Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54394
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉伊純(Yi-Cheun Yeh)
dc.contributor.authorYu-Ting Tsaien
dc.contributor.author蔡羽婷zh_TW
dc.date.accessioned2021-06-16T02:54:24Z-
dc.date.available2025-08-03
dc.date.copyright2020-08-07
dc.date.issued2020
dc.date.submitted2020-08-04
dc.identifier.citationChapter 1
1. Khademhosseini, A.; Langer, R., Microengineered hydrogels for tissue engineering. Biomaterials 2007, 28 (34), 5087-5092.
2. Tibbitt, M. W.; Anseth, K. S., Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering 2009, 103 (4), 655-663.
3. Zhao, Y.; Cui, Z.; Liu, B.; Xiang, J.; Qiu, D.; Tian, Y.; Qu, X.; Yang, Z., An Injectable Strong Hydrogel for Bone Reconstruction. Advanced Healthcare Materials 2019, 8 (17), 1900709.
4. Miguel, S. P.; Ribeiro, M. P.; Brancal, H.; Coutinho, P.; Correia, I. J., Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydrate Polymers 2014, 111 (13), 366-373.
5. Rufaihah, A. J.; Seliktar, D., Hydrogels for therapeutic cardiovascular angiogenesis. Advanced Drug Delivery Reviews 2016, 96 (15), 31-39.
6. Millon, L.; Mohammadi, H.; Wan, W., Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2006, 79 (2), 305-311.
7. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y., Double‐network hydrogels with extremely high mechanical strength. Advanced Materials 2003, 15 (14), 1155-1158.
8. Yang, D.; Peng, X.; Zhong, L.; Cao, X.; Chen, W.; Wang, S.; Liu, C.; Sun, R., Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals. RSC Advances 2015, 5 (18), 13878-13885.
9. Nie, J.; Du, B.; Oppermann, W., Swelling, elasticity, and spatial inhomogeneity of poly (N-isopropylacrylamide)/clay nanocomposite hydrogels. Macromolecules 2005, 38 (13), 5729-5736.
10. Okumura, Y.; Ito, K., The polyrotaxane gel: A topological gel by figure‐of‐eight cross‐links. Advanced Materials 2001, 13 (7), 485-487.
11. Jiang, S.; Liu, S.; Feng, W., PVA hydrogel properties for biomedical application. Journal of the mechanical behavior of biomedical materials 2011, 4 (7), 1228-1233.
12. Calvert, P., Hydrogels for soft machines. Advanced Materials 2009, 21 (7), 743-756.
13. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R., A tough biodegradable elastomer. Nature Biotechnology 2002, 20 (6), 602-606.
14. Gao, J.; Crapo, P. M.; Wang, Y., Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Engineering 2006, 12 (4), 917-925.
15. Motlagh, D.; Yang, J.; Lui, K. Y.; Webb, A. R.; Ameer, G. A., Hemocompatibility evaluation of poly (glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials 2006, 27 (24), 4315-4324.
16. Sundback, C. A.; Shyu, J. Y.; Wang, Y.; Faquin, W. C.; Langer, R. S.; Vacanti, J. P.; Hadlock, T. A., Biocompatibility analysis of poly (glycerol sebacate) as a nerve guide material. Biomaterials 2005, 26 (27), 5454-5464.
17. Chen, Q.-Z.; Bismarck, A.; Hansen, U.; Junaid, S.; Tran, M. Q.; Harding, S. E.; Ali, N. N.; Boccaccini, A. R., Characterisation of a soft elastomer poly (glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials 2008, 29 (1), 47-57.
18. Chen, Q.-Z.; Ishii, H.; Thouas, G. A.; Lyon, A. R.; Wright, J. S.; Blaker, J. J.; Chrzanowski, W.; Boccaccini, A. R.; Ali, N. N.; Knowles, J. C., An elastomeric patch derived from poly (glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 2010, 31 (14), 3885-3893.
19. Engelmayr, G. C.; Cheng, M.; Bettinger, C. J.; Borenstein, J. T.; Langer, R.; Freed, L. E., Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials 2008, 7 (12), 1003-1010.
