Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54357
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor易富國(Fu-Goul Yee)
dc.contributor.authorYu-Hsuan Chengen
dc.contributor.author鄭毓璿zh_TW
dc.date.accessioned2021-06-16T02:52:19Z-
dc.date.available2015-08-19
dc.date.copyright2015-08-19
dc.date.issued2014
dc.date.submitted2015-07-13
dc.identifier.citation[1] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Reviews of Modern Physics, vol. 71, no. 1, p. 1, 1999.
[2] M. Landini, S. Roy, L. Carcagní, D. Trypogeorgos, M. Fattori, M. Inguscio, and G. Modugno, “Sub-Doppler laser cooling of potassium atoms,” Physical Review A,
vol. 84, no. 4, p. 043432, 2011.
[3] M. Landini, A tunable Bose-Einstein condensate for quantum interferometry. PhD thesis, University of Trento, 2012.
[4] T. Tiecke, “Properties of potassium,” University of Amsterdam, The Netherlands, Thesis, 2010.
[5] H. J. Metcalf and P. Van der Straten, Laser cooling and trapping. Springer, 1999.
[6] G. Gribakin and V. Flambaum, “Calculation of the scattering length in atomic collisions using the semiclassical approximation,” Physical Review A, vol. 48, no. 1, p. 546, 1993.
[7] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Reviews of Modern Physics, vol. 82, no. 2, p. 1225, 2010.
[8] C.-C. Chen, “Toward all-optical Bose-Einstein condensate,” Master’s thesis, National Taiwan University, 2012.
[9] L. Bennie, “Large atom number magneto-optical traps,” 2010.
[10] Y.-H. Cheng, G.-B. Liao, H.-Y. Liu, K.-S. Wu, and M.-S. Chang, “Magnetic Feshbach resonance in ultracold potassium,” The Physical Society of Republic of China (Taiwan), 2014.
[11] C. D’Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G. Modugno, and A. Simoni, “Feshbach resonances in ultracold K-39,” New Journal of Physics, vol. 9, no. 7, p. 223, 2007.
[12] R. Williamson and T. Walker, “Magneto-optical trapping and ultracold collisions of potassium atoms,” JOSA B, vol. 12, no. 8, pp. 1393–1397, 1995.
[13] G. Modugno, G. Ferrari, G. Roati, R. Brecha, A. Simoni, and M. Inguscio, “Bose-Einstein condensation of potassium atoms by sympathetic cooling,” Science,
vol. 294, no. 5545, pp. 1320–1322, 2001.
[14] C. Bradley, C. Sackett, J. Tollett, and R. Hulet, “Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions,” Physical Review Letters, vol. 75, no. 9, p. 1687, 1995.
[15] C. Bradley, C. Sackett, and R. Hulet, “Bose-Einstein condensation of lithium: observation of limited condensate number,” Physical Review Letters, vol. 78, no. 6, p. 985, 1997.
[16] J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet, “Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions,” Nature, vol. 408, no. 6813, pp. 692–695, 2000.
[17] G. Roati, M. Zaccanti, C. D’Errico, J. Catani, M. Modugno, A. Simoni, M. Inguscio, and G. Modugno, “K-39 Bose-Einstein condensate with tunable interactions,”
Physical Review Letters, vol. 99, no. 1, p. 010403, 2007.
[18] M. Landini, S. Roy, G. Roati, A. Simoni, M. Inguscio, G. Modugno, and M. Fattori, “Direct evaporative cooling of K-39 atoms to Bose-Einstein condensation,” Physical Review A, vol. 86, no. 3, p. 033421, 2012.
[19] M. Fattori, C. D’Errico, G. Roati, M. Zaccanti, M. Jona-Lasinio, M. Modugno, M. Inguscio, and G. Modugno, “Atom interferometry with a weakly interacting Bose-
Einstein condensate,” Physical Review Letters, vol. 100, no. 8, p. 080405, 2008.
[20] M. Zaccanti, B. Deissler, C. D’Errico, M. Fattori, M. Jona-Lasinio, S. Müller, G. Roati, M. Inguscio, and G. Modugno, “Observation of an Efimov spectrum in
an atomic system,” Nature Physics, vol. 5, no. 8, pp. 586–591, 2009.
[21] C. Regal, M. Greiner, and D. S. Jin, “Observation of resonance condensation of fermionic atom pairs,” Physical Review Letters, vol. 92, no. 4, p. 040403, 2004.
[22] J. C. Maxwell, A treatise on electricity and magnetism, vol. 1. Clarendon Press, 1881.
[23] A. Einstein and T. into English, “Concerning an heuristic point of view toward the emission and transformation of light,” American Journal of Physics, vol. 33, no. 5, p. 367, 1965.
[24] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical Review Letters, vol. 24, no. 4, p. 156, 1970.
[25] J. V. Prodan and W. D. Phillips, “Chirping the light—fantastic? Recent NBS atom cooling experiments,” Progress in Quantum Electronics, vol. 8, no. 3, pp. 231–235, 1984.
[26] R. Watts and C. Wieman, “Manipulating atomic velocities using diode lasers,” Optics Letters, vol. 11, no. 5, pp. 291–293, 1986.
[27] W. Ertmer, R. Blatt, J. Hall, and M. Zhu, “Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal,” Physical Review
Letters, vol. 54, no. 10, p. 996, 1985.
[28] W. D. Phillips and H. Metcalf, “Laser deceleration of an atomic beam,” Physical Review Letters, vol. 48, no. 9, p. 596, 1982.
[29] S. Bell, M. Junker, M. Jasperse, L. Turner, Y.-J. Lin, I. Spielman, and R. Scholten, “A slow atom source using a collimated effusive oven and a single-layer variable pitch, coil Zeeman slower,” Review of Scientific Instruments, vol. 81, no. 1, p. 013105, 2010.
[30] V. Gokhroo, G. Rajalakshmi, R. K. Easwaran, and C. Unnikrishnan, “Sub-Doppler deep-cooled bosonic and fermionic isotopes of potassium in a compact 2d+-3d MOT
set-up,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 44, no. 11, p. 115307, 2011.
[31] C. Fort, A. Bambini, L. Cacciapuoti, F. Cataliotti, M. Prevedelli, G. Tino, and M. Inguscio,“Cooling mechanisms in potassium magneto-optical traps,” The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, vol. 3, no. 2, pp. 113–118, 1998.
[32] E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Physical Review Letters, vol. 59, no. 23, p. 2631, 1987.
[33] P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf,“Observation of atoms laser cooled below the Doppler limit,” Physical Review Letters, vol. 61, no. 2, p. 169, 1988.
[34] J. Dalibard and C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models,” JOSA B, vol. 6, no. 11,
pp. 2023–2045, 1989.
[35] P. J. Ungar, D. S. Weiss, E. Riis, and S. Chu, “Optical molasses and multilevel atoms: theory,” JOSA B, vol. 6, no. 11, pp. 2058–2071, 1989.
[36] P. Kohns, P. Buch, W. Süptitz, C. Csambal, and W. Ertmer, “On-line measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhysics Letters, vol. 22, no. 7, p. 517, 1993.
[37] C. D. Wallace, T. P. Dinneen, K.-Y. N. Tan, A. Kumarakrishnan, P. L. Gould, and J. Javanainen, “Measurements of temperature and spring constant in a magnetooptical trap,” JOSA B, vol. 11, no. 5, pp. 703–711, 1994.
[38] C. Townsend, N. Edwards, C. Cooper, K. Zetie, C. Foot, A. Steane, P. Szriftgiser, H. Perrin, and J. Dalibard, “Phase-space density in the magneto-optical trap,” Physical Review A, vol. 52, no. 2, p. 1423, 1995.
[39] M. Prevedelli, F. Cataliotti, E. Cornell, J. Ensher, C. Fort, L. Ricci, G. Tino, and M. Inguscio, “Trapping and cooling of potassium isotopes in a double-magnetooptical- trap apparatus,” Physical Review A, vol. 59, no. 1, p. 886, 1999.
[40] L. De Sarlo, P. Maioli, G. Barontini, J. Catani, F. Minardi, and M. Inguscio, “Collisional properties of sympathetically cooled K-39,” Physical Review A, vol. 75, no. 2, p. 022715, 2007.
[41] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” Advances in atomic, molecular, and optical physics, vol. 42, pp. 95–170, 2000.
