiO2 nanocomposites were achieved. The potential applications for colourful windows, electrocatalysis and lithographic patterning of SiC-dots/SiO2 nanocomposites were demonstrated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:55:18Z (GMT). No. of bitstreams: 1 ntu-104-D00223125-1.pdf: 8190093 bytes, checksum: 5775d01a1fa0ef36bbf047c876831fa9 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
謝誌 i 中文摘要 iv ABSTRACT vi CONTENTS viii LIST OF FIGURES xiii LIST OF TABLES xxv Chapter 1 Introduction 1 1.1 Photoluminescent metal nanoclusters (NCs) 2 1.1.1 Synthesis and optical properties of noble metal NCs 2 1.1.2 Application of noble metal NCs 4 1.2 Photoluminescent Carbon nanodot (C-dots) 8 1.2.1 Synthesis and optical properties of C-dots 9 1.2.2 Applications of C-dots 13 1.3 Motive of Research 14 1.4 References 17 Chapter 2 Synthesis of Aluminum Oxide Supported Fluorescent Gold Nanodots for the Detection of Silver Ions 28 2.1 Introduction 29 2.2 Experimental Section 30 2.2.1 Chemicals 30 2.2.2 Preparation of Al2O3 NP@AuNCs 31 2.2.3 Characterization of Al2O3 NP@AuNCs 31 2.2.4 Al2O3 NP@AuNCs Based Probe for Ag+ 32 2.2.5 Analysis of Real Samples 32 2.3 Results and discussion 33 2.3.1 Synthesis of Al2O3 NP@AuNCs 33 2.3.2 Optical properties of Al2O3 NP@AuNCs 34 2.3.3 Characterization of Al2O3 NP@AuNCs 35 2.3.4 Fluorescence mechanism of Al2O3 NP@AuNCs 36 2.3.5 Detection of Ag+ ions using Al2O3 NP@AuNCs 38 2.4 Conclusions 39 2.5 References 40 Chapter 3 Detection of Hydrogen Sulfide through Photoluminescence Quenching of Penicillamine-Copper Nanoclusters Aggregates 57 3.1 Introduction 58 3.2 Experimental Section 60 3.2.1 Chemicals 60 3.2.2 Preparation of PA-Cu NCs aggregates 60 3.2.3 Characterization of PA-Cu NCs aggregates 61 3.2.4 Detection of H2S using PA-Cu NCs aggregates 62 3.3 Results and discussion 63 3.3.1 Formation of PA-Cu NCs aggregates 63 3.3.2 Optical properties of PA-Cu NCs aggregates 64 3.3.3 Detection of H2S Using the PA-Cu NCs aggregates 67 3.3.4 Detection of H2S in Hot Spring Water Samples 68 3.4 Conclusions 69 3.5 References 70 Chapter 4 Photoluminescent AuCu Bimetallic Nanoclusters as pH Sensors and Catalysts 85 4.1 Introduction 86 4.2 Experimental Section 87 4.2.1 Chemicals 87 4.2.2 Preparation of PA-AuCu NCs 88 4.2.3 Characterization of PA-AuCu NCs 88 4.2.4 Catalytic activity of PA-AuCu NCs 89 4.2.5 Analysis of acidic rain water samples 90 4.3 Results and discussion 90 4.3.1 Synthesis of PA-AuCu NCs 90 4.3.2 Optical properties of PA-AuCu NCs 91 4.3.3 Characterization of PA-AuCu NCs 92 4.3.4 Aggreagation induced emission of PA-AuCu NCs 94 4.3.5 Reduction of methylene blue (MB) by PA-AuCu NCs 95 4.4 Conclusions 97 4.5 References 98 Chapter 5 Synthesis of Fluorescent BSA-Au NCs for the Detection of Hg2+ ions 123 5.1 Introduction 124 5.2 Experimental Section 126 5.2.1 Chemicals 126 5.2.2 Preparation of protein-Au NCs 126 5.2.3 Spectroscopic Measurements 127 5.2.4 MALDI-MS measurements 127 5.2.5 BSA-Au NCs Based Sensor for Hg2+ 128 5.3 Results and discussion 129 5.3.1 Monitoring the growth of BSA-Au NCs by fluorescence 129 5.3.2 Optimization the synthetic route of protein-Au NCs 131 5.3.3 Monitoring the growth of BSA-Au NCs by MALDI-TOF 132 5.3.4 Characterization of BSA-Au NCs 133 5.3.5 Detection of Hg2+ ions using BSA-Au NCs 134 5.4 Conclusions 135 5.5 References 137 Chapter 6 Photoluminescent Organosilane-Functionalized Carbon Dots as Temperature Probes 150 6.1 Introduction 151 6.2 Experimental Section 152 6.2.1 Chemicals 