請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54375完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信銘(Hsin-Min Lu) | |
| dc.contributor.author | Cheng-Chih Hsu | en |
| dc.contributor.author | 徐承志 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:53:19Z | - |
| dc.date.available | 2016-09-30 | |
| dc.date.copyright | 2015-09-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-11 | |
| dc.identifier.citation | Marko Balabanović and Yoav Shoham. Fab: Content-based, collaborative recommen-
dation. Commun. ACM, 40(3):66–72, March 1997. ISSN 0001-0782. doi: 10.1145/ 245108.245124. URL http://doi.acm.org/10.1145/245108.245124. John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI’98, pages 43–52, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-555-X. URL http: //dl.acm.org/citation.cfm?id=2074094.2074100. Kailong Chen, Tianqi Chen, Guoqing Zheng, Ou Jin, Enpeng Yao, and Yong Yu. Collab- orative personalized tweet recommendation. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pages 661–670, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1472-5. doi: 10.1145/2348283.2348372. URL http://doi.acm.org/10.1145/2348283.2348372. Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel stochastic gradient method for matrix factorization in shared memory systems. ACM Trans. Intell. Syst. Technol., 6(1):2:1–2:24, March 2015. ISSN 2157-6904. doi: 10.1145/2668133. URL http://doi.acm.org/10.1145/2668133. G. Chowdhury. Introduction to Modern Information Retrieval, Third Edition. Facet Pub- lishing, 3rd edition, 2010. ISBN 185604694X, 9781856046947. Peng Cui, Fei Wang, Shaowei Liu, Mingdong Ou, Shiqiang Yang, and Lifeng Sun. Who should share what?: Item-level social influence prediction for users and posts rank- ing. In Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’11, pages 185–194, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0757-4. doi: 10.1145/2009916.2009945. URL http://doi.acm.org/10.1145/2009916.2009945. Mukund Deshpande and George Karypis. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst., 22(1):143–177, January 2004. ISSN 1046-8188. doi: 10.1145/ 963770.963776. URL http://doi.acm.org/10.1145/963770.963776. Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and Heung-Yeung Shum. An empirical study on learning to rank of tweets. In Proceedings of the 23rd International Conference on Computational Linguistics, COLING ’10, pages 295–303, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. URL http://dl.acm.org/citation. cfm?id=1873781.1873815. David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collaborative filtering to weave an information tapestry. Commun. ACM, 35(12):61–70, December 1992. ISSN 0001-0782. doi: 10.1145/138859.138867. URL http://doi.acm.org/10. 1145/138859.138867. Scott A Golder, Sarita Yardi, Alice Marwick, and Danah Boyd. A structural approach to contact recommendations in online social networks. In Workshop on Search in Social Media, SSM, 2009. John Hannon, Mike Bennett, and Barry Smyth. Recommending twitter users to follow using content and collaborative filtering approaches. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, pages 199–206, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-906-0. doi: 10.1145/1864708.1864746. URL http://doi.acm.org/10.1145/1864708.1864746. John Hannon, Kevin McCarthy, and Barry Smyth. Finding useful users on twitter: twit- tomender the followee recommender. In Advances in Information Retrieval, pages 784– 787. Springer, 2011. HarryHuang1990. 使用 lfm(latent factor model)隐语 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54375 | - |
| dc.description.abstract | 隨著互聯網(Internet)的快速發展下,使用者可以使用任何形式的管道發布個人資訊以及各種言論。不論是哪一種的平台都面臨大量資訊流(Large information overload)氾濫情況,因此我們需要的是資訊流 Filter 的動作,篩選出自己真正感興趣的內容,這就是本篇研究最主要解決的目標:推薦系統(Recommendation Systems)。而往往在做推薦系統中常常會碰到資料收集不完善的問題,我們只能片面的得知服務整體的評斷分數(Overall rating),例如按讚數量、分享數量、轉發次數、留言等等資訊,最缺乏的就是擁有使用者(User)對於物品(Item)個人化評分的指標,因此我們在本研究就由此著墨,希望找出能夠代表使用者喜好程度(User Preference score)的方法。
本研究使用的是新浪微博(Sina Weibo) 的資料集,我們提出名為「LFMRT 2 」的模型,使用 Matrix Factorization (MF) Model 以及 Linear Model 的混合(Hybrid)模型,希望透過 Latent Factor Model 將我們定義的 User Preference 反應時間(Response time) 以 Preference score matrix 作為學習的目標,另外透過 Explicit Features 來做為輔助 MF Model 中 Bias 的重要影響因素。最後透過 BPR(Bayesian Personalized Ranking,基於貝氏後驗優化的個人化排序演算法) Framework 來做為求解整個模型的流程。 | zh_TW |
| dc.description.abstract | Under the development of Internet, users can share their information and comments by ways. No matter what platform users use, they are facing large information overload, most of which they do not have interested in. We need a way to filter large information streams, which they do have interested in. So, the target problem we aim to solve is: Recommendation Systems. However, we can collect only the overall rating or overall information about items by the platform. For example, number of likes, number of shares, number of retweets, number of comments ,etc. It is hard to gather some information about user preference, which is used to evaluate recommended results. Therefore, we apply some method to represent user preference in this research.
