請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54340完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉小蓁(Hsiao-Chen Yeh) | |
| dc.contributor.author | Han-Yang Lee | en |
| dc.contributor.author | 李翰揚 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:51:23Z | - |
| dc.date.available | 2017-07-23 | |
| dc.date.copyright | 2015-07-23 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-14 | |
| dc.identifier.citation | 1. Aas, K. and Haff, I.(2006), “The generalized hyperbolic skew student’s t distribution', Journal of financial econometrics 4, No.2: 275-309.
2.Berkowitz, J. and O’Brien, J. (2002)” How Accurate Are Value-at-Risk Models at Commercial Banks?”, The Journal of Finance, Vol.57, No.3. 3.Clemen, R. T. and Reilly, T(1997),”Correlations and copula for decision and risk analysis.”, Management Science, Vol.45, No.2, 208. 4.Culp, C., Miller, M. and Neves, A.(1998),” Value at risk: Uses and abuses”, Journal of Applied Corporate Finance, Vol. 10, Issue. 4, 26-38. 5.Demarta, S. and McNeil, A. J. (2004),”The t Copula and Related Copulas”, 2-10. 6.Hu, W. and A, Kercheval.(2007), “Risk management with generalized hyperbolic distributions”,Working paper,Florida State University, Tallahassee, USA. 7.J.P. Morgan.(1995), ”RiskMetrics”, Third Edition, J.P. Morgan. 8.Lin, J.L. and Liou, Z.K.(2009), “The dynamic t Copula with analytic estimation of degree of freedom in risk management of commodity futures portfolio.”,Taiwan futures and derivative products journal,Vol.9,No.1, 1-35. 9.McNeil, A. J., Frey, P. and Embrechts, P.(2005),”Quantitative risk Management: Concepts,Techniques and Tools”,184-186. 10.Nieppola, O.(2009),”Backtesting Value-at-risk Models”,17-28. 11.Romano, C(2002), “Applying copula function to risk management.”,Working paper. 12.Yen, Y. Z.(2010),”Nonparametric Statistics”,NTU College of Management,325-332. 13.Yeh, H.C.(2009),”Advanced Statistics”, NTU College of Management, 231-234. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54340 | - |
| dc.description.abstract | 評價多資產衍生性標的,在理論推導和計算上相當複雜,尤其當投資組合標的資產個數很大時,幾乎無法準確找出聯合機率分配。直到copula 方法的提出,我們方可簡化處理上述的問題,配適出更符合實際的聯合機率分配。
本篇研究分別採用了skew t copula 及 t copula 關聯結構搭配指數加權平均法估計相關性進而估計某一商品期貨投資組合的風險值。我們發現兩模型皆通過了回朔測試並且也在壓力測試中,也快速地反映了左尾極端事件造成的影響。最後,我們針對此一期貨投資組合內各類別報酬率的相關性進行探討,發現相關性幾乎為正,尤其是在2008金融海嘯後此現象更加明顯。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:51:23Z (GMT). No. of bitstreams: 1 ntu-104-R02723057-1.pdf: 1333010 bytes, checksum: 9dec6df2c6f41b3ad7bfc9b2c1520293 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 1.Introduction……………………………………………………………..….....………...1
2.Literature Review………………………………………………….….....………………3 3.Data………………………………………………………………………………...............5 4.Methodology…………………………………………………………...……….....……...7 4.1 Basic concepts…………………………………………..……………….....…..…7 4.1.1 Copula function…………………………………...…………….....……….7 4.1.2 Sklar’s theorem……………………………………..……………......…..7 4.1.3 The multivariate skew t distribution…….......8 4.1.4 The multivariate t distribution………………........9 4.2 Calculating the VaR………………….…………………………………….....…9 4.3 The tests of backward testing and correlation….14 4.3.1Kupeic’s test…………………………………………….…………...........14 4.3.2Chrisofferson’s test…………………………………....….……………..15 4.3.3Spearman’s rank correlation and Hotelling Pabst’s test...............................................17 4.3.4 Kendall’s rank correlation test…………..….…………….18 5.Empirical result…………………………………………………………......…….……20 5.1 Backward testing……………………………………………........………………20 5.2 Stress testing…………………………………...……….…...…………………..25 5.3 Correlation…………………………………………….........……………………..29 6.Conclution………………………………………………..........………………………….35 Reference…………………………………………………...........…………………………..38 Appendix…………………………………………………............…………………………..40 | |
| dc.language.iso | en | |
| dc.subject | 偏態t分布 | zh_TW |
| dc.subject | 指數加權平均法 | zh_TW |
| dc.subject | 關聯結構 | zh_TW |
| dc.subject | 關聯結構 | zh_TW |
| dc.subject | 風險值 | zh_TW |
| dc.subject | 風險值 | zh_TW |
| dc.subject | 偏態t分布 | zh_TW |
| dc.subject | 指數加權平均法 | zh_TW |
| dc.subject | copula | en |
| dc.subject | VaR | en |
| dc.subject | copula | en |
| dc.subject | skew t distribution | en |
| dc.subject | Exponentially Weighted Moving Average | en |
| dc.subject | VaR | en |
| dc.subject | skew t distribution | en |
| dc.subject | Exponentially Weighted Moving Average | en |
| dc.title | 應用t copula 與skew t copula函數於商品期貨風險管理 | zh_TW |
| dc.title | Application of t copula and skew t copula function in risk management | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇永成(Yung-Cheng Su),許耀文(Yao-Wen Hsu) | |
| dc.subject.keyword | 風險值,關聯結構,偏態t分布,指數加權平均法, | zh_TW |
| dc.subject.keyword | VaR,copula,skew t distribution,Exponentially Weighted Moving Average, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-14 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
