Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54364
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王凡(Farn Wang)
dc.contributor.authorTing-Fen Wuen
dc.contributor.author吳庭棻zh_TW
dc.date.accessioned2021-06-16T02:52:43Z-
dc.date.available2020-07-20
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-13
dc.identifier.citation[1] Andy’s PHP Knowledgebase Project. http://aphpkb.org/.
[2] Apache JMeter. http://jmeter.apache.org/.
[3] Crawljax: crawling ajax-based web applications. http://crawljax.com/.
[4] SchoolMate: PHP/MySQL solution for elementary, middle and high schools.http://sourceforge.net/projects/schoolmate/.
[5] Selenium: web browser automation. http://www.seleniumhq.org/.
[6] The W3C Markup Validation Service. https://validator.w3.org/.
[7] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D. Ernst. Finding bugs in dynamic web applications. Proceedings of the 2008 international symposium on Software testing and analysis ISSTA 08, page 261, 2008.
[8] E. T. Barr, M. Harman, P. Mcminn, M. Shahbaz, and S. Yoo. The Oracle Problem in Software Testing : A Survey. IEEE Transactions on Software Engineering, 41(5):507 – 525, 2015.
[9] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically testing dynamic web sites. 11th Int. Conf. on World Wide Web (WWW02), 2002.
[10] C.-c. Chang and C.-j. Lin. LIBSVM : A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2:1–39, 2011.
[11] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning, 20(3):273–297, 1995.
[12] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin, and I. C. Society. Dynamically Discovering Likely Program Invariants to Support Program Evolution. IEEE Transactions on Software Engineering, 27(2):99–123, 2001.
[13] S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode active learning and its application to medical image classification. Proceedings of the 23rd International Conference on Machine learning - ICML ’06, pages 417–424, 2006.
[14] U. Kanewala and J. M. Bieman. Using machine learning techniques to detect metamorphic relations for programs without test oracles. 2013 IEEE 24th International Symposium on Software Reliability Engineering, ISSRE 2013, pages 1–10, 2013.
[15] J. Kang, K. R. Ryu, and H.-C. Kwon. Using cluster-based sampling to select initial training set for active learning in text classification. Advances in knowledge discovery and data mining, pages 384–388, 2004.
[16] a. Marchetto, a. Marchetto, P. Tonella, P. Tonella, F. Kessler-IRST, and F. Kessler-IRST. Search-Based Testing of Ajax Web Applications. Doi.Ieeecomputersociety.Org, 2009.
[17] A. Mesbah, A. Van Deursen, and D. Roest. Invariant-based automatic testing of modern web applications. IEEE Transactions on Software Engineering, 38(1):35–53, 2012.
[18] M. Mirzaaghaei and A. Mesbah. DOM-Based Test Adequacy Criteria for Web Applications. Issta, pages 71–81, 2014.
[19] F. Ricca and P. Tonella. Analysis and testing of Web applications. Proceedings of the 23rd International Conference on Software Engineering ICSE 2001, 47(6):25–34, 2001.
[20] B. Settles. Active Learning Literature Survey. Machine Learning, 15(2):201–221, 2010.
[21] Y. Zou, Z. Chen, Y. Zheng, X. Zhang, and Z. Gao. Virtual DOM Coverage : Drive an Effective Testing for Dynamic Web Applications Categories and Subject Descriptors. Proceedings of the 2014 international symposium on Software testing and analysis ISSTA 14, pages 60–70, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54364-
dc.description.abstract在自動化測試中,自動生成測試準則扮演一個十分重要的腳色。在軟體測試中,通常一開始不會有測試準則來驗證系統的行為是否是符合預期,測試者必須一項一項去檢查系統的每個行為有沒有異常,這是一項十分繁重又耗時的工作。在這篇論文中,我們提出了一個系統可以有效率地建構網頁程式的測試準則,我們應用了機器學習領域中,主動學習法和支撐向量機的技術。這個系統會從網頁程式的執行軌跡中抓取特徵值,用很小的資料量去訓練出預測模型來判斷這些系統行為是否通過。我們的系統應用了主動學習法和一些抽樣策略來減少人力測試驗證的成本,而且仍可得到高準確率的預測結果。zh_TW
dc.description.abstractTest oracle automation plays an important role in test automation. Many programs don’t have an oracle at the beginning of the testing, and the tester should verify all the software behaviors to check whether they are correct. Such the work is too heavy and time-consuming. In this paper, we present a efficient system to construct test oracle of the web applications using active learning and support vector machines. The system extracts the features of execution traces, then builds a predictive model to classify the passed traces and failed traces with a small training set. Our approach is reducing the human oracle cost by active learning and sampling strategies, and get high accuracy of predicted labels.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:52:43Z (GMT). No. of bitstreams: 1
ntu-104-R02921045-1.pdf: 2203145 bytes, checksum: fad30efa832cc9e5f60cc30f8a0277b2 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsAcknowledgment ii
Abstract in Chinese iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
1 Introduction 1
2 Related Work 4
2.1 Web Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Test Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Methodology 7
3.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Test Oracle Learning System 10
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
v4.2 Trace Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3.1 Active Learning Procedure . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.3 Sampling Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Experimental Result 23
5.1 State-Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Keyword-Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Conclusion 32
Bibliography 34
Curriculum Vitae 37
dc.language.isoen
dc.subject軟體測試zh_TW
dc.subject網頁程式zh_TW
dc.subject主動學習法zh_TW
dc.subject主動學習法zh_TW
dc.subject測試準則zh_TW
dc.subject測試準則zh_TW
dc.subject軟體測試zh_TW
dc.subject網頁程式zh_TW
dc.subjectweb applicationen
dc.subjectsoftware testingen
dc.subjectweb applicationen
dc.subjectactive learningen
dc.subjecttest oracleen
dc.subjectsoftware testingen
dc.subjectactive learningen
dc.subjecttest oracleen
dc.title使用主動學習法建構網頁程式之測試準則zh_TW
dc.titleConstructing Test Oracle for Web Applications with Active Learning Techniquesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭大維,戴顯權,陳郁方,王柏堯
dc.subject.keyword軟體測試,網頁程式,主動學習法,測試準則,zh_TW
dc.subject.keywordsoftware testing,web application,active learning,test oracle,en
dc.relation.page37
dc.rights.note有償授權
dc.date.accepted2015-07-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved