請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54343完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林俊彬(Chun-pin Lin),賴向華(Hsiang-Hua Lai) | |
| dc.contributor.author | Hsiu-Ching Ko | en |
| dc.contributor.author | 柯秀靜 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:51:33Z | - |
| dc.date.available | 2020-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-14 | |
| dc.identifier.citation | [1] Spyridon N. Papageorgiou, Ioannis P. Zogakis, Moschos A. Papadopoulos. Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. Am J Orthod Dentofacial Orthop. 2012;142(5): Pages 577–595.e7
[2] Meredith N., Assessment of implant stability as a prognostic determinant.Int J Prosthodont. 1998 Sep-Oct;11(5):491-501. [3] Sennerby, L. & Meredith, N. (2008) Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontology 2000 47: 51-66. [4] Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthod Orthog- nath Surg. 1998;13:201–209. [5] Roberts, W. E., Helm, F. R., Marshall, K. J. & Gongloff, R. K. Rigid endosseous implants for orthodontic and orthopedic anchorage. The Angle orthodontist 59, 247-256, doi:10.1043/0003-3219(1989)059<0247:REIFOA>2.0.CO;2 (1989). [6] Deguchi, T. et al. The use of small titanium screws for orthodontic anchorage. Journal of dental research 82, 377-381 (2003). [7] Favero L, Brollo P, Bressan E. Orthodontic anchorage with specific fixtures: related study analysis. Am J Orthod Dentofacial Orthop. 2002;122:84–94. [8] Current products and practice: bone anchorage devices in orthodontics. [9] apadopoulos MA, Tarawneh F. The use of miniscrew implants for temporary skeletal anchorage in orthodontics: a comprehensive review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:e6-15. [10] Mah J, Bergstrand F. Temporary anchorage devices: a status report. J Clin Orthod 2005;39:132-136; discussion 136; quiz 153. 42 [11] Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. American Journal of Orthodontics and Dentofacial Orthopedics. 2003;124(4):373-378. [12] Crismani AG, Bertl MH, Čelar AG, Bantleon H-P, Burstone CJ. Miniscrews in orthodontic treatment: review and analysis of published clinical trials. American Journal of Orthodontics and Dentofacial Orthopedics. 2010;137(1):108-113. [13] Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop. 2004;126:42–47. [14] Lee JS, Kim JK, Park Y-C, Vanarsdall RL. Applications of orthodontic mini implants. Quintessence Publishing Company; 2007. [15] Carano A, Velo S, Leone P, Siciliani G. Clinical applications of the miniscrew anchorage system. J Clin Orthod. 2005;39(1):9-24. [16] Disegi, J. A. & Eschbach, L. Stainless steel in bone surgery. Injury 31 Suppl 4, 2-6 (2000). [17] Antunes, R. A. & de Oliveira, M. C. Corrosion processes of physical vapor deposition-coated metallic implants. Critical reviews in biomedical engineering 37, 425-460 (2009). [18] Ismail KM, Jayaraman A, Wood TK, Earthman JC. The influence of bacteria on the passive film stability of 304 stainless steel. Electrochim Acta 1999; 44: 4685-4692. [19] Eliades T, Athanasios E. In Vivo Aging of Orthodontic Alloys: Implications for Corrosion Potential, Nickel Release, and Biocompatibility Angle Orthod 2002; 72: 222–237. [20] Eliades T, Pratsinsis H, Kletsas D, Makou M. Characteriszation and cytotoxicity 43 of ions released from Stainless steel and Ni-Ti orthodontic alloys. Am J Orthod Dentofac Orthop 2004;125:24-9 [21] Wu, T. Y., Kuang, S. H. & Wu, C. H. Factors associated with the stability of mini-implants for orthodontic anchorage: a study of 414 samples in Taiwan. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 67, 1595-1599, doi:10.1016/j.joms.2009.04.015 (2009). [22] Chen, Y. J. et al. Stability of miniplates and miniscrews used for orthodontic anchorage: experience with 492 temporary anchorage devices. Clinical oral implants research 19, 1188-1196, doi:10.1111/j.1600-0501.2008.01571.x (2008). [23] Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. Journal of biomechanics 2003;36:1247-1258. [24] Morarend C, Qian F, Marshall SD, et al. Effect of screw diameter on orthodontic skeletal anchorage. American Journal of Orthodontics and Dentofacial Orthopedics. 