20. Liu, Q.-Y.; Wu, S.-Z.; Tan, T.-W.; Weng, J.-Y.; Zhang, L.-Q.; Liu, L.; Tian, W.; Chen, D.-F., Preparation and properties of a novel biodegradable polyester elastomer with functional groups. Journal of Biomaterials Science, Polymer Edition 2009, 20 (11), 1567-1578.
21. Martina, M.; Hutmacher, D. W., Biodegradable polymers applied in tissue engineering research: a review. Polymer International 2007, 56 (2), 145-157.
22. Patel, A.; Gaharwar, A. K.; Iviglia, G.; Zhang, H.; Mukundan, S.; Mihaila, S. M.; Demarchi, D.; Khademhosseini, A., Highly elastomeric poly (glycerol sebacate)-co-poly (ethylene glycol) amphiphilic block copolymers. Biomaterials 2013, 34 (16), 3970-3983.
23. Jia, Y. T.; Wang, W. Z.; Zhou, X. J.; Nie, W.; Chen, L.; He, C. L., Synthesis and characterization of poly(glycerol sebacate)-based elastomeric copolyesters for tissue engineering applications. Polymer Chemistry 2016, 7 (14), 2553-2564.
24. Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34-47.
25. Choi, S. M.; Lee, Y.; Son, J. Y.; Bae, J. W.; Park, K. M.; Park, K. D., Synthesis and Characterization of In Situ Gellable Poly(glycerol sebacate)-co-Poly(ethylene glycol) Polymers. Macromolecular Research 2017, 25 (1), 85-91.
26. Wang, Z.; Ma, Y.; Wang, Y.; Liu, Y.; Chen, K.; Wu, Z.; Yu, S.; Yuan, Y.; Liu, C., Urethane-based low-temperature curing, highly-customized and multifunctional poly (glycerol sebacate)-co-poly (ethylene glycol) copolymers. Acta Biomaterialia 2018, 71, 279-292.
27. Wu, Y. B.; Wang, L.; Guo, B. L.; Ma, P. X., Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation. Journal of Materials Chemistry B 2014, 2 (23), 3674-3685.
28. Fairbanks, B. D.; Schwartz, M. P.; Halevi, A. E.; Nuttelman, C. R.; Bowman, C. N.; Anseth, K. S., A versatile synthetic extracellular matrix mimic via thiol‐norbornene photopolymerization. Advanced Materials 2009, 21 (48), 5005-5010.
29. McCall, J. D.; Anseth, K. S., Thiol–ene photopolymerizations provide a facile method to encapsulate proteins and maintain their bioactivity. Biomacromolecules 2012, 13 (8), 2410-2417.
30. Shubin, A. D.; Felong, T. J.; Graunke, D.; Ovitt, C. E.; Benoit, D. S., Development of poly (ethylene glycol) hydrogels for salivary gland tissue engineering applications. Tissue Engineering Part A 2015, 21 (11-12), 1733-1751.
31. Xu, Q.; He, C.; Xiao, C.; Chen, X., Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromolecular Bioscience 2016, 16 (5), 635-646.
32. Lin, C. C.; Ki, C. S.; Shih, H., Thiol–norbornene photoclick hydrogels for tissue engineering applications. Journal of Applied Polymer Science 2015, 132 (8), 41563.
33. Yeh, Y.-C.; Ouyang, L.; Highley, C. B.; Burdick, J. A., Norbornene-modified poly (glycerol sebacate) as a photocurable and biodegradable elastomer. Polymer Chemistry 2017, 8 (34), 5091-5099.
34. Lin, C. C.; Ki, C. S.; Shih, H., Thiol–norbornene photoclick hydrogels for tissue engineering applications. Journal of Applied Polymer Science 2015, 132 (8), 41563.
35. Gramlich, W. M.; Kim, I. L.; Burdick, J. A., Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 2013, 34 (38), 9803-9811.
36. Mũnoz, Z.; Shih, H.; Lin, C.-C., Gelatin hydrogels formed by orthogonal thiol–norbornene photochemistry for cell encapsulation. Biomaterials Science 2014, 2 (8), 1063-1072.
37. Wang, Z.; Ma, Y.; Wang, Y.; Liu, Y.; Chen, K.; Wu, Z.; Yu, S.; Yuan, Y.; Liu, C., Urethane-based low-temperature curing, highly-customized and multifunctional poly (glycerol sebacate)-co-poly (ethylene glycol) copolymers. Acta Biomaterialia 2018, 71, 279-292.
