請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54386完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲 | |
| dc.contributor.author | Wei-Liang Shen | en |
| dc.contributor.author | 沈威良 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:53:56Z | - |
| dc.date.available | 2025-07-13 | |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-13 | |
| dc.identifier.citation | [1] Chelsio communications.
[2] Cisco Aironet 3600 Series. http://www.cisco.com/en/US/products/ps11983/index.html. [3] Cisco visual networking index: Global mobile data traffic forecast update, 2014- 2019. [4] Ettus Inc., Universal Software Radio Peripheral. http://ettus.com. [5] Jackson Labs Technologies Inc., Fury GPSDO. http://www.jackson-labs.com/index. php/products/fury. [6] System Description and Operating Principles for High Throughput Enhancements to 802.11. IEEE 802.11-04/0870r, 2004. [7] Universal Software Radio Peripheral Hardware Driver. http://code.ettus.com/redmine/ ettus/projects/uhd/wiki. [8] Local and metropolitan area networks specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY), 1999. [9] Local and Metropolitan Area Networks Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11, 2007. [10] IEEE Std 802.11n-2009, pages c1 --502, 2009. [11] D. Arthur and S. Vassilvitskii. K-means++: The Advantages of Careful Seeding. In ACM SODA, 2007. [12] E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly. Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs. In ACM MobiCom, 2010. [13] E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly. Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs. In ACM MobiCom, 2010. [14] E. Aryafar, M. Khojastepour, K. Sundaresan, S. Rangarajan, and E. Knightly. ADAM: An Adaptive Beamforming System for Multicasting in Wireless LANs. In IEEE INFOCOM, 2012. [15] H. V. Balan, R. Rogalin, A. Michaloliakos, K. Psounis, and G. Caire. Achieving High Data Rates in a Distributed MIMO System. In ACM MobiCom, 2012. [16] T. Bansal, B. Chen, P. Sinha, and K. Srinivasan. Symphony: Cooperative Packet Recovery over the Wired Backbone in Enterprise WLANs. In ACM MobiCom, 2013. [17] J. Bicket. Bit-rate Selection in Wireless Networks. PhD thesis, Massachusetts Institute of Technology, 2005. [18] G. Caire, S. A. Ramprashad, and H. C. Papadopoulos. Rethinking network MIMO: Cost of CSIT, Performance Analysis, and Architecture Comparisons. In Information Theory and Applications Workshop (ITA), 2010. [19] J. Camp and E. Knightly. Modulation Rate Adaptation in Urban and Vehicular Environments: Cross-layer Implementation and Experimental Evaluation. In ACM MobiCom, 2008. [20] C.-B. Chae, A. Forenza, R. Heath, M. McKay, and I. Collings. Adaptive MIMO Transmission Techniques for Broadband Wireless Communication Systems. IEEE Communications Magazine, 48(5):112 --118, may 2010. [21] I. S. Dhillon. Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning. In ACM SIGKDD, 2001. [22] A. El Gamal and T. Cover. Multiple User Information Theory. Proceedings of the IEEE, 68(12):1466 -- 1483, dec. 1980. [23] C. L. Fullmer and J. J. Garcia-Luna-Aceves. Solutions to hidden terminal problems in wireless networks. In ACM SIGCOMM, 1997. [24] M. S. Gast. 802.11 wireless networks: the definitive duide, second edition. O'Reilly Media, Inc., 2005. [25] D. Gesbert, M. Kountouris, R. Heath, C.