152 6.2.2 Preparation of organosilane-functionalized carbon dots (SiC-dots) 153 6.2.3 Characterization of SiC-dots 153 6.3 Results and discussion 155 6.3.1 Synthesis and characterization of SiC-dots 155 6.3.2 Optical properties of SiC-dots 157 6.3.3 Thermal PL response of SiC-dots 158 6.3.4 Temperature-sensitive PL of SiC-dots films 160 6.4 Conclusions 161 6.5 References 162 Chapter 7 Optical and Electrochemical Applications of Silicon-Carbon Dots/Silicon Dioxide Nanocomposites 177 7.1 Introduction 178 7.2 Experimental Section 179 7.2.1 Chemicals 179 7.2.2 Synthesis of various colors of SiC-dots/SiO2 nanocomposite Powders 180 7.2.3 Preparation of B-, G- and T-SiC-dots/SiO2 nanocomposite films 180 7.2.4 Characterization of B-, G- and T-SiC-dots/SiO2 nanocomposites 181 7.2.5 Electrocatalysis 182 7.2.6 Lithography of B-SiC-dots/SiO2 nanocomposite films 182 7.3 Results and discussion 183 7.3.1 Optical properties of B-, G- and T-SiC-dots/SiO2 nanocomposites 183 7.3.2 Characteristics of SiC-dots/SiO2 Nanocomposites 186 7.3.3 Role of SiO2 Nanoparticles 189 7.3.4 Applications of SiC-dots/SiO2 Nanocomposites 190 7.4 Conclusions 191 7.5 References 192 | |
| dc.language.iso | en | |
| dc.subject | 矽碳奈米與二氧化矽的奈米複合物 | zh_TW |
| dc.subject | 金奈米團簇 | zh_TW |
| dc.subject | 銅奈米團簇 | zh_TW |
| dc.subject | 金銅奈米團簇 | zh_TW |
| dc.subject | 銀離子 | zh_TW |
| dc.subject | 汞離子 | zh_TW |
| dc.subject | 硫化氫 | zh_TW |
| dc.subject | 矽修飾之碳奈米量子點 | zh_TW |
| dc.subject | 溫度靈敏 | zh_TW |
| dc.subject | 矽碳奈米與二氧化矽的奈米複合物 | zh_TW |
| dc.subject | 金奈米團簇 | zh_TW |
| dc.subject | 銅奈米團簇 | zh_TW |
| dc.subject | 金銅奈米團簇 | zh_TW |
| dc.subject | 銀離子 | zh_TW |
| dc.subject | 汞離子 | zh_TW |
| dc.subject | 硫化氫 | zh_TW |
| dc.subject | 矽修飾之碳奈米量子點 | zh_TW |
| dc.subject | 溫度靈敏 | zh_TW |
| dc.subject | gold nanoclusters (Au NCs) | en |
| dc.subject | gold nanoclusters (Au NCs) | en |
| dc.subject | copper nanoclusters (Cu NCs) | en |
| dc.subject | gold and copper nanoclusters (AuCu NCs) | en |
| dc.subject | silver ions (Ag+) | en |
| dc.subject | mercury ions (Hg2+) | en |
| dc.subject | hydgrogen sulfide (H2S) | en |
| dc.subject | organosilae-functionalized carbon nanodots (SiC-dots) | en |
| dc.subject | temperature sensitive | en |
| dc.subject | SiC-dots/SiO2 nanocomposites | en |
| dc.subject | copper nanoclusters (Cu NCs) | en |
| dc.subject | gold and copper nanoclusters (AuCu NCs) | en |
| dc.subject | silver ions (Ag+) | en |
| dc.subject | mercury ions (Hg2+) | en |
| dc.subject | hydgrogen sulfide (H2S) | en |
| dc.subject | organosilae-functionalized carbon nanodots (SiC-dots) | en |
| dc.subject | temperature sensitive | en |
| dc.subject | SiC-dots/SiO2 nanocomposites | en |
| dc.title | 發光貴金屬及碳奈米材料之合成及其應用 | zh_TW |
| dc.title | Syntheses of Photoluminescent Noble Metal and Carbon Nanomaterials and Their Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃志清(Chih-Ching Huang),李弘文(Hun-Wen Li),胡焯淳(Cho-Chun Hu),林泱蔚(Yang-Wei Lin),陳建甫(Chien-Fu Chen) | |
| dc.subject.keyword | 金奈米團簇,銅奈米團簇,金銅奈米團簇,銀離子,汞離子,硫化氫,矽修飾之碳奈米量子點,溫度靈敏,矽碳奈米與二氧化矽的奈米複合物, | zh_TW |
| dc.subject.keyword | gold nanoclusters (Au NCs),copper nanoclusters (Cu NCs),gold and copper nanoclusters (AuCu NCs),silver ions (Ag+),mercury ions (Hg2+),hydgrogen sulfide (H2S),organosilae-functionalized carbon nanodots (SiC-dots),temperature sensitive,SiC-dots/SiO2 nanocomposites, | en |
| dc.relation.page | 209 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-09 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