38. Daniele, M. A.; Adams, A. A.; Naciri, J.; North, S. H.; Ligler, F. S., Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials 2014, 35 (6), 1845-1856.
39. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R., A tough biodegradable elastomer. Nature Biotechnology 2002, 20 (6), 602-606.
40. Wang, Y.; Li, Y.; Yu, X.; Long, Q.; Zhang, T., Synthesis of a photocurable acrylated poly (ethylene glycol)-co-poly (xylitol sebacate) copolymers hydrogel 3D printing ink for tissue engineering. RSC Advances 2019, 9 (32), 18394-18405.
41. Jeffries, E. M.; Allen, R. A.; Gao, J.; Pesce, M.; Wang, Y., Highly elastic and suturable electrospun poly (glycerol sebacate) fibrous scaffolds. Acta Biomaterialia 2015, 18, 30-39.
42. Yi, F.; LaVan, D. A., Poly (glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromolecular Bioscience 2008, 8 (9), 803-806.
43. Yeh, Y. C.; Ouyang, L. L.; Highley, C. B.; Burdick, J. A., Norbornene-modified poly(glycerol sebacate) as a photocurable and biodegradable elastomer. Polymer Chemistry 2017, 8 (34), 5091-5099.
44. Yeh, Y. C.; Highley, C. B.; Ouyang, L.; Burdick, J. A., 3D printing of photocurable poly(glycerol sebacate) elastomers. Biofabrication 2016, 8 (4), 045004.
45. Wu, Y. B.; Wang, L.; Guo, B. L.; Ma, P. X., Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation. Journal of Materials Chemistry B 2014, 2 (23), 3674-3685.
Chapter 2
1. Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J.; Chen, X., Antibacterial hydrogels. Advanced Science 2018, 5 (5), 1700527.
2. Patel, A.; Gaharwar, A. K.; Iviglia, G.; Zhang, H.; Mukundan, S.; Mihaila, S. M.; Demarchi, D.; Khademhosseini, A., Highly elastomeric poly (glycerol sebacate)-co-poly (ethylene glycol) amphiphilic block copolymers. Biomaterials 2013, 34 (16), 3970-3983.
3. Zhang, M.; Wu, Y.; Zhao, X.; Gao, K.; Ma, P. X.; Guo, B., Biocompatible degradable injectable hydrogels from methacrylated poly (ethylene glycol)-co-poly (xylitol sebacate) and cyclodextrins for release of hydrophilic and hydrophobic drugs. Rsc Advances 2015, 5 (82), 66965-66974.
4. Wang, Y.; Li, Y.; Yu, X.; Long, Q.; Zhang, T., Synthesis of a photocurable acrylated poly (ethylene glycol)-co-poly (xylitol sebacate) copolymers hydrogel 3D printing ink for tissue engineering. RSC Advances 2019, 9 (32), 18394-18405.
5. Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J., A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances 2018, 8 (14), 7533-7549.
6. Croisier, F.; Jérôme, C., Chitosan-based biomaterials for tissue engineering. European Polymer Journal 2013, 49 (4), 780-792.
7. Sudarshan, N.; Hoover, D.; Knorr, D., Antibacterial action of chitosan. Food Biotechnology 1992, 6 (3), 257-272.
8. Jiao, Y.; Niu, L.-n.; Ma, S.; Li, J.; Tay, F. R.; Chen, J.-h., Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Progress in Polymer Science 2017, 71, 53-90.
9. Cho, J.; Grant, J.; Piquette-Miller, M.; Allen, C., Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial. Biomacromolecules 2006, 7 (10), 2845-2855.
10. Vallapa, N.; Wiarachai, O.; Thongchul, N.; Pan, J.; Tangpasuthadol, V.; Kiatkamjornwong, S.; Hoven, V. P., Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization. Carbohydrate Polymers 2011, 83 (2), 868-875.
11. Liu, G.; Luo, Q.; Wang, H.; Zhuang, W.; Wang, Y., In situ synthesis of multidentate PEGylated chitosan modified gold nanoparticles with good stability and biocompatibility. RSC Advances 2015, 5 (86), 70109-70116.