[42] S. Inouye, M. Andrews, J. Stenger, H.-J. Miesner, D. Stamper-Kurn, and W. Ketterle, “Observation of Feshbach resonances in a Bose-Einstein condensate,” Nature,
vol. 392, no. 6672, pp. 151–154, 1998.
[43] V. Vuletić, A. J. Kerman, C. Chin, and S. Chu, “Observation of low-field Feshbach resonances in collisions of cesium atoms,” Physical Review Letters, vol. 82, no. 7, p. 1406, 1999.
[44] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, and J. H. Denschlag, “Tuning the scattering length with an optically induced Feshbach resonance,” Physical Review Letters, vol. 93, no. 12, p. 123001, 2004.
[45] B. Smirnov and M. Chibisov, “Electron exchange and changes in the hyperfine state of colliding alkaline metal atoms,” Sov. Phys. JETP, vol. 21, pp. 624–628, 1965.
[46] T. Köhler, K. Góral, and P. S. Julienne, “Production of cold molecules via magnetically tunable Feshbach resonances,” Reviews of Modern Physics, vol. 78, no. 4,
p. 1311, 2006.
[47] M. S. Child, Molecular collision theory. Courier Dover Publications, 1996.
[48] A. Moerdijk, B. Verhaar, and A. Axelsson, “Resonances in ultracold collisions of Li -6, Li- 7, and Na- 23,” Physical Review A, vol. 51, no. 6, p. 4852, 1995.
[49] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman, “Feshbach resonances in atomic Bose-Einstein condensates,” Physics Reports, vol. 315, no. 1, pp. 199–230, 1999.
[50] R. A. Duine and H. T. Stoof, “Atom-molecule coherence in Bose gases,” Physics Reports, vol. 396, no. 3, pp. 115–195, 2004.
[51] H. Feshbach, “Unified theory of nuclear reactions,” Annals of Physics, vol. 5, no. 4, pp. 357–390, 1958.
[52] M. Inguscio, S. Stringari, and C. Wieman, Bose-Einstein condensation in atomic gases, vol. 140. IOS Press, 1999.
[53] H. Wang, A. Nikolov, J. Ensher, P. Gould, E. Eyler, W. Stwalley, J. Burke Jr, J. Bohn, C. H. Greene, E. Tiesinga, et al., “Ground-state scattering lengths for potassium isotopes determined by double-resonance photoassociative spectroscopy of ultracold K-39,” Physical Review A, vol. 62, no. 5, p. 052704, 2000.
[54] S. Falke, H. Knöckel, J. Friebe, M. Riedmann, E. Tiemann, and C. Lisdat, “Potassium ground-state scattering parameters and Born-Oppenheimer potentials from molecular spectroscopy,” Physical Review A, vol. 78, no. 1, p. 012503, 2008.
[55] H. Beijerinck and N. Verster, “Velocity distribution and angular distribution of molecular beams from multichannel arrays,” Journal of Applied Physics, vol. 46,
no. 5, pp. 2083–2091, 1975.
[56] M. Knudsen, “The kinetic theory of gases,” 1950.
[57] T. A. Savard, Raman induced resonance imaging of trapped atoms. PhD thesis, Duke University, 1998.
[58] K. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and
Rb,” American Journal of Physics, vol. 60, pp. 1098–1098, 1992.
[59] J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Physical Review Letters, vol. 49, no. 16, p. 1149, 1982.
[60] Y. Ovchinnikov, “A permanent Zeeman slower for Sr atomic clock,” The European Physical Journal-Special Topics, vol. 163, no. 1, pp. 95–100, 2008.
[61] T. Meyrath, “Electromagnet design basics for cold atom experiments,” University of Texas, Austin, 2004.
[62] S. Friebel, C. D’andrea, J. Walz, M. Weitz, and T. Hänsch, “CO2-laser optical lattice with cold rubidium atoms,” Physical Review A, vol. 57, no. 1, p. R20, 1998.
[63] N. F. Ramsey, N. F. Ramsey, and N. F. Ramsey, Molecular beams. Clarendon Press Oxford, 1956.
[64] A. Steane, M. Chowdhury, and C. Foot, “Radiation force in the magneto-optical trap,” JOSA B, vol. 9, no. 12, pp. 2142–2158, 1992.