Our experiment uses the Sina Weibo online tweets as data sets. To learn the recommendation systems, we present a model called the LFMRT 2 model in this research. We use Matrix Factorization (MF) Model and Linear Model as our hybrid method. Using our self-defined user preference to learn latent factor model, we consider not only response time as our preference score matrix but also explicit features. Moreover, we adopt BPR (Bayesian Personalized Ranking) framework as our system flow. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:53:19Z (GMT). No. of bitstreams: 1 ntu-104-R02725013-1.pdf: 1186718 bytes, checksum: c2d22bc45fc65cec8ad31beb1152b6af (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Research Background and Motivation . . . . . . . . . . . . . . . . . . . 1 1.2 Research Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Research Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Related Work 5 2.1 Traditional Recommendation Systems . . . . . . . . . . . . . . . . . . . 5 2.2 Recommendation Systems On Tweet . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Followee Recommendation Approaches . . . . . . . . . . . . . . 6 2.2.2 Personal Interest Detection Approaches . . . . . . . . . . . . . . 6 2.2.3 Topic Recommendation Approaches . . . . . . . . . . . . . . . . 6 2.2.4 Tweet Feature Study . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Recommendation Approaches . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Content-based Approach . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Collaborative Filtering Approach . . . . . . . . . . . . . . . . . 8 2.3.3 Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Problem Definition and System Design 13 3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Model Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Matrix Factorization Model . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.3 Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Explicit Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4.1 Social Relation Feature . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.2 Tweets’Quality Feature . . . . . . . . . . . . . . . . . . . . . . 20 3.4.3 Publishers’Authority Feature . . . . . . . . . . . . . . . . . . . 21 3.5 BPR Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5.1 Pairwise compare . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.2 Ranking Optimization Criterion . . . . . . . . . . . . . . . . . . 22 3.5.3 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Experimental Study 29 4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 Preprocess Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.1 Parse Tweets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.2 Tweet Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.3 Extract features . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.4 10-fold validation . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.5 Output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Baseline Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 Parameter Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.5 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.6.1 Compare between features . . . . . . . . . . . . . . . . . . . . . 37 4.6.2 Compare between models . . . . . . . . . . . . . . . . . . . . . 38 5 Conclusion and Future Study 39 5.1 Experiment Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References 41 | |
| dc.language.iso | zh-TW | |
| dc.subject | 短文轉發 | zh_TW |
| dc.subject | 個人化推薦系統 | zh_TW |
| dc.subject | 短文轉發 | zh_TW |
| dc.subject | 隨機梯度下降 | zh_TW |
| dc.subject | 矩陣分解 | zh_TW |
| dc.subject | 隱語意模型 | zh_TW |
| dc.subject | 基於貝氏後驗優化的個人化排序演算法 | zh_TW |
| dc.subject | 基於貝氏後驗優化的個人化排序演算法 | zh_TW |
| dc.subject | 隱語意模型 | zh_TW |
| dc.subject | 矩陣分解 | zh_TW |
| dc.subject | 隨機梯度下降 | zh_TW |
| dc.subject | 個人化推薦系統 | zh_TW |
| dc.subject | Retweet | en |
| dc.subject | Personalized recommendation systems | en |
| dc.subject | Stochastic Gradient Descent | en |
| dc.subject | Matrix Factorization | en |
| dc.subject | Latent Factor Model | en |
| dc.subject | Bayesian Personalized Ranking | en |
| dc.subject | Personalized recommendation systems | en |
| dc.subject | Retweet | en |
| dc.subject | Stochastic Gradient Descent | en |
| dc.subject | Matrix Factorization | en |
| dc.subject | Latent Factor Model | en |
| dc.subject | Bayesian Personalized Ranking | en |
| dc.title | 個人化的社群短文轉發推薦 - 使用隱語義模型以及反應時間的特徵 | zh_TW |
| dc.title | Personalized Retweet Recommendation - Using Latent Factor Model With Response Time Features | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建錦(Chien-Chin Chen),施人英(Jen-Ying Shih) | |
| dc.subject.keyword | 個人化推薦系統,短文轉發,隨機梯度下降,矩陣分解,隱語意模型,基於貝氏後驗優化的個人化排序演算法, | zh_TW |
| dc.subject.keyword | Personalized recommendation systems,Retweet,Stochastic Gradient Descent,Matrix Factorization,Latent Factor Model,Bayesian Personalized Ranking, | en |
| dc.relation.page | 46 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-13 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