12. Liu, G. Y.; Li, M.; Zhu, C. S.; Jin, Q.; Zhang, Z. C.; Ji, J., Charge‐conversional and pH‐sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery. Macromolecular Bioscience 2014, 14 (9), 1280-1290.
13. Xie, S.; Liu, X.; Zhang, B.; Ma, H.; Ling, C.; Yu, M.; Li, L.; Li, J., Electrospun nanofibrous adsorbents for uranium extraction from seawater. Journal of Materials Chemistry A 2015, 3 (6), 2552-2558.
14. Gil-Castell, O.; Galindo-Alfaro, D.; Sánchez-Ballester, S.; Teruel-Juanes, R.; Badia, J. D.; Ribes-Greus, A., Crosslinked sulfonated poly (vinyl alcohol)/graphene oxide electrospun nanofibers as polyelectrolytes. Nanomaterials 2019, 9 (3), 397.
15. Bruggeman, J. P.; de Bruin, B.-J.; Bettinger, C. J.; Langer, R., Biodegradable poly (polyol sebacate) polymers. Biomaterials 2008, 29 (36), 4726-4735.
16. Loh, X. J.; Karim, A. A.; Owh, C., Poly (glycerol sebacate) biomaterial: synthesis and biomedical applications. Journal of Materials Chemistry B 2015, 3 (39), 7641-7652.
17. Wang, Y.; Ameer, G. A.; Sheppard, B. J.; Langer, R., A tough biodegradable elastomer. Nature Biotechnology 2002, 20 (6), 602-606.
18. Wang, Z.; Ma, Y.; Wang, Y.; Liu, Y.; Chen, K.; Wu, Z.; Yu, S.; Yuan, Y.; Liu, C., Urethane-based low-temperature curing, highly-customized and multifunctional poly (glycerol sebacate)-co-poly (ethylene glycol) copolymers. Acta Biomaterialia 2018, 71 (15), 279-292.
19. Choi, S. M.; Lee, Y.; Son, J. Y.; Bae, J. W.; Park, K. M.; Park, K. D., Synthesis and Characterization of In Situ Gellable Poly(glycerol sebacate)-co-Poly(ethylene glycol) Polymers. Macromolecular Research 2017, 25 (1), 85-91.
20. Wu, Y. B.; Wang, L.; Guo, B. L.; Ma, P. X., Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation. Journal of Materials Chemistry B 2014, 2 (23), 3674-3685.
21. Tsai, Y.-T.; Chang, C.-W.; Yeh, Y.-C., Formation of highly elastomeric and property-tailorable poly (glycerol sebacate)-co-poly (ethylene glycol) hydrogels through thiol-norbornene photochemistry. Biomaterials Science 2020.
22. Zhao, X.; Wu, H.; Guo, B. L.; Dong, R. N.; Qiu, Y. S.; Ma, P. X., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34-47.
23. Figueiredo, K. C.; Alves, T. L.; Borges, C. P., Poly (vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. Journal of Applied Polymer Science 2009, 111 (6), 3074-3080.
24. El-aassar, M.; Elnouby, M.; Kamal, F. H.; Badawy, N. A.; Amer, S. I., CHEMICAL CROSSLINKING OF POLY (VINYL ALCOHOL)/POLY ETHYLENE GLYCOL WITH GLUTARALDEHYDE NANOFIBERS. Al-Azhar Bulletin of Science 2016, 27 (2-A), 9-17.
25. Gan, D.; Xing, W.; Jiang, L.; Fang, J.; Zhao, C.; Ren, F.; Fang, L.; Wang, K.; Lu, X., Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nature Communications 2019, 10 (1), 1-10.