-B. Chae, and T. Salzer. Shifting the MIMO Paradigm. IEEE Signal Processing Magazine, 24(5):36 --46, sept. 2007. [26] S. Gollakota, F. Adib, D. Katabi, and S. Seshan. Clearing the RF Smog: Making 802.11n Robust to Cross-technology Interference. In ACM SIGCOMM, 2011. [27] S. Gollakota and D. Katabi. Zigzag Decoding: Combating Hidden Terminals in Wireless Networks. In ACM SIGCOMM, 2008. [28] S. Gollakota, S. D. Perli, and D. Katabi. Interference Alignment and Cancellation. In ACM SIGCOMM, 2009. [29] A. Gudipati and S. Katti. Strider: automatic rate adaptation and collision handling. In ACM SIGCOMM, 2011. [30] M. Guillaud, D. Slock, and R. Knopp. A Practical Method for Wireless Channel Reciprocity Exploitation through Relative Calibration. In Signal Processing and Its Applications, 2005. [31] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 Packet Delivery from Wireless Channel Measurements. In ACM SIGCOMM, 2010. [32] B. Han, A. Schulman, F. Gringoli+, N. Spring, B. Bhattacharjee, L. Nava, L. Ji, S. Lee, and R. Miller. Maranello: practical partial packet recovery for 802.11. In USENIX NSDI, 2010. [33] R. Handel and M. Huber. Integrated Broadband Networks; An Introduction to ATMBased Networks. Addison-Wesley Longman Publishing Co., Inc., 1991. [34] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance Anomaly of 802.11b. In IEEE INFOCOM 2003, 2003. [35] H. Huang, M. Trivellato, A. Hottinen, M. Shafi, P. J. Smith, and R. Valenzuela. Increasing Downlink Cellular Throughput with Limited Network MIMO Coordination. IEEE Transactions on Wireless Communications, 8(6):2983--2989, June 2009. [36] K. Jamieson and H. Balakrishnan. PPR: partial packet recovery for wireless networks. In ACM SIGCOMM, 2007. [37] S. M. Kay. Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Inc., 1993. [38] Y. Kim, S. Cho, and D. K. Kim. Low Complexity Antenna Selection based MIMO Scheduling Algorithms for Uplink Multiuser MIMO/FDD System. In IEEE VTC Spring, 2007. [39] A. Koubaa, R. Severino, M. Alves, and E. Tovar. Improving quality-of-service in wireless sensor networks by mitigating hidden-node collisions. 5(3):299--313, 2009. [40] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi. Bringing Cross-layer MIMO to Today's Wireless LANs. In ACM SIGCOMM, 2013. [41] T.-W. Kuo, K.-C. Lee, K. C.-J. Lin, and M.-J. Tsai. Leader-contention-based user matching for 802.11 multiuser mimo networks. CoRR, abs/1404.6041, 2014. [42] V. Lau and M. Jiang. Downlink Scheduling and Rate Adaptation Design of Multi- User, Multiple-Antenna Base Station with Imperfect CSIT. In IEEE GLOBECOM, 2005. [43] J. Lee, W. Kim, S.-J. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi. An experimental study on the capture effect in 802.11a networks. In ACM WinTECH, 2007. [44] K. Lee and J. Eidson. IEEE-1588 Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. Mar. 2008. [45] L. E. Li, K. Tan, H. Viswanathan, Y. Xu, and Y. R. Yang. Retransmission ̸= Repeat: Simple Retransmission Permutation Can Resolve Overlapping Channel Collisions. In ACM MOBICOM, 2010. [46] L. E. Li, K. Tan, H. Viswanathan, Y. Xu, and Y. R. Yang. Retransmission ̸= repeat: simple retransmission permutation can resolve overlapping channel collisions. In ACM MobiCom, 2010. [47] T. Li, M. K. Han, A. Bhartia, L. Qiu, E. Rozner, Y. Zhang, and B. Zarikoff. CRMA: collision-resistant multiple access. In ACM MobiCom, 2011. [48] K. C.-J. Lin, Y.-J. Chuang, and D. Katabi. A Light-Weight Wireless Handshake. ACM SIGCOMM Comput. Commun. Rev., 42(2):28--34. [49] K. C.-J. Lin, S. Gollakota, and D. Katabi. Random Access Heterogeneous MIMO Networks. In ACM SIGCOMM, 2011. [50] K. C.-J. Lin, S. Gollakota, and D. Katabi. Random access heterogeneous MIMO networks. In ACM SIGCOMM, 2011. [51] K. C.