2009;136(2):224-229. [25] 朱庭緯.Surfacetreatmentof316Lstainlesssteelintheapplicationoforthodontic miniscrews-Mechanical analysis. 台大碩士論文 2013 [26] M. Martinesi1, S. Bruni1, M. Stio1, C. Treves1,*, T. Bacci2 andF. Borgioli2. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures. Journal of Biomedical Materials Research Part A Volume 80A, Issue 1, pages 131–145, January 2007 [27] Morais S, Sousa JP, Fernandes MH, Carvalho GS, de Bruijn JD, van Blitterswijk CA. Effects of AISI 316L corrosion products in vitro bone formation. 44 Biomaterials 1998;19:999–1007. [28] Albrektsson T, Zarb G, Worthington P, Eriksson A. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11-25. [29] Leali Tranquilli P, Merolli A, Palmacci O. Evaluation of different preparations of plasma-spray hydroxyapatite coating on titanium alloy and duplex stainless steel in the rabbit. J Mater Sci: Mater Med 1994;5(6±7):345±9. [30] M.H. Fathia,*, M. Salehia, A. Saatchia, V. Mortazavib, S.B. Moosavi. In vitro corrosion behavior of bioceramic, metallic, and bioceramic± metallic coated stainless steel dental implants. Dental Materials 19 (2003) 188±198 [31] Bunyamin Aksakal A C. Hanyaloglu. Bioceramic dip-coating on Ti–6Al–4V and 316L SS implant materials. J Mater Sci: Mater Med (2008) 19:2097–2104 [32] Gawroński J. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel. Archives of Foundry Engineering 2009;9:231-242. [33] Guo Biao, X. H., He Hong. Histological Study on Stainless-steel and Titanium Mini-screw as Orthodontics Anchorage. 2nd Meeting of IADR Pan Asian Pacific Federation (PAPF) and the 1st Meeting of IADR Asia/Pacific Region ( 2009). [34] Young Wook Lim , Soon Yong Kwon , Doo Hoon Sun , Yong Sik Kim. Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation. Clin Orthop Relat Res (2011) 469:330–338 [35] 陳富亮,最新奈米光觸媒應用技術,林斯頓國際,(2003) 46-47 [36] J Heinrichs, T. J., U Wiklund, H Engqvist. Physical vapour deposition and bioactivity of crystalline titanium dioxide thin films. Society for Biomaterials and Artificial Organs (India) (20080314-15). [37] Sollazzo V1, Pezzetti F, Scarano A, Piattelli A, Massari L, Brunelli G, Carinci F. 45 Anatase coating improves implant osseointegration in vivo. J Craniofac Surg. 2007 Jul;18(4):806-10. [38] Seunghan Oh, Chiara Daraio, Li-Han Chen, Thomas R. Pisanic, Rita R. Fin ̃ones, Sungho Jin. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res 78A: 97–103, 2006 [39] Kean-Khoon Chew, Sharif Hussein Sharif Zein*, Abdul Latif Ahmad. The corrosion scenario in human body: Stainless steel 316L orthopaedic implants. Natural science Vol.4, No.3, 184-188 (2012) [40] Shen GX, Chen YC, Lin CJ. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films. 2005;489:130–6. [41] Balamurugan A, Kannan S, Rajeswari S. Evaluation of TiO2 coatings obtained using the sol–gel technique on surgical grade type 316L stainless steel in simulated body fluid. Mater Lett. 2005;59:3138–43. [42] Chung C-J, Hsieh P-Y, Hsiao C-H, Lin H-I, Chen K-C, He J-L. Anatase TiO2 Deposition on Stainless Steel and Its Protection Performance. [43] Chen Y, Dionysiou DD. Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Applied Catalysis B: Environmental 2006;69:24-33. [44] Z. H. Wang, Y. X. Leng, N. Huang, M. H. Zhu, 'Adhesion Evaluation of Titanium Oxides Films on 316L Stainless Steel Substrate', Key Engineering Materials, Vols 353-358, pp. 2127-2130, Sep. 2007 [45] Brohede U, Zhao S, Lindberg F, Mihranyan A, Forsgren J, Stromme M et al. A novel graded bioactive high adhesion implant coating. Applied Surface Science2009;255:7723-7728. 