26. Seong, H. S.; Whang, H. S.; Ko, S. W., Synthesis of a quaternary ammonium derivative of chito‐oligosaccharide as antimicrobial agent for cellulosic fibers. Journal of Applied Polymer Science 2000, 76 (14), 2009-2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54394-
dc.description.abstract聚癸二酸多元醇(PPS)是一類將多元醇單體與癸二酸進行縮合聚合反應所形成具有酯鍵的熱固性彈性體。PPS具有可生物降解、生物相容性和彈性的性質,並且由於其高分子鏈中的多元醇具有羥基,PPS可進行官能基的修飾。
在此論文中,將聚乙二醇(PEG)引入PPS結構中,形成兩親性高分子PGS-co-PEG與PXS-co-PEG。PEG的加入提高了PPS的親水性,使得PGS-co-PEG與PXS-co-PEG能夠透過官能基團的修飾進一步製備具有彈性的水凝膠。
在本論文的第一部分,將降冰片烯基團(norbornene)接枝到PGS-co-PEG高分子鏈上來合成Nor_PGS-co-PEG。在具備硫醇交聯劑及光引發劑的環境下照射紫外光,能透過硫醇-降冰片烯光交聯反應來形成彈性水凝膠。我們能夠透過添加不同量的交聯劑來改變水凝膠的性能,並且展示了將Nor_PGS-co-PEG使用靜電紡絲和3D列印技術進行處理,分別製造了電紡纖維和三維結構。體外細胞研究表明,Nor_PGS-co-PEG水凝膠具有細胞相容性並支持細胞增殖。
第二部分,PXS-co-PEG的製備可用來提供更多的羥基以便官能基團的修飾。醛基團可嫁接到PXS-co-PEG上形成Ald_PXS-co-PEG。另外,使用具有氨基且具有抗菌活性的殼聚醣(Chitosan, CS)來混摻形成水凝膠。PXS-co-PEG/CS水凝膠是通過動態共價亞胺鍵製備的,動態共價鍵賦予了水凝膠自癒能力和剪切稀化特性,使水凝膠具有可注射的性質。此外,靜電紡絲技術也用來製造抗菌的PXS-co-PEG電紡纖維。
本論文成功地合成了以PPS為基礎的親水性材料,以製備具有可調控性能以及可用於生物製造的彈性水凝膠和彈性抗菌水凝膠,為組織工程的應用提供了新的材料。
zh_TW
dc.description.abstractPoly (polyol sebacate) (PPS) is a family of ester-bonded thermoset elastomers synthesized by reacting polyols with sebacic acid. PPS owns the properties of biodegradability, biocompatability and elasticity. However, the harsh curing conditions and limited hydrophilicity impede PPS for advanced applications. With the hydroxyl groups on polyol in the polymer chain, PPS can be modified with a number of functional groups through chemical reactions for further material processing.
In this thesis, we introduced PEG segments into PPS structure, forming amphiphilic poly(glycerol sebacate)-co-poly(ethylene glycol) (PGS-co-PEG) and poly(xylitol sebacate)-co-poly(ethylene glycol) (PXS-co-PEG). With the improved hydrophilicity, PGS-co-PEG and PXS-co-PEG were able to fabricate elastic hydrogels after the modification of functional groups.
In the first section, norbornene groups were grafted on PGS-co-PEG polymer chain to obtain norbornene-modified PGS-co-PEG (Nor_PGS-co-PEG). The elastic PGS-co-PEG hydrogels were fabricated in the presence of dithiol crosslinker (EDT) and photoinitiator (I2959) under UV irradiation. We demonstrated the properties of PGS-co-PEG hydrogels could be modulated by adding different amount of crosslinker. Nor_PGS-co-PEG could be processed into microfibrous scaffolds and printed structures using electrospinning and 3D printing techniques, respectively. Also, in vitro cellular studies showed that Nor_PGS-co-PEG hydrogels were biocompatible and supporting cell proliferation.
In the second section, PXS-co-PEG were synthesized to provide more hydroxyl groups in the structure for the modification of functional groups. Aldehyde groups were grafted on PXS-co-PEG backbone to obtain aldehyde-modified PGS-co-PEG (Ald_PXS-co-PEG). In addition, chitosan (CS) with amino groups were used for the formation of hydrogel and also provided antibacterial activity. PXS-co-PEG/ CS hydrogel was fabricated through reacting aldehyde groups with amino groups to form dynamic covalent imine bonds. The dynamic covalent bonds endowed hydrogel self-healing ability and shear thinning property, allowing the hydrogels to be injected. In addition, electrospinning techniques were used to prepare antibacterial PXS-co-PEG scaffolds.