[65] T. Walker, D. Sesko, and C. Wieman, “Collective behavior of optically trapped neutral atoms,” Physical Review Letters, vol. 64, no. 4, p. 408, 1990.
[66] D. W. Sesko, T. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” JOSA B, vol. 8, no. 5, pp. 946–958, 1991.
[67] M. Santos, A. Antunes, P. Nussenzveig, J. Flemming, S. Zilio, and V. Bagnato, “Intensity dependence of the collisional loss rate for potassium-39 atoms in a vapor cell MOT,” Laser Physics, vol. 8, pp. 880–884, 1998.
[68] W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous-force optical trap,” Physical Review Letters, vol. 70, no. 15, p. 2253, 1993.
[69] B. S. Marangoni, C. R. Menegatti, and L. G. Marcassa, “Loading a K-39 crossed optical dipole trap from a magneto-optical trap,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 45, no. 17, p. 175301, 2012.
[70] C. R. Menegatti, B. S. Marangoni, J. Tallant, and L. G. Marcassa, “Simultaneous loading of K-39 and Rb into a crossed dipole trap: characterization and two-body
losses,” Physical Review A, vol. 88, no. 2, p. 023411, 2013.
[71] C. R. Menegatti, B. S. Marangoni, N. Bouloufa-Maafa, O. Dulieu, and L. G. Marcassa, “Trap loss in a rubidium crossed dipole trap by short-range photoassociation,” Physical Review A, vol. 87, no. 5, p. 053404, 2013.
[72] C. Alcock, V. Itkin, and M. Horrigan, “Vapour pressure equations for the metallic elements: 298-2500K,” Canadian Metallurgical Quarterly, vol. 23, no. 3,
pp. 309–313, 1984.
[73] “Vacuum technology seminar,” in High/Ultra-High Vacuum Seminar, Varian.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54357-
dc.description.abstract本實驗完成全光學式(all-optical configuration) 鉀-39原子之玻色-愛因斯坦凝結(Bose-Einstein condensates) 實驗之前期架設,並且取得該原子於基態|F = 1>各磁量子數之磁費許巴赫共振譜線(magnetic Feshbach resonances)。實驗裝置包含塞曼減速管(Zeeman slower)、磁光阱(magneto-optical trap, MOT)、光阱(optical dipole trap, ODT),本實驗分析並優化實驗條件。配合塞曼減速管,磁光阱的載入速率增加七倍,其載入速率為1.6秒,三秒約有10^8顆原子。經過次都卜勒冷卻(sub-Doppler cooling),於磁光阱之原子的溫度從2 mK降溫至80 K。目前光阱已成功載入10^6顆原子。因為鉀-39 具有吸引的原子交互作用力,不利於進一步之相空間提升,因此採取磁費許巴赫共振以調整原子散射態(scattering state) 與分子束縛態(bound state) 之耦合(coupling),進而改變原子交互作用力。目前磁場可高達近300 G。由於本實驗原子團製備過程為全光學式,其保留了各磁量子數之原子,因此將實驗獲得之共振磁場譜線與理論對照,已取得基態|F = 1>純化之磁量子數――mF = (1; 1) 與mF = (0; 0) 之費許巴赫共振譜線。zh_TW
dc.description.abstractThis study has completed initial set-up of potassium-39 Bose-Einstein condensates (BEC) and demonstrated the magnetic Feshbach resonances of atoms prepared by all-optical configuration. The experiment starts with loading a magneto-optical trap (MOT) from a Zeeman slower. Subsequently the laser-cooled atoms are then loaded into an optical dipole trap (ODT). With the slower, the loading rate increases by nearly 30 times. The MOT loading time constant achieves 1.6 s and the saturated atom number is equivalent to 10^8 at a