46 [46] Rossi S, Tirri T, Paldan H, Kuntsi-Vaattovaara H, Tulamo R, Narhi T. Peri-implant tissue response to TiO2 surface modified implants. Clin Oral Implants Res 2008;19:348-355. [47] Hans W. Lehmann and K. Frick. Optimizing deposition parameters of electron beam evaporated TiO2 films. Applied Optics, Vol. 27, Issue 23, pp. 4920-4924 (1988) A [48] Van de Krol R, Goossens A, Structure and properties of anatase TiO2 thin films made by reactive electron beam evaporation, Journal of Vacuum Science & Technology A 21(1) (2003) 76-83 [49] J, B. C. Sol-gel science: the physics and chemistry of sol-gel process. (Academic press, 1990). [50] Esposito, M., Lausmaa, J., Hirsch, J. M. & Thomsen, P. Surface analysis of failed oral titanium implants. Journal of biomedical materials research 48, 559-568 (1999). [51] Seshan,K.HandbookofThinFilmDeposition(MaterialsandProcessing Technology). (Noyes bablication, 2002). [52] Guocheng Wang and Hala Zreiqat. Functional Coatings or Films for Hard-Tissue Applications. Materials 2010, 3, 3994-4050 manuscripts; doi:10.3390/ma3073994 [53] HEMLATA GARG, GAURAV BEDI, ARVIND GARG. Implant Surface Modifications: A Review. Journal of Clinical and Diagnostic Research. 2012 April, Vol-6(2): 319-324 [54] Thomas J. Webster*, Jeremiah U. Ejiofor. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25 (2004) 4731–4739 [55] M.M. Shalabi, A. Gortemaker, M.A. Van't Hof, J.A. Jansen*, and N.H.J. Creugers. Implant Surface Roughness and Bone Healing: a Systematic Review. J Dent Res 47 85(6):496-500, 2006 [56] Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin. Oral Impl. Res. 20 (Suppl. 4), 2009; 172–184. doi: 10.1111/j.1600-0501.2009.01775.x [57] Z. L. Peng and S. H. Chen. Effects of surface roughness and film thickness on the adhesion of a bioinspired nanofilm. Phys. Rev. E 83, 051915 [58] Erika Iveth Cedillo-Gonzaleza*, Monia Montorsia, Consuelo Mugonia, Mauro Montorsib, Cristina Siligardi. Improvement of the adhesion between TiO2 nanofilm and glass substrate by roughness modifications. Physics Procedia Volume 40, 2013, Pages 19–29 [59] J. Katainen, M. Paajanen, E. Ahtola, V. Pore, J. Lahtinen. Adhesion as an interplay between particle size and surface roughness. J ournal of Colloid and Interface Science 304 (2006) 524–529 [60] 徐清彬. 二氧化鈦薄膜的性質和結構分析與其光觸媒行為 材料科學與工程 學系. 花蓮縣: 國立東華大學; 2003. [61] Liu, S. & Yang, Z. Evaluation of the Effect of Acute and Subacute Exposure to TiO2 Nanoparticles on Oxidative Stress. Methods in molecular biology 1028, 135-145, doi:10.1007/978-1-62703-475-3_8 (2013). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54343 | - |
| dc.description.abstract | 隨著矯正領域中骨性錨定的盛行,近年來有許多針對矯正用迷你骨釘的研 究,包括幾何形狀、材質或表面形貌的改質,期待能夠增加迷你骨釘的臨床使用 成功率。本研究從臨床的角度出發,希望針對台灣市面上盛行316L不銹鋼矯正骨 釘的較高失敗率做改善,主要的研究目的在不改變316L不銹鋼本質的前提下進行 表面改質,鍍上二氧化鈦的生物陶瓷膜,期待能提供物理性屏障提升抗腐蝕性並 與周圍骨頭有產生骨整合的可能,提高其生物相容性與骨整合能力,進而提升臨 床使用成功率。
本實驗選用316L不鏽鋼板來進行表面鍍膜作業,希望找出具有最佳機械性質 表現的鍍膜參數。本實驗的變數含以下三項:1. 鍍膜方式,以電子束蒸鍍法和溶 膠凝膠法方式製成二氧化鈦薄膜,2. 鍍膜厚度,選擇比較的厚度範圍為30~500 nm,3. 表面粗糙度。薄膜製成後,以場發射電子微探分析儀與X光繞射分析儀分 析薄膜表面組成與晶相,以場發射與掃瞄式電子顯微鏡觀察薄膜表面與截面,以 彩色三維雷射掃瞄儀分析薄膜表面粗糙度,並藉由刮痕測試機評估各種鍍膜參數 下的薄膜附著性,最後將所有結果與先前以磁控濺鍍鍍製的結果25作一綜合的比較。 實驗結果顯示:磁控濺鍍,離子束助鍍之電子束蒸鍍或溶膠凝膠法皆可製作 品質良好,結構緻密的二氧化鈦薄膜,其中磁控濺鍍鍍製薄膜附著性最好,並可 得金紅石結晶相,溶膠凝膠法鍍製薄膜附著性次之,高溫退火可得銳鈦礦結晶相, 電子束蒸鍍法鍍製薄膜附著性相對較差,且為無結晶相之二氧化鈦。薄膜附著性 隨厚度增加而增強,而鍍膜後試片表面的粗糙度並無明顯改變。 | zh_TW |
| dc.description.abstract | With the advances of dental implants, temporary skeletal anchorage devices have now become established orthodontic anchorage aids and launched a new era for clinical orthodontic therapy. In recent years, numerous publications have investigated multiple factors affecting success rates of orthodontic mini-screws, such as shape design, material science, or surface topography. The success rate of 316L stainless steel orthodontic miniscrews was found to be lower than titanium alloy, and our research goal was to make surface modification by coating a TiO2 thin film on 316L stainless steel, which aimed to improve the biocompatibility and induce osseointegration.
The 316L stainless steel plates were used in this study to test mechanical conditions. The experimental variables were included as follow: 1. Coating methods : ion-beam assisted electron beam evaporation and sol-gel method for titanium;2 Coating thickness, ranging from 30 to 500 nm; 3. Surface roughness. The composition and crystalline phase were analyzed by Energy Dispersive Spectrometer (EDS) and X-ray diffraction analyzer (XRD). The surface and cross-section of films were examined by scanning electron microscope. And the color three-dimensional laser scanning analyzer was used to analyze the surface roughness of films. Finally, the film adhesion under various coating parameters was evaluated by a scratch test machine. Besides, all the data would compare with the previous results of magnetron sputtering and produce a comprehensive view of those results. The study results showed that TiO2 thin film with good quality and dense structure can be coated on 316L stainless steel by magnetron sputtering, electron beam evaporation, and sol-gel method. The magnetron sputtering can produce best results regarding to film adhesion and crystallization structure. The sol-gel method also could produce thin film with good adhesion property and crystallization structure after rapid thermal annealing. However, the ion-beam assisted electron beam evaporation can produce thin film with dense structure, but the adhesion property was poorer than magnetron sputtering and sol-gel method. Besides, the film thickness played an important role in the adhesion property, and the surface roughness was not altered by the coating. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:51:33Z (GMT). No. of bitstreams: 1 ntu-104-R01422008-1.pdf: 133557430 bytes, checksum: 33d01be80c6edc400f130932b2df640a (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 ...........................................................................................................#
誌謝 ................................................................................................................................... i 中文摘要 .......................................................................................................................... ii ABSTRACT .................................................................................................................... iii CONTENTS ......................................................................................................................v 圖目錄 ............................................................................................................................. ix 表目錄 ............................................................................................................................ xii Chapter 1 緒論...............................................................................................................1 1.1 研究動機 .................................................................................................................1 1.2 研究目的 .................................................................................................................4 Chapter 2 文獻回顧.......................................................................................................5 2.1 不鏽鋼的表面處理 .................................................................................................5 2.1.1 羥基磷灰石(Hydroxyapatite, HA)............................................................5 2.1.2 鈦(Titanium, Ti) .............................................................................................6 2.1.3 二氧化鈦(Titanium dioxide, TiO2)...........................................................7 2.1.4 總結 ................................................................................................................7 二氧化鈦 .................................................................................................................8 2.2.1 基本結構與特性 ............................................................................................8 2.2.2 骨細胞反應 ....................................................................................................8 2.2.3 抗菌和光催化特性 ...................................................................................….9 2.2.4 不鏽鋼鍍二氧化鈦 ........................................................................................9 2.2.5 總結 ..............................................................................................................10 2.3 二氧化鈦薄膜的製備方法 .................................................................................11 2.3.1 磁控濺鍍 (Magnetron sputtering)..........................................................11 2.3.2 離子源輔助電子束蒸鍍(Ion beam-assisted electron beam evaporation)12 2.3.3 溶膠凝膠法 ...............................................................................................13 2.3.4 總結 ..............................................................................................................14 2.4薄膜厚度設定 .......................................................................................................14 2.5植體的表面形貌 ...................................................................................................15 Chapter 3 材料與方法.................................................................................................18 3.1研究材料 ...............................................................................................................18 3.1.1 AISI 316L 不鏽鋼板 ....................................................................................18 3.1.2 鍍源 ..............................................................................................................18 3.1.3 矯正用不鏽鋼迷你骨釘 ..............................................................................18 3.2實驗儀器與設定 ...................................................................................................19 3.2.1 精密線切割機(Precision Wire Cutting Machine)........................................19 3.2.2 自動研磨機 ..................................................................................................19 3.2.3 超音波震洗機 ..............................................................................................19 3.2.4 電子束蒸鍍機 ..............................................................................................19 3.2.5 溶膠凝膠製程設備 ......................................................................................20 3.2.6 電漿活化不鏽鋼基板表面 ..........................................................................20 3.2.7 場發射電子微探分析儀 EPMA ..................................................................21 3.2.8 X 光繞射分析儀 ..........................................................................................22 3.2.9 掃描式電子顯微鏡與能量散射光譜儀(Scanning Electron Microscopy and Energy Dispersive Spectrometer, EDS) .......................................................22 3.2.10 表面白金濺鍍儀器 ......................................................................................22 3.2.11 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy) ...............................................................................................23 3.2.12 刮痕測試儀(Scratch tester).....................................................................23 3.2.13 3D 彩色三維雷射掃描儀(Color 3D Laser Scanner)..............................23 3.2.14 表面輪廓儀(Microfigure Measuring Instrument)...................................24 3.3 統計方法 ...............................................................................................................24 Chapter 4 結果.............................................................................................................25 4.1表面組成分析 .......................................................................................................25 4.1.1 電子束蒸鍍製備之二氧化鈦薄膜 ..............................................................25 4.1.2 溶膠凝膠法製成之二氧化鈦薄膜 ..............................................................25 4.2 結晶相鑑定 ...........................................................................................................26 4.2.1 電子束蒸鍍製成之二氧化鈦薄膜 ..............................................................26 4.2.2 溶膠凝膠法製成之二氧化鈦薄膜 ..............................................................27 4.2.3 電子束蒸鍍,溶膠凝膠法與磁控濺鍍製成的二氧化鈦薄膜之比較 ......27 4.3 顯微結構觀察 .......................................................................................................28 4.3.1 SEM 觀察薄膜表面 .....................................................................................28 4.3.2 SEM 觀察之薄膜截面 ................................................................................29 4.3.3 薄膜厚度 ......................................................................................................30 4.4 附著性檢測—刮痕測試 .......................................................................................31 4.4.1 電子束蒸鍍製成之二氧化鈦薄膜 ..............................................................32 4.4.2 溶膠凝膠法製成之二氧化鈦薄膜 ..............................................................33 4.4.3 電子束蒸鍍,溶膠凝膠法與磁控濺鍍製成的二氧化鈦薄膜之比較 ......34 4.5 表面粗糙度量測 ...................................................................................................34 Chapter 5 討論.............................................................................................................36 Chapter 6 結論.............................................................................................................40 6.1 薄膜成份、結晶相、顯微結構分析 ...................................................................40 6.2 薄膜附著性 ...........................................................................................................40 6.3 未來方向與建議 ...................................................................................................41 REFERENCE....................................................................................................................42 附表 .................................................................................................................................49 附圖 .................................................................................................................................56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 316L不鏽鋼矯正骨釘 | zh_TW |
| dc.subject | 溶膠凝膠法 | zh_TW |
| dc.subject | 電子束蒸鍍 | zh_TW |
| dc.subject | 磁控濺鍍 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 316L不鏽鋼矯正骨釘 | zh_TW |
| dc.subject | 溶膠凝膠法 | zh_TW |
| dc.subject | 電子束蒸鍍 | zh_TW |
| dc.subject | 磁控濺鍍 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | Sol-gel method | en |
| dc.subject | 316L stainless steel orthodontic miniscrews | en |
| dc.subject | surface modification | en |
| dc.subject | titanium dioxide | en |
| dc.subject | magnetron sputtering | en |
| dc.subject | electron beam evaporation | en |
| dc.subject | Sol-gel method | en |
| dc.subject | 316L stainless steel orthodontic miniscrews | en |
| dc.subject | surface modification | en |
| dc.subject | titanium dioxide | en |
| dc.subject | magnetron sputtering | en |
| dc.subject | electron beam evaporation | en |
| dc.title | 矯正用迷你骨釘之表面改質—不同鍍膜方法製備二氧化鈦薄膜於316L不鏽鋼基材之研究 | zh_TW |
| dc.title | Surface Treatment of 316L stainless steel in the application of orthodontic miniscrews | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 李志偉(Chih-Wei Lee) | |
| dc.contributor.oralexamcommittee | 張瑞青,林弘萍 | |
| dc.subject.keyword | 316L不鏽鋼矯正骨釘,表面改質,二氧化鈦,磁控濺鍍,電子束蒸鍍,溶膠凝膠法, | zh_TW |
| dc.subject.keyword | 316L stainless steel orthodontic miniscrews,surface modification,titanium dioxide,magnetron sputtering,electron beam evaporation,Sol-gel method, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-14 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 130.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