-J. Lin, N. Kushman, and D. Katabi. ZipTx: Harnessing Partial Packets in 802.11 Networks. In ACM MobiCom, 2008. [52] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu. Raptor codes for reliable download delivery in wireless broadcast systems. In IEEE CCNC, 2006. [53] E. Magistretti, O. Gurewitz, and E. W. Knightly. 802.11ec: collision avoidance without control messages. In ACM Mobicom, 2012. [54] R. R. C. S.-J. L. Mahanth Gowda, Souvik Sen. Cooperative Packet Recovery in Enterprise WLANs. In IEEE INFOCOM, 2013. [55] P. Marsch and G. Fettweis. On Uplink Network MIMO under a Constrained Backhaul and Imperfect Channel Knowledge. In IEEE ICC, 2009. [56] A. Muqattash and M. Krunz. POWMAC: a single-channel power-control protocol for throughput enhancement in wireless ad hoc networks. 23(5):1067--1084, 2005. [57] I. Pefkianakis, Y. Hu, S. H. Wong, H. Yang, and S. Lu. MIMO Rate Adaptation in 802.11n Wireless Networks. In ACM MobiCom, 2010. [58] F. Peng, J. Zhang, and W. Ryan. Adaptive Modulation and Coding for IEEE 802.11n. In IEEE WCNC, 2007. [59] J. Perry, P. A. Iannucci, K. E. Fleming, H. Balakrishnan, and D. Shah. Spinal codes. In ACM SIGCOMM, 2012. [60] H. Rahul, F. Edalat, D. Katabi, and C. Sodini. Frequency-Aware Rate Adaptation and MAC Protocols. In ACM MOBICOM, 2009. [61] H. Rahul, H. Hassanieh, and D. Katabi. SourceSync: a Distributed Wireless Architecture for Exploiting Sender Diversity. In ACM SIGCOMM, 2010. [62] H. S. Rahul, S. Kumar, and D. Katabi. JMB: scaling wireless capacity with user demands. In ACM SIGCOMM, 2012. [63] G. Ren, H. Zhang, and Y. Chang. SNR Estimation Algorithm based on the Preamble for OFDM Systems in Frequency Selective Channels. IEEE Transactions on Communications, 57(8):2230 --2234, aug. 2009. [64] S. Sen, R. Roy Choudhury, and S. Nelakuditi. No time to countdown: migrating backoff to the frequency domain. In ACM MobiCom, 2011. [65] S. Sen, R. Roy Choudhury, and S. Nelakuditi. No Time to Countdown: Migrating Backoff to the Frequency Domain. In ACM MobiCom, 2011. [66] W.-L. Shen, Y.-C. Tung, K.-C. Lee, K. C.-J. Lin, S. Gollakota, D. Katabi, and M.-S. Chen. Rate adaptation for 802.11 multiuser MIMO networks. In ACM MobiCom, 2012. [67] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong. Argos: practical many-antenna base stations. In ACM MobiCom, 2012. [68] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888--905, Aug. 2000. [69] S. Shi, M. Schubert, and H. Boche. Rate Optimization for Multiuser MIMO Systems With Linear Processing. IEEE Transactions on Signal Processing, 56(8):4020-- 4030, Aug 2008. [70] Q. Spencer, A. Swindlehurst, and M. Haardt. Zero-forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO Channels. IEEE Transactions on Signal Processing, 52(2):461--471, Feb 2004. [71] G. Strang. Linear Algebra and its Applications. Academic Press, New York, second edition, 1980. [72] K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, and Y. Zhang. Fine-Grained Channel Access in Wireless LAN. In ACM SIGCOMM, 2010. [73] K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang, M. Chen, and G. M. Voelker. SAM: Enabling Practical Spatial Multiple Access in Wireless LAN. In ACM MobiCom, 2009. [74] M. Torabi, W. Ajib, and D. Haccoun. Discrete-Rate Adaptive Multiuser Scheduling for MIMO-OFDM Systems. In IEEE VTC 2008-Fall, 2008. [75] D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. [76] D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. [77] S. Venkatesan, A. Lozano, and R. Valenzuela. Network MIMO: Overcoming Intercell Interference in Indoor Wireless Systems. In Conference Record of the Forty- First Asilomar Conference on Signals, Systems and Computers (ACSSC), 2007. [78] P. Viswanath and D. Tse. Sum Capacity of The Vector Gaussian