temperature of 2 mK. After sub-Doppler cooling, the MOT temperature reaches 80 K and 10^6 atoms are successfully loaded in ODT. Since potassium-39 inherently has attractive interatomic interaction, which is detrimental to phase-space density enhancement of the atoms, Feshbach resonances is implemented to tune the coupling of a scattering state and a bound state of two colliding atoms. With cold atoms, which preserves Zeeman sub-levels states, two scattering channels with pure polarization–mF = (1,1) and mF = (0,0) of the F = 1 manifold have been observed. All information is enclosed in detail
in this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:52:19Z (GMT). No. of bitstreams: 1
ntu-103-R01222006-1.pdf: 13263993 bytes, checksum: 66be7669b4e04439b11f61faa95fbe92 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝iii
摘要v
Abstract vii
1 序論 1
2 實驗原理與技3
2.1 雷射冷卻 3
2.2 塞曼減速管 5
2.3 逆光泵雷射光 6
2.4 磁光阱 6
2.4.1 次都卜勒冷卻 8
2.4.2 玻色鉀原子極窄超精細結構之考慮 8
2.5 光偶極阱 9
2.5.1 光阱之空間分布與振盪頻率. 12
2.6 費許巴赫共振 13
2.6.1 分子位能 13
2.6.2 散射長度 13
2.6.3 磁費許巴赫共振 15
2.6.4 鉀-39 之磁費許巴赫共振 17
3 實驗系統架設 19
3.1 真空腔 19
3.1.1 原子束裝置 21
3.1.2 減速管長度 23
3.1.3 真空系統設計 24
3.1.4 腔體溫度控制 25
3.2 雷射光路架設 25
3.2.1 雷射系統簡介 26
3.2.2 鎖頻系統 27
3.2.3 光路設計 31
3.2.4 另加偏極分光晶體解決保偏單模光纖之些微偏振晃動 34
3.3 磁場線圈 36
3.3.1 多層厚度隨位置改變之塞曼減速管 36
3.3.2 磁光阱/費許巴赫線圈與抵銷線圈 40
3.4 光偶極阱之架設 46
3.5 儀器控制 46
4 原子物理量之探測方法 55
4.1 成像方式 55
4.1.1 吸收影像法 55
4.1.2 螢光影像法 57
4.1.3 成像方式之比較 58
4.2 原子數 58
4.3 原子團溫度 58
4.4 原子團密度峰值 59
4.5 原子束速度 60
5 實驗結果與討論 63
5.1 塞曼減速管之低速原子束 63
5.1.1 慢原子束的速度分布 64
5.2 磁光阱之載入 66
5.2.1 磁光阱與塞曼減速管之實驗架設參數 66
5.2.2 載入速率與碰撞損失係數 67
5.3 光阱之載入 73
5.3.1 次都卜勒冷卻 73
5.3.2 光阱 73
5.4 磁費許巴赫共振實驗 75
5.4.1 所得譜線與理論、他人結果對照 80
6 結論與展望 81
6.1 結論 81
6.2 展望 81
A 鉀原子簡介 83
B 真空系統設計之梯度壓力幫浦機制計算 89
B.0.1 冷卻直通管內之蒸氣壓 89
B.0.2 冷卻直通管出口之孔徑 89
B.0.3 塞曼減速管之孔徑 90
參考文獻 93
dc.language.isozh-TW
dc.subject鉀-39原子zh_TW
dc.subject磁費許巴赫共振zh_TW
dc.subject磁費許巴赫共振zh_TW
dc.subject次都卜勒冷卻zh_TW
dc.subject塞曼減速管zh_TW
dc.subject鉀-39原子zh_TW
dc.subject塞曼減速管zh_TW
dc.subject次都卜勒冷卻zh_TW
dc.subjectmagnetic Feshbach resonancesen
dc.subjectZeeman sloweren
dc.subjectsub-Doppler coolingen
dc.subjectpotassium-39en
dc.subjectmagnetic Feshbach resonancesen
dc.subjectZeeman sloweren
dc.subjectsub-Doppler coolingen
dc.subjectpotassium-39en
dc.title鉀-39之磁費許巴赫共振zh_TW
dc.titleMagnetic Feshbach Resonances of Ultracold K-39 Atomsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor張銘顯(Ming-Shien Chang)
dc.contributor.oralexamcommittee林育如(Yu-Ju Lin),劉怡維(Yi- Wei Liu),林俊達(Guin-Dar Lin)
dc.subject.keyword磁費許巴赫共振,鉀-39原子,次都卜勒冷卻,塞曼減速管,zh_TW
dc.subject.keywordmagnetic Feshbach resonances,potassium-39,sub-Doppler cooling,Zeeman slower,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2015-07-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
12.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved