請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54339完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志軒(Chih-Hsuan Chen) | |
| dc.contributor.author | Ting-wei Lin | en |
| dc.contributor.author | 林廷緯 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:51:20Z | - |
| dc.date.available | 2020-08-07 | |
| dc.date.copyright | 2020-08-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-04 | |
| dc.identifier.citation | [1] W. Goetzler, R. Zogg, J. Young, C. Johnson, Energy savings potential and RD D opportunities for non-vapor-compression HVAC technologies, Navigant Consulting Inc., prepared for US Department of Energy (2014). [2] S. Fähler, U.K. Rößler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, K. Albe, Caloric effects in ferroic materials: new concepts for cooling, Advanced Engineering Materials 14(1‐2) (2012) 10-19. [3] R. Kainuma, S. Takahashi, K. Ishida, Thermoelastic martensite and shape memory effect in ductile Cu-Al-Mn alloys, Metallurgical and Materials Transactions A 27(8) (1996) 2187-2195. [4] Y. Sutou, R. Kainuma, K. Ishida, Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys, Materials Science and Engineering: A 273 (1999) 375-379. [5] T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, R. Kainuma, Abnormal grain growth induced by cyclic heat treatment, Science 341(6153) (2013) 1500-1502. [6] T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, Ultra-large single crystals by abnormal grain growth, Nat Commun 8(1) (2017) 354. [7] L.C. Chang, T.A. Read, Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase, JOM 3(1) (1951) 47-52. [8] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, The chemical educator 2(2) (1997) 1-21. [9] H. Kessler, W. Pitsch, On the nature of the martensite to austenite reverse transformation, Acta Metallurgica 15(2) (1967) 401-405. [10] G.V. Kurdjumov, O.P. Maksimova, Kinetics of austenite to martensite transformation at low temperatures, Doklady Akademii Nauk SSSR 61(1) (1948) 83-86. [11] J. Ortin, A. Planes, Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations, Acta metallurgica 36(8) (1988) 1873-1889. [12] C.M. Wayman, Shape memory alloys, MRS bulletin 18(4) (1993) 49-56. [13] M. Nishida, T. Honma, All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging, Scripta metallurgica 18(11) (1984) 1293-1298. [14] T.A. Schroeder, C.M. Wayman, The two-way shape memory effect and other “training” phenomena in Cu Zn single crystals, Scripta metallurgica 11(3) (1977) 225-230. [15] T. Tadaki, Y. Nakata, K.i. Shimizu, K. Otsuka, Crystal structure, composition and morphology of a precipitate in an aged Ti-51 at% Ni shape memory alloy, Transactions of the Japan institute of metals 27(10) (1986) 731-740. [16] M. Nishida, C.M. Wayman, T. Honma, Electron microscopy studies of the all-around shape memory effect in a Ti-51.0 at.% Ni alloy, Scripta metallurgica 18(12) (1984) 1389-1394. [17] M. Nishida, T. Honma, Effect of heat treatment on the all-round shape memory effect in Ti-5lat% Ni, Scripta metallurgica 18(11) (1984) 1299-1302. [18] K. Otsuka, C.M. Wayman, P. Feltham, Reviews on the deformation behavior of materials, Felthman ed., Freund, Israel 2 (1977) 81. [19] K. Otsuka, Pseudoelasticity, Met Forum (1981) 142-152. [20] R. Kainuma, N. Satoh, X.J. Liu, I. Ohnuma, K. Ishida, Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system, Journal of Alloys and Compounds 266(1-2) (1998) 191-200. [21] Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Ductile Cu–Al–Mn based shape memory alloys: general properties and applications, Materials Science and Technology 24(8) (2008) 896-901. [22] Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets, Acta Materialia 61(10) (2013) 3842-3850. [23] Y. Sutou, T. Omori, R. Kainuma, K. Ishida, N. Ono, Enhancement of superelasticity in Cu-Al-Mn-Ni shape-memory alloys by texture control, Metallurgical and Materials Transactions A 33(9) (2002) 2817-2824. [24] N. Ono, A. Satoh, H. Ohta, A discussion on the mechanical properties of shape memory alloys based on a polycrystal model, Materials transactions, JIM 30(10) (1989) 756-764. [25] N. Ono, A. Sato, Plastic deformation governed by the stress induced martensitic transformation in polycrystals, Transactions of the Japan institute of metals 29(4) (1988) 267-273. [26] R. Kainuma, Y. Yoshinaka, T. Omori, Cyclic Properties of Superelasticity in Cu–Al–Mn Single-Crystalline Sheets with Bainite Precipitates, Shape Memory and Superelasticity 4(4) (2018) 428-434. [27] K. Ooishi, S. Yokota, K. Yasuda, Y. Tsuji, Development of β-brass single crystals and abnormal growth of crystal grains, J. Jpn Copper Brass Res. Assoc 32 (1993) 163-171. [28] S. Sugimoto, H. Satoh, M. Okada, M. Homma, Evolution Process of⟨ 100⟩ Texture in Fe–Cr–Co–Mo Permanent Magnets, Materials Transactions, JIM 32(6) (1991) 557-561. [29] H. Kaneko, M. Homma, M. Okada, S. Nakamura, N. Ikuta, Fe‐Cr‐Co ductile magnet with (BH) max=8 MGOe, American Institute of Physics, pp. 620-621. [30] S. Sugimoto, M. Okada, M. Homma, The enhancement of the magnetic properties of Fe‐Cr‐Co‐Mo polycrystalline permanent magnet alloys by cold rolling and annealing, Journal of applied physics 63(8) (1988) 3707-3709. [31] T. Omori, K. Ando, M. Okano, X. Xu, Y. Tanaka, I. Ohnuma, R. Kainuma, K. Ishida, Superelastic effect in polycrystalline ferrous alloys, Science 333(6038) (2011) 68-71. [32] T. Omori, H. Iwaizako, R. Kainuma, Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy, Materials Design 101 (2016) 263-269. [33] K. Bhattacharya, Microstructure of martensite, OUP Oxford (2003) 288. [34] R.D. James, K.F. Hane, Martensitic transformations and shape-memory materials, Acta materialia 48(1) (2000) 197-222. [35] J. Fornell, N. Tuncer, C.A. Schuh, Orientation dependence in superelastic Cu-Al-Mn-Ni micropillars, Journal of Alloys and Compounds 693 (2017) 1205-1213. [36] Y. Sutou, T. Omori, K. Yamauchi, N. Ono, R. Kainuma, K. Ishida, Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire, Acta Materialia 53(15) (2005) 4121-4133. [37] P. Šittner, V. Novak, Anisotropy of martensitic transformations in modeling of shape memory alloy polycrystals, International Journal of Plasticity 16(10-11) (2000) 1243-1268. [38] G.G. Slabaugh, Computing Euler angles from a rotation matrix, Retrieved on August 6(2000) (1999) 39-63. [39] H. Wang, H.-Y. Huang, Y.-J. Su, Tuning the operation temperature window of the elastocaloric effect in Cu–Al–Mn shape memory alloys by composition design, Journal of Alloys and Compounds 828 (2020) 154265. [40] H. Wang, H. Huang, J. Xie, Effects of strain rate and measuring temperature on the elastocaloric cooling in a columnar-grained Cu71Al17. 5Mn11. 5 shape memory alloy, Metals 7(12) (2017) 527. [41] S. Xu, H.-Y. Huang, J. Xie, S. Takekawa, X. Xu, T. Omori, R. Kainuma, Giant elastocaloric effect covering wide temperature range in columnar-grained Cu71. 5Al17. 5Mn11 shape memory alloy, APL Materials 4(10) (2016) 106106. [42] T. Omori, S. Kawata, R. Kainuma, Orientation Dependence of Superelasticity and Stress Hysteresis in Cu–Al–Mn Alloy, MATERIALS TRANSACTIONS (2019) MT-MJ2019008. [43] S.M. Ueland, Y. Chen, C.A. Schuh, Oligocrystalline shape memory alloys, Advanced Functional Materials 22(10) (2012) 2094-2099. [44] N. Ozdemir, I. Karaman, N.A. Mara, Y.I. Chumlyakov, H.E. Karaca, Size effects in the superelastic response of Ni54Fe19Ga27 shape memory alloy pillars with a two stage martensitic transformation, Acta Materialia 60(16) (2012) 5670-5685. [45] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys–role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Materialia 135 (2017) 158-176. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54339 | - |
| dc.description.abstract | 本研究以循環熱處理製成晶粒方位分別接近[ 0 0 1 ]、[ 1 0 1 ]和[ 1 1 1 ]之CuAl17Mn10Ni1.5單晶與CuAl17Mn11Cr0.65單晶六種形狀記憶合金塊材,研究晶粒方位對擬彈性和彈熱效應之影響,並以接近[ 0 0 1 ]、[ 1 0 1 ]和[ 1 1 1 ]之CuAl17Mn10Ni1.5單晶在不同操作溫度下之彈熱效應。實驗結果顯示,在晶粒方位相似的狀態下,CuAl17Mn10Ni1.5單晶之臨界應力較CuAl17Mn11Cr0.65單晶大,透過Clausius-Clapeyron方程式可以得知,當晶粒方位相似時,操作溫度和Ms溫度之差與相變態臨界應力的大小有明顯影響。相變態臨界應力和擬彈性應變對晶粒方位具有很高的依賴性,晶粒方位接近[ 0 0 1 ]的臨界應力最小,擬彈性應變最大,而晶粒方位接近[ 1 1 1 ]的臨界應力最大,擬彈性應變最小。[ 0 0 1 ]和[ 1 0 1 ]試片的卸載溫度場分布較[ 1 1 1 ]試片均勻,且卸載溫度場分布的變化與DIC之卸載應變分布變化基本相同,可以觀察到[ 1 1 1 ]試片之卸載降溫溫差集中於逆變態之區域,[ 1 1 1 ]試片測得之降溫溫差較低,因此除了晶粒方位、施加應變大小,試片相變態分布是否均勻也是影響卸載降溫溫差的重要因素。晶粒方位接近[ 0 0 1 ]的試片和接近[ 1 0 1 ]試片的卸載降溫溫差相近,且接近[ 1 0 1 ]試片的耗散能較小,因此效能係數(COP)最高,最適合應用於固態冷媒,晶粒方位接近[ 0 0 1 ]則因耗散能為三個方向中最大的,適合用於製作阻尼器。CuAl17Mn10Ni1.5單晶在-40°C~應力誘發麻田散體和應力誘發差排滑移之臨界溫度的操作區間中,[ 0 0 1 ]和[ 1 0 1 ]試片具有較大的溫差和穩定的COP,因而彈熱效應表現較好;[ 1 0 1 ]可能較不易抵抗塑性變形導致在循環使用中容易產生功能劣化;[ 1 1 1 ]試片除了相變態不均勻的原因導致卸載降溫溫差較低外,可能還受到塑性變形影響而使COP性能表現並不穩定。 | zh_TW |
| dc.description.abstract | In this study, cyclic heat treatment was used to prepare CuAl17Mn10Ni1.5 and CuAl17Mn11Cr0.65 bulk single-crystal shape memory alloy with grain orientation close to [001], [101], and [111] respectively. The influence of grain orientation on psuedoelasticity and elastocaloric effect of CuAl17Mn10Ni1.5 single-crystal with orientations close to [001], [101] and [111] under different operating temperatures were also investigaed. The results show that the critical stress to induce martensitic transformation of CuAl17Mn10Ni1.5 single-crystal is larger than that of the CuAl17Mn11Cr0.65 one. When the grain orientations are similar, the different between the operating temperature and Ms temperature has a significant effect on the critical stress, as predicted by Clausius-Clapeyron equation. The critical stress and psuedoelasticity are highly dependent on grain orientation. The critical stress is smallest and the psuedoelastic strain is largest when the grian orientation is closes to [001]. On the other hand, the critical stress is largest and the psuedoelastic strain is smallest when the grian orientation is closes to [111]. For the elastocaloric effect, the distributions of temperature after unloading of [001] and [101] specimens are more uniform than that of the [111] one. It is noted that, the unloading temperature drop of [111] specimen is concentrated in the area where the reverse martensitic transformation occurred, and the measured value of unloading temperature drop of [111] specimen is lower than the calculated value. Therefore, the factors affecting the unloading temperature drop are not only the grain orientation and the magnitude of the applied strain, but also the uniformity of the phase transformation distribution. The unloading temperature drop of specimens with grain orientation close to [001] and [101] are similar. At the same time, the dissipation energy of [101] specimen is the lowest, so the coefficient of efficiency (COP) of the [101] orientated one is the highest, and is considered suitable for use in solid refrigerant. The dissipation energy of [001] specimen is the largest, so it’s considered suitable for dampering applications. In the operating range of CuAl17Mn10Ni1.5 single-crystal form -40°C to the critical temperature of stress-induced dislocaltion slip, the elastocaloric effect of specimens with grain orientation close to [001] and [101] are better than that of the [111] one because they have larger temperature drops and stable COPs. However, the [101] specimen may be less resistant to plastic deformation, which may cause functional degradation during cycling compression test. Similarly, plastic deformation is easily introduced into the [111] specimen due to its higher stress for trigging martensitic transformation.Additionally, the [111] sample shows unstable COP at differet operating temperature and uneven phase transformation behavior. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:51:20Z (GMT). No. of bitstreams: 1 U0001-0308202015511800.pdf: 19499223 bytes, checksum: 9fbc397a1532360d31ffcafd0301aad9 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i Abstract iii 目錄 v 圖目錄 vii 表目錄 xi 第一章 前言 1 第二章 文獻探討 3 2-1 形狀記憶合金簡介 3 2-2 形狀記憶特性 4 2-2-1 熱彈性麻田散體相變態 4 2-2-2 形狀記憶效應 6 2-2-3 擬彈性 7 2-3 Cu-Al-Mn 形狀記憶合金 9 2-3-1 Cu-Al-Mn SMA 的冷加工性和形狀記憶特性 9 2-3-2 時效處理與化學組成對Cu-Al-Mn SMA 的影響 11 2-3-3 微量第四元素的添加對Cu-Al-Mn SMA 的影響 11 2-4 晶粒成長 12 2-4-1 異常晶粒成長(Abnormal grain growth, AGG) 12 2-4-2 AGG 的晶粒成長速率計算 15 2-5 SMA 相變態之擬彈性應變計算 17 2-5-1 非擴散性麻田散體相變態之轉換描述 17 2-5-2 應力誘發麻田散體相變態之擬彈性應變計算 18 第三章 實驗方法 45 3-1 合金配置與熔煉 45 3-2 DSC 量測 47 3-3 EBSD 晶體方位分析 47 3-4 EPMA 成分分析 48 3-5 壓縮擬彈性實驗 48 3-6 溫度變化量量測 48 3-7 不同溫度下之彈熱效應 49 第四章 CuAlMn 形狀記憶合金之擬彈性和彈熱效應 57 4-1 DSC 量測結果與成分分析結果 57 4-2 EBSD 晶體方位分析結果 58 4-2-1 單晶CuAl17Mn10Ni1.5 塊材之EBSD 分析結果 58 4-2-2 單晶CuAl17Mn11Cr0.65 塊材之EBSD 分析結果 59 4-3 單晶CuAl17Mn10Ni1.5 與單晶CuAl17Mn11Cr0.65 塊材於常溫下壓縮之擬彈性和彈熱效應 60 4-3-1 [ 1 1 21 ]之單晶CuAl17Mn10Ni1.5 塊材壓縮之擬彈性和彈熱效應結果 60 4-3-2 [ 5 1 8 ]之單晶CuAl17Mn10Ni1.5 塊材壓縮之擬彈性和彈熱效應結果 61 4-3-3 [ 5 7 10 ]之單晶CuAl17Mn10Ni1.5 塊材壓縮之擬彈性和彈熱效應結果 62 4-3-4 [ 7 3 38 ]之單晶CuAl17Mn11Cr0.65 塊材壓縮之擬彈性和彈熱效應結果 63 4-3-5 [ 8 1 10 ]之單晶CuAl17Mn11Cr0.65 塊材壓縮之擬彈性和彈熱效應結果 64 4-3-6 [ 5 4 6 ]之單晶CuAl17Mn11Cr0.65 塊材壓縮之擬彈性和彈熱效應結果 64 4-3-7 不同晶體方位對擬彈性性能之影響 65 4-3-8 不同晶體方位對彈熱效應之影響 66 4-4 操作溫度對CuAl17Mn10Ni1.5 單晶之彈熱效應影響 69 4-4-1 不同晶體方位CuAl17Mn10Ni1.5 單晶之操作溫度區間 69 4-4-2 不同晶體方位單晶CuAl17Mn10Ni1.5 於不同操作溫度下的冷卻性能表現 70 第五章 結論 100 參考目錄 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 形狀記憶合金 | zh_TW |
| dc.subject | CuAlMn | zh_TW |
| dc.subject | 異常晶粒成長 | zh_TW |
| dc.subject | 擬彈性 | zh_TW |
| dc.subject | 彈熱效應 | zh_TW |
| dc.subject | 形狀記憶合金 | zh_TW |
| dc.subject | CuAlMn | zh_TW |
| dc.subject | 異常晶粒成長 | zh_TW |
| dc.subject | 擬彈性 | zh_TW |
| dc.subject | 彈熱效應 | zh_TW |
| dc.subject | psuedoelasticity | en |
| dc.subject | shape memory alloy | en |
| dc.subject | CuAlMn | en |
| dc.subject | abnormal grain growth | en |
| dc.subject | elastocaloric effect | en |
| dc.subject | shape memory alloy | en |
| dc.subject | elastocaloric effect | en |
| dc.subject | psuedoelasticity | en |
| dc.subject | abnormal grain growth | en |
| dc.subject | CuAlMn | en |
| dc.title | 單晶CuAl17Mn10Ni1.5和單晶CuAl17Mn11Cr0.65形狀記憶合金之擬彈性和彈熱效應研究 | zh_TW |
| dc.title | Research on the Psuedoelasticity and the Elastocaloric Effect of CuAl17Mn10Ni1.5 and CuAl17Mn11Cr0.65 Single-crystal Shape Memory Alloys | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳錫侃(Shyi-Kaan Wu),鄭憶中(I-Chung Cheng),林新智(Hsin-Chih Lin) | |
| dc.subject.keyword | 形狀記憶合金,CuAlMn,異常晶粒成長,擬彈性,彈熱效應, | zh_TW |
| dc.subject.keyword | shape memory alloy,CuAlMn,abnormal grain growth,psuedoelasticity,elastocaloric effect, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU202002287 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0308202015511800.pdf 未授權公開取用 | 19.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