Broadcast Channel and Uplink-downlink Duality. IEEE Transactions on Information Theory, 49(8): 1912 -- 1921, aug. 2003. [79] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-Layer Wireless Bit Rate Adaptation. In ACM SIGCOMM, 2009. [80] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust Rate Adaptation for 802.11 Wireless Networks. In ACM MobiCom, 2006. [81] G. R. Woo, P. Kheradpour, D. Shen, and D. Katabi. Beyond the Bits: Cooperative Packet Recovery Using Physical Layer Information. In ACM MobiCom, 2007. [82] S. Wu, W. Mao, and X. Wang. Performance study on a csma/ca-based mac protocol for multi-user mimo wireless lans. IEEE Transactions on Wireless Communications, 13(6):3153--3166, June 2014. [83] J. Xiong, K. Sundaresan, K. Jamieson, M. A. Khojastepour, and S. Rangarajan. MIDAS: Empowering 802.11ac Networks with Multiple-Input Distributed Antenna Systems. In ACM CoNext, 2014. [84] Q. Yang, X. Li, H. Yao, J. Fang, K. Tan, W. Hu, J. Zhang, and Y. Zhang. Bigstation: enabling scalable real-time signal processingin large MU-MIMO systems. In ACM SIGCOMM, 2013. [85] V. Yenamandra and K. Srinivasan. Vidyut: Exploiting Power Line Infrastructure for Enterprise Wireless Networks. In ACM SIGCOMM, 2014. [86] H. Yu, O. Bejarano, and L. Zhong. Combating Inter-Cell Interference in 802.11acbased Multi-User MIMO Networks. In ACM MobiCom, 2014. [87] H. Yu, L. Zhong, A. Sabharwal, and D. Kao. Beamforming on Mobile Devices: a First Study. In ACM MobiCom, 2011. [88] X. Zhang, K. Sundaresan, M. A. A. Khojastepour, S. Rangarajan, and K. G. Shin. NEMOx: Scalable Network MIMO for Wireless Networks. In ACM MobiCom, 2013. [89] Y. Zhang, C. Ji, Y. Liu, W. Malik, D. O'Brien, and D. Edwards. A Low Complexity User Scheduling Algorithm for Uplink Multiuser MIMO Systems. IEEE Transactions on Wireless Communications, 7(7):2486 --2491, july 2008. [90] W. Zhou, T. Bansal, P. Sinha, and K. Srinivasan. BBN: Throughput Scaling in Dense Enterprise WLANs with Bind Beamforming and Nulling. In ACM MobiCom, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54386 | - |
| dc.description.abstract | 隨著移動裝置普及及應用程式的多元,由移動裝置產生的資料量
逐漸增加,對於高速無線網路資料上傳的需求日趨迫切,多使用者多 天線系統在提升整體效能扮演關鍵性的角色,多使用者多天線系統主 要是利用網路節點所配置的多天線,讓多個使用者可以同時傳送資料 。有別於傳統單一使用者無線網路,多使用者無線網路面臨了下列數 個多天線系統衍生的難題:1) 每位使用者的最佳傳送速率會與其共同 傳送者有關,傳統單一使用者網路往往利用個人歷史傳輸品質記錄來 推測最佳傳送速率,此方式將不再適用於多使用者多天線系統。2) 上 行的多使用者網路比起傳統無線網路更容易受到隱藏節點問題或碰撞 干擾,任何一個封包錯誤會使得所有同同時傳輸的封包無法被正確解 碼,若只是單純重傳所有封包將會大幅降低多天線系統之效能。3) 為 了更進一步擴充多天線系統的頻寬,可利用後端有線網路將數個實體 路由器連結成多天線虛擬路由器,建構出``網路式多天線系統'。然而 將任意天線組成虛擬路由器,會增加路由器之間的干擾並降低頻寬使 用率,因此,如何將天線組成適當的網路式上行多天線系統,將成為 決定效能的關鍵。 本論文試著解決以上的問題,我們首先將目光著眼於單一路由器之 多天線系統,並設計一套讓每個使用者可以根據同時傳送者的通道來 來調變最佳傳送速率的通訊協定,使得整體無線網路的效能可以被妥 善運用;由於多使用者無線網路允許多個使用者同時傳送資料,當同 時傳送使用者逐漸增加,因隱藏節點問題或者無線傳輸碰撞所造成的 錯誤率也隨之上升而大幅降低系統效能,我們進而提出一套多使用者 多天線系統之封包修復通訊協定,讓系統迅速地修復碰撞的封包。最 後,本論文提出一套動態式網路式多天線系統,讓虛擬路由器架構可 以根據使用者的地理位置分布與需求資料量做及時的架構調整,以降 低跨網路之干擾並提升整體效能。我們已經將以上設計實作於軟體定 義平台上,不論是在實際測試或者模擬分析上,本論文所提出之系統 設計皆較傳統單一使者網路及現有的多使用者多天線系統有更卓越的 效能提升。 | zh_TW |
| dc.description.abstract | With the popularity of mobile devices and data-intensive applications, the amount of traffic generated by existing wireless networks has been tremendously increasing. This phenomenon introduces the urgent requirement for
high speed wireless transmissions. One predominate approach is Multiuser MIMO (MU-MIMO) systems, which exploit multiple antennas equipped at a phyiscal access point or a virtual access point connected by backhaul networks to enable several users to communicate simultaneously. These strategies introduce several new challenges: 1) The optimal ransmission bitrate of a user will change with the concurrent transmitters on a per packet basis.Therefore, traditional historical-based bitrate selection algorithms cannot work in MU-MIMO systems. 2) In a uplink MU-MIMO system, every single error caused by hidden terminals or collisions will corrupt the whole packets.Therefore, MU-MIMO systems are especially more vulnerable to errors than single-user networks. Simply retransmitting collided packets will take away the performance gains provided by multiple concurrent transmissions. 3) A system can further combine multiple access points as a multi-antenna virtual access point. However, in such a ``network MU-MIMO system', arbitrarily forming several antennas as an access point could increase the probability of inter-cell interference and further decrease channel utilization. How to form practically-sized virtual access points becomes a critical problem in network MIMO systems. This dissertation tries to solve the above problems. First, this dissertation focuses on a single access point scenario, and proposes a MAC protocol for each user to properly select their bitrates based on the channels of concurrent transmitters such that the performance gain provided by MU-MIMO can be fully utilized. To address the error vulnerability problem of MU-MIMO,this dissertation proposes a packet recovery strategy for MU-MIMO systems to repair collided packets without significant overhead. Finally, this dissertation introduces a new structure for network MIMO systems, which adaptively forms practically-size virtual access points based on dynamic client distributions and traffic demands to reduce inter-cell interference and enhance antenna utilization. The above designs have been implemented on software defined radio platforms and analyzed through simulations. In both testbed experiments and simulations, the proposed systems can achieve a significant performance gain, as compared to the traditional wireless network and existing MU-MIMO systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:53:56Z (GMT). No. of bitstreams: 1 ntu-104-D00921016-1.pdf: 2953607 bytes, checksum: f87032a3e7180f51ad482a0a7d68fdb5 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Abstract vii
Contents ix List of Figures xiii 1 Introduction 1 1.1 Motivation and Overview of the Dissertation . . . . . . . . . . . . . . . 1 1.1.1 Rate Adaptation for Uplink Multiuser MIMO Networks . . . . . 2 1.1.2 Concurrent Packet Recovery for Uplink Multiuser MIMO Networks 3 1.1.3 Dynamic Network MIMO Clustering for Uplink Multiuser MIMO Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . 4 2 Rate Adaptation for Uplink Multiuser MIMO Networks 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Understanding Rate Selection in MU-MIMO . . . . . . . . . . . . . . . 9 2.3 TurboRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Learning a Client's Direction and SNR Passively . . . . . . . . . 16 2.3.2 Exchanging the Channel Directions . . . . . . . . . . . . . . . . 17 2.3.3 Estimating the Best Bit Rate . . . . . . . . . . . . . . . . . . . . 20 2.3.4 Decoding at the AP . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.5 TurboRate's Medium Access Protocol . . . . . . . . . . . . . . . 21 2.3.6 Supporting Clients with Multiple Antennas . . . . . . . . . . . . 22 2.4 Additional Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.1 Micro Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.2 Throughput Gain of TurboRate . . . . . . . . . . . . . . . . . . 28 2.6.3 Implications of Not Using MU-MIMO Rate Adaptation . . . . . 30 2.6.4 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Concurrent Packet Recovery for Uplink Multiuser MIMO Networks 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 MU-MIMO Primer and Motivations . . . . . . . . . . . . . . . . . . . . 39 3.2.1 Background of Uplink MU-MIMO . . . . . . . . . . . . . . . . 40 3.2.2 Infeasibility of Random Retransmissions . . . . . . . . . . . . . 41 3.2.3 Applicability of Potential Solutions . . . . . . . . . . . . . . . . 41 3.3 CPR's Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.1 Error Structure Detection . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 Retransmission and Recovery . . . . . . . . . . . . . . . . . . . 46 3.3.3 MAC Design and Packet Format . . . . . . . . . . . . . . . . . . 49 3.4 Practical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.1 Loss of NACK messages . . . . . . . . . . . . . . . . . . . . . . 52 3.4.2 Incomplete Error Structure . . . . . . . . . . . . . . . . . . . . . 52 3.4.3 PN-Code Length and Detection Threshold . . . . . . . . . . . . . 52 3.5 Testbed Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.2 Micro Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.3 Throughput Gain of CPR . . . . . . . . . . . . . . . . . . . . . . 55 3.6 Trace-Driven Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6.1 Throughput gain in large-scale networks . . . . . . . . . . . . . . 57 3.6.2 Gain of recovering normal losses . . . . . . . . . . . . . . . . . 60 3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 Dynamic Network MIMO Clustering for Uplink Multiuser MIMO Networks 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3 FlexNEMO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 Dynamic Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.1 Optimizing Number of Clusters . . . . . . . . . . . . . . . . . . 73 4.4.2 Improving Fairness and Channel Gains . . . . . . . . . . . . . . 75 4.5 User Selection and Medium Access . . . . . . . . . . . . . . . . . . . . 77 4.5.1 Selecting Users and Antennas . . . . . . . . . . . . . . . . . . . 78 4.5.2 Global Frequency-Domain Contention . . . . . . . . . . . . . . . 79 4.5.3 Early Acknowledgment and Local Contention . . . . . . . . . . . 80 4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.7.1 Micro Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.7.2 Testbed Experiments . . . . . . . . . . . . . . . . . . . . . . . . 85 4.7.3 Trace-Driven Emulation . . . . . . . . . . . . . . . . . . . . . . 86 4.7.4 Effectiveness of FlexNEMO's Medium Access . . . . . . . . . . 89 4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Conclusion 93 Bibliography 95 | |
| dc.language.iso | en | |
| dc.subject | 錯誤修復 | zh_TW |
| dc.subject | 網路式多天 線系統架構 | zh_TW |
| dc.subject | 傳送速率調變 | zh_TW |
| dc.subject | 錯誤修復 | zh_TW |
| dc.subject | 多使用者無線網路 | zh_TW |
| dc.subject | 傳送速率調變 | zh_TW |
| dc.subject | 多使用者無線網路 | zh_TW |
| dc.subject | 網路式多天 線系統架構 | zh_TW |
| dc.subject | Rate adaptation | en |
| dc.subject | Network MIMO architecture | en |
| dc.subject | Error Recovery | en |
| dc.subject | Rate adaptation | en |
| dc.subject | Multi-user MIMO systems | en |
| dc.subject | Network MIMO architecture | en |
| dc.subject | Multi-user MIMO systems | en |
| dc.subject | Error Recovery | en |
| dc.title | 上行多使用者多天線系統之存取協定設計 | zh_TW |
| dc.title | MAC Designs for Uplink Multiuser MIMO Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 林靖茹 | |
| dc.contributor.oralexamcommittee | 魏宏宇,陳孟彰,蔡欣穆 | |
| dc.subject.keyword | 多使用者無線網路,傳送速率調變,錯誤修復,網路式多天 線系統架構, | zh_TW |
| dc.subject.keyword | Multi-user MIMO systems,Rate adaptation,Error Recovery,Network MIMO architecture, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