In this thesis, water soluble PPS-based materials have been successfully synthesized and functionalized to fabricate elastic hydrogels and elastic antibacterial hydrogels with definable properties. In particular, these materials were also capable of being used for bio-fabricated process, presenting a great potential for tissue engineering applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:54:24Z (GMT). No. of bitstreams: 1
U0001-0308202015195600.pdf: 3987633 bytes, checksum: caa47560eb78badaeea80432a14c6794 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書…………………………………………………………………………i
謝誌……………………………………………………………………………………...ii
中文摘要………………………………………………………………………………..iii
Abstract…………………………………………………………………..……………...iv
Contents………………………………………………………………………………....vi
List of Figures………………………………………………………………..…………ix
Chapter 1 Formation of photocurable and elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) hydrogels through thiol-norbornene click chemistry…1
1. Introduction…………………………………………………………………….2
2. Materials and Method………………………...………………………………9
2.1 Materials…………….……………………………………………………9
2.2 Synthesis of PGS-co-PEG prepolymer and Nor_PGS-co-PEG………….….9
2.3 Characterization………………………………….………………………10
2.4 Rheological measurement……………………………….………………11
2.5 Preparation of Nor_PGS-co-PEG hydrogels………………………...…….11
2.6 Swelling of Nor_PGS-co-PEG hydrogels…………………………….…12
2.7 Degradation of Nor_PGS-co-PEG hydrogels……………………………..12
2.8 Compression and Tensile testing………………………………….………13
2.9 Fabrication of Nor_PGS-co-PEG scaffolds using electrospinning and 3D printing……………………………………………………………………..….13
2.10 cellular studies………………………………………………………...…14
2.11 Statistical analysis……………………………………….………………15
3. Results and Discussion…………………………………………...……………17
3.1 Synthesis of PGS-co-PEG and Nor_PGS-co-PEG………………………17
3.2 Characterization of Nor_PGS-co-PEG……………………..……………..19
3.3 Mechanical properties of Nor_PGS-co-PEG hydrogels…………………22
3.4 Swelling and degradation test of Nor_PGS-co-PEG hydrogels……………27
3.5 Nor_PGS-co-PEG for the fabrication of microfibrous scaffolds and 3D
printed Structure…………………………………………………….……30
3.6 In vitro cytocompatibility study..,.…………………………………………35
4. Conclusions……………………………………………………………..…….38
5. References…………..………………………………………………………...39
Chapter 2 Fabrication of self-healing hydrogels with antibacterial activity using aldehyde-modified poly(xylitol sebacate)-co-poly(ethylene glycol)……………..……43
1. Introduction………………………………………………………………….44
2. Materials and Method……………………………………….….......................48
2.1 Materials…………………………………………………………………..48
2.2 Synthesis of PXS-co-PEG and Ald_PXS-co-PEG………………………...48
2.3 Synthesis of chitosan-TEG (TEGCS)……………………………………..49
2.4 Characterization…………………………………………………………50
2.5 Formation of PXS-co-PEG/CS hydrogels…………………………………51
2.6 Rheological measurement……………………………….………………51
2.7 PXS-co-PEG for the fabrication of antibacterial scaffolds………………52
2.8 Antimicrobial activity for antibacterial fibrous scaffolds………………….53
3. Results and Discussion……………………………………...…………………54
3.1 Design and synthesis of PXS-co-PEG and Ald_PXS-co-PEG…………….54
3.2 Synthesis of TEGCS………………………………………………………57
3.3 Characterization…………………………………………………………57
3.4 Formation of PXS-co-PEG/CS hydrogel……………………………….....63
3.5 PXS-co-PEG for the fabrication of antibacterial scaffolds………………...66
4. Future work……………………………………………………………………70
5. References………………………………………………………………….…74
dc.language.isoen
dc.title利用功能化的聚癸二酸多元醇高分子開發可生物降解的彈性水凝膠zh_TW
dc.titleDevelopment of elastomeric and biodegradable hydrogels using functionalized poly(polyol sebacate) polymersen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林峯輝(Feng-Huei Lin),游佳欣(Jiashing Yu),白孟宜(Meng-Yi Bai)
dc.subject.keyword聚(癸二酸多元醇),彈性水凝膠,光交聯,抗菌水凝膠,生物相容性,生物可降解性,zh_TW
dc.subject.keywordPoly(polyol sebacate) polymers,elastic hydrogel,photocrosslink,antibacterial hydrogel,biocompatibility,biodegradability,en
dc.relation.page75
dc.identifier.doi10.6342/NTU202002278
dc.rights.note有償授權
dc.date.accepted2020-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0308202015195600.pdf
  目前未授權公開取用
3.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved