請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54359完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳錫侃(Shyi-Kaan Wu,) | |
| dc.contributor.author | Sheng-Hao Yang | en |
| dc.contributor.author | 楊昇豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:52:26Z | - |
| dc.date.available | 2020-07-20 | |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-13 | |
| dc.identifier.citation | 參考文獻
[1] Massalasi, T.B., American Society of Metals, 1990. [2] Gilbraith, A.G., Welding Engineer, 44 (1959), 79-80. [3] U. Ugaste, A.A. Kodebtsov, F.J.J. van Loo, Diffusion and Defect Data Pt.B: Solid State Phenomena, 72 (2000), 117-122. [4] Wayman, C.M., MRS Bulletin-materials Research Society, 18 (1993), 49. [5] J.A. Shaw, S. Kyriakides, Journal of the Mechanics and Physics of Solids, 43 (1995), 1243-1281. [6] Smith, W.F., Structure and Properties of Engineering Alloys, McGraw-Hill International Edition, 1993. [7] Schawartz, M.M., Brazing, ASM International, 2003. [8] A. Ikai, K. Kimura, H.Tobushi, Journal of Intelligent Materials Systems and Structure, 7 (1996), 645-655. [9] J. Beyer, E.J.M. Hiensch, P.A. Besselink, The Martensitic Transformation in Science and Technology, (1989), 199-206. [10] P. Schlossmacher, T. Haas, A. Schüssler, Le Journal de Physique IV, 07 (1997), 251-256. [11] A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, M. Pozzi, Materials Science and Engineering: A, 273 (1999), 813-817. [12] M. Nishikawa, H. Tanaka, M. Kohda, T. Nagaura, K. Watanabe, Le Journal de Physique Colloques, 43 (1982), 839-844. [13] C. van der Eijk, H. Fostervoll, Z.K. Sallom, O.M. Akselsen, ASM Materials Solutions Conference. Pittsburgh, 2003, [14] S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, A. Yamamoto, Science and Technology of Welding and Joining, 15 (2010), 124-130. [15] J. Pouquet, R.M. Miranda, L. Quintino, S. Williams, The International Journal of Advanced Manufacturing Technology, 61 (2011), 205-212. [16] T. Y. Yang, R. K .Shiue and S. K. Wu,Infrared Brazing of Ti50Ni50 Shape Memory Alloy Using Pure Cu and Ti–15Cu–15Ni Foils, Intermetallics, 12(2004),1285-1292. [17] 薛人豪,鈦鎳形狀記憶合金紅外線硬銲接合之研究,國立台灣大學材料科學與工程學研究所博士論文,2006。 [18] O. Kozlova, R. Voytovych, M.F. Devismes, N. Eustathopoulos, Materials Science & Engineering, A, 495 (2008), 96-101. [19] ASM Handbook: Properties and Selection:Iron, Steels, and high-Performance Alloys, ASM International, 1990. [20] H. Baker, H. Okamoto, ASM Handbook: Alloy Phase Diagram, ASM International, 1992. [21] J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steel, Wiley Interscience, 2005. [22] R.K. Shiue, S.K. Wu, S.Y. Chen, Intermetallics, 11 (2003), 661-671. [23] J.H. Chen, G.Z. Wang, K. Nogi, M. Kamai, N. Sato, N. Iwamoto, Journal of Materials Science, 28 (1993), 2933-2942. [24] W.C. Lee, Journal of Materials Science Letters, 15(1996), 29-31. [25] K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge University Press, 1999. [26] C.A. Blue, R.Y. Lin, MRS Proceedings, Cambridge University Press, 1993. [27] R.H. Shiue, S.K. Wu, Intermetallics, 14 (2006), 630-638. [28] R.H. Shiue, S.K. Wu, Gold Bulletin, 39 (2006), 200-204. [29] R.K. Shiue, S.K. Wu, Y.T. Chen, C.Y. Shiue, Intermetallics, 16 (2008), 1083-1089. [30] Special Metals, www.specialmetals.com/documents/inconel_alloy_600.pdf [31] 張志偉, 國立台灣大學機械工程研究所碩士論文, 2003。 [32] 詹志鴻, 國立台灣大學機械工程研究所碩士論文, 2003。 [33] 楊宗恩, 國立台灣大學材料科學與工程學研究所碩士論文, 2011。 [34] G.R. Kamat, Welding Journal, 67 (1988) 44-46. [35] P. He, J. Zhang, R. Zhou, X. Li, Materials Characterization, 43 (1999) 287-292. [36] 張永興,國立台灣大學機械工程研究所碩士論文,2013. [37] 陳嘉彬,國立台灣大學機械工程研究所碩士論文,2014. [38] 簡光廷,國立台灣大學機械工程研究所碩士論文,2012. [39] P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, 1995. [40] F. van Loo, J. Vrolijk, G. Bastin, Journal of the Less Common Metals, 77 (1981), 121-130. [41] 薛鈞尹, 國立台灣大學材料科學與工程學研究所碩士論文, 2007。 [42] X. Yue, P. He, J.C. Feng, J.H. Zhang, F.Q. Zhu, Materials Characterization, 59 (2008), 1721-1727. [43] Y.V. Naidich, V.S. Zhuravlev, V.G. Chuprina, L.V. Strashinskaya, Poroshkovaya Metallurgiya, 11 (1973), 40-46. [44] G. Cacciamani, J. De Keyzer, R. Ferro, U.E. Klotz, J. Lacaze, P. Wollants, Intermetallics, 14 (2006), 1312-1325. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54359 | - |
| dc.description.abstract | 本研究使用Cu作為擴散阻絕層之三層填料(BAg-8/Cu/Cusil-ABA) 紅外線硬銲異質接合Ti50Ni50與316L不鏽鋼,以及使用BAg-8、Cusil-ABA及Ticusil三種銀基填料紅外線硬銲異質接合Ti50Ni50與Inconel(In) 600合金,探討在不同的參數下填料對基材之潤濕行為、顯微組織演化、銲點剪應力強度及破壞模式等。接合Ti50Ni50/Cusil-ABA/Cu/BAg-8/316L時,銲道由(CuxNi1-x)2Ti、Cu-rich、純Cu以及Ag-Cu共晶組織所組成;當銅箔厚度為70μm時,最佳條件在820℃×5min,剪應力強度有292MPa,破壞位置於Ag-Cu共晶組織與316L的交界處,屬於延脆混合破壞;當銅箔厚度為50μm時,在850℃×5min下,其剪應力強度達349MPa,且為延脆混合破壞;但當銅箔厚度為25μm時,銅箔失去了阻絕能力,Ti-Fe介金屬相生成,銲道由(CuxNi1-x)2Ti、Cu-rich、Ag-Cu共晶組織和Ti(Fe,Ni)所組成,其剪應力強度最佳為236MPa。Bag-8無法有效潤濕In 600合金但Cusil-ABA與Ticusil因含有Ti而有較好的潤濕效果;接合Ti50Ni50/BAg-8/In 600時,銲道由Ni3Ti相,Ag-Cu共晶及Cu-rich組成,因脆性相Ni3Ti生成以及潤濕性差,使剪應力強度不佳,最好僅有72±32MPa,破壞發生於Ni3Ti相,形態以脆性破壞為主;使用Cusil-ABA接合時銲道依序為CuNiTi相、Ag-Cu共晶區域、CuNiTi相、Ni3Ti相,在900℃×5min時有最佳的剪應力強度,平均有324MPa,破壞主要發生在Ag-Cu共晶區且為延脆混合破壞;使用Ticusil時有類似Cusil-ABA的銲道組織,但在In 600端有明顯的Ag、Cu滲入基材的情形發生,且在填料與基材間有析出Cr-Fe固溶體;在950℃×3min時剪應力強度達到最高,平均有300MPa,以延脆混合破壞為主。 | zh_TW |
| dc.description.abstract | BAg-8, Cusil-ABA, Ticusil, and Copper fillers are used to infrared braze Ti50Ni50 and two other alloys, 316L stainless steel(SS) and Inconel (IN) 600. The brazed joint’s interfacial reaction, microstructure evolution and shear strength are investigated. Cu film is used as a diffusion barrier in the filler with three layers (BAg-8/Cu/Cusil-ABA) to prevent the formation of brittle Fe-Ti intermetallics in TiNi/316L joint. For TiNi/ BAg-8/Cu/Cusil-ABA /316L joint, it is composed of (CuxNi1-x)2Ti, Cu-rich, Cu, and Ag-Cu eutectic. When the thickness of cu film is 70μm, the shear strength is 292MPa for the joint brazed at 820℃×5min. If the Cu film thickness reduces to 50μm, the joint’s shear strength can reach 349 MPa when it is brazed at 850℃×5min. However, when thickness is reduced to 25μm, it can not prevent the formation of brittle Fe-Ti intermetallics and the shear strength reduces to 236 MPa. For IN600, the wettability of BAg-8 is degraded by surface CrxOy oxides, but the Ti in Cusil-ABA/Ticusil can improve the wettability significantly. TiNi/Bag-8/IN600 joint is composed of Ni3Ti, Ag-Cu eutectic and Cu-rich, and has the average shear strength of 72MPa when it is brazed at 850℃×5min. This joint is fractured along Ni3Ti. For Cusil-ABA and Ticusil brazed joints, the sequence of identified phases from TiNi to IN600 is CuNiTi, Ag-Cu eutectic and the mixture of CuNiTi and Ni3Ti. The specimen brazed at 900℃×5min using Cusil-ABA filler demonstrates the best shear strength of 324 MPa. The shear strength of TiNi/Ticusil/IN600 joint brazed at 950℃×3min is 300 MPa. When the brazing time increases, the shear strength of the jonit used Ticusil filler decreases due to the growth of Ni3Ti intermetallics in which cracks are initiated from Ni3Ti and the fractograph is dominated by quasi-cleavage fracture. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:52:26Z (GMT). No. of bitstreams: 1 ntu-104-R02522707-1.pdf: 15938028 bytes, checksum: f3c65277ef19b2c12e6097dbfa278e81 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書 i 誌謝 iii 摘要 v Abstract vii 第一章 前言 1 第二章 文獻回顧 5 2-1 基材合金性質 5 2-1-1 Ti50Ni50形狀記憶合金 5 2-1-2 316L不鏽鋼 6 2-1-3 Inconel 600合金 7 2-2 異質合金接合製程研究 7 2-2-1 硬銲接合(Brazing) 7 2-2-2 Ti50Ni50形狀記憶合金之接合 9 2-2-3 不鏽鋼之接合 10 2-2-3 Inconel 600合金之接合 11 2-3 硬銲填料 11 2-3-1 硬焊填料的選用 11 2-3-2 Ag-Cu共晶填料 12 2-3-2 Ag-Cu-Ti活性硬銲填料 13 2-4 紅外線硬銲接合 13 第三章 實驗方法 25 3-1 基材之試片準備 25 3-1-1 Ti50Ni50 SMA基材 25 3-1-2 316L不鏽鋼基材 26 3-1-3 Inconel 600合金基材 26 3-2 硬銲填料準備 27 3-2-1 硬銲填料 27 3-2-2 潤濕小球準備 27 3-3 紅外線硬銲接合製程 27 3-3-1 實驗設備 27 3-3-2 金相與剪力試片之硬銲接合實驗 28 3-3-3 動態潤濕角量測實驗 29 3-3-4 持溫時間與溫度之控制 29 3-4 硬銲試片分析 30 3-4-1 分析前處理 30 3-4-2 剪力試片 30 3-4-3 掃描式電子顯微鏡(SEM)觀察 30 3-5實驗流程 31 第四章 改善銀基填料紅外線硬銲接合Ti50Ni50與316L不鏽鋼之探討 41 4-1 前言 41 4-2 Ti50Ni50合金與316L不鏽鋼與填料潤濕性之分析 42 4-3 三層填料紅外線硬銲接合Ti50Ni50與316L不鏽鋼之顯微組織分析 43 4-4 三層填料紅外線硬銲接合Ti50Ni50與316L不鏽鋼之剪應力強度 44 4-5 銅箔厚度對於擴散阻絕效果與剪應力強度之影響 46 4-6 本章結語 48 第五章 銀基填料紅外線硬銲接合Ti50Ni50與Inconel 600 69 5-1 前言 69 5-2 銀基填料對Inconel 600合金的潤濕性分析 69 5-3 銀基填料外紅線硬銲接合Ti50Ni50與Inconel 600之顯微組織分析 70 5-4銀 基填料紅外線硬銲接合Ti50Ni50與Inconel 600之剪應力強度 76 5-5 本章結語 78 第六章 結論 107 參考文獻 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | Inconel 600 | zh_TW |
| dc.subject | 紅外線硬銲接合 | zh_TW |
| dc.subject | Ti50Ni50 | zh_TW |
| dc.subject | 316L不鏽鋼 | zh_TW |
| dc.subject | 銀基填料 | zh_TW |
| dc.subject | 擴散阻絕層 | zh_TW |
| dc.subject | 紅外線硬銲接合 | zh_TW |
| dc.subject | Ti50Ni50 | zh_TW |
| dc.subject | 316L不鏽鋼 | zh_TW |
| dc.subject | Inconel 600 | zh_TW |
| dc.subject | 銀基填料 | zh_TW |
| dc.subject | 擴散阻絕層 | zh_TW |
| dc.subject | Ag-based fillers | en |
| dc.subject | diffusion barrier | en |
| dc.subject | Ti50Ni50 | en |
| dc.subject | 316LSS | en |
| dc.subject | Inconel 600 | en |
| dc.subject | Infrared brazing | en |
| dc.subject | diffusion barrier | en |
| dc.subject | Infrared brazing | en |
| dc.subject | Ti50Ni50 | en |
| dc.subject | 316LSS | en |
| dc.subject | Inconel 600 | en |
| dc.subject | Ag-based fillers | en |
| dc.title | 紅外線硬銲接合Ti50Ni50形狀記憶合金與316L不鏽鋼/Inconel 600合金之研究 | zh_TW |
| dc.title | The Study of Infrared brazing Ti50Ni50 SMA and 316L Stainless Steel/Inconel 600 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 薛人愷,薄彗雲 | |
| dc.subject.keyword | 紅外線硬銲接合,Ti50Ni50,316L不鏽鋼,Inconel 600,銀基填料,擴散阻絕層, | zh_TW |
| dc.subject.keyword | Infrared brazing,Ti50Ni50,316LSS,Inconel 600,Ag-based fillers,diffusion barrier, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 15.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
