Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54335
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊吉水(Jye-Shane Yang)
dc.contributor.authorFen-Miao Houen
dc.contributor.author侯玢妙zh_TW
dc.date.accessioned2021-06-16T02:51:07Z-
dc.date.available2020-07-20
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-14
dc.identifier.citation1. Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F., Artificial molecular machines. Angew. Chem. Int. Ed. 2000, 39 (19), 3348-3391.
2. (a) Boyer, P. D., Energy, Life, and ATP (Nobel Lecture). Angew. Chem. Int. Ed. 1998, 37 (17), 2296-2307; (b) Walker, J. E., ATP Synthesis by Rotary Catalysis (Nobel lecture). Angew. Chem. Int. Ed. 1998, 37 (17), 2308-2319; (c) Yasuda, R.; Noji, H.; Kinosita, K., Jr.; Motojima, F.; Yoshida, M., Rotation of the γ Subunit in F1-ATPase; Evidence That ATP Synthase Is a Rotary Motor Enzyme. J. Bioenerg. Biomembr. 1997, 29 (3), 207-209.
3. Stewart, A. G.; Laming, E. M.; Sobti, M.; Stock, D., Rotary ATPases—dynamic molecular machines. Curr. Opin. Struct. Biol. 2014, 25, 40-48.
4. Khuong, T.-A. V.; Nuñez, J. E.; Godinez, C. E.; Garcia-Garibay, M. A., Crystalline Molecular Machines:  A Quest Toward Solid-State Dynamics and Function. Acc. Chem. Res. 2006, 39 (6), 413-422.
5. Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M., Artificial molecular-level machines: Which energy to make them work? Acc. Chem. Res. 2001, 34 (6), 445-455.
6. Yang, J.-S.; Sun, W.-T., Light-and Electricity-Gated Internal Rotation of Molecular Rotors: Toward Artificial Molecular Machines. Organic Structures Design: Applications in Optical and Electronic Devices 2014, 137.
7. Kelly, T. R.; Silva, R. A.; Silva, H. D.; Jasmin, S.; Zhao, Y., A Rationally Designed Prototype of a Molecular Motor. J. Am. Chem. Soc. 2000, 122 (29), 6935-6949.
8. (a) Bauer, J.; Hou, L.; Kistemaker, J. C. M.; Feringa, B. L., Tuning the Rotation Rate of Light-Driven Molecular Motors. J. Org. Chem. 2014, 79 (10), 4446-4455; (b) Koumura, N.; Zijlstra, R. W.; van Delden, R. A.; Harada, N.; Feringa, B. L., Light-driven monodirectional molecular rotor. Nature 1999, 401 (6749), 152-155; (c) Pollard, M. M.; Wesenhagen, P. V.; Pijper, D.; Feringa, B. L., On the effect of donor and acceptor substituents on the behaviour of light-driven rotary molecular motors. Org. Biomol. Chem. 2008, 6 (9), 1605-1612; (d) Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L., Second Generation Light-Driven Molecular Motors. Unidirectional Rotation Controlled by a Single Stereogenic Center with Near-Perfect Photoequilibria and Acceleration of the Speed of Rotation by Structural Modification. Journal of the American Chemical Society 2002, 124 (18), 5037-5051; (e) Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L., Second Generation Light-Driven Molecular Motors. Unidirectional Rotation Controlled by a Single Stereogenic Center with Near-Perfect Photoequilibria and Acceleration of the Speed of Rotation by Structural Modification. J. Am. Chem. Soc. 2002, 124 (18), 5037-5051.
9. Pramanik, S.; De, S.; Schmittel, M., Bidirectional Chemical Communication between Nanomechanical Switches. Angew. Chem. Int. Ed. 2014, 53 (18), 4709-4713.
10. Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.; Garcia, A.; Lang, F.; Kim, M. H.; Jette, M. P., A Molecular Brake. J. Am. Chem. Soc. 1994, 116 (8), 3657-3658.
11. Basheer, M. C.; Oka, Y.; Mathews, M.; Tamaoki, N., A Light-Controlled Molecular Brake with Complete ON–OFF Rotation. Chem. Eur. J. 2010, 16 (11), 3489-3496.
12. Tabata, H.; Kayama, S.; Takahashi, Y.; Tani, N.; Wakamatsu, S.; Tasaka, T.; Oshitari, T.; Natsugari, H.; Takahashi, H., A Complete Gear System in N-Benzoyl-Carbazole Derivatives. Org. Lett. 2014, 16 (5), 1514-1517.
13. Badjić, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F., A molecular elevator. Science 2004, 303 (5665), 1845-1849.
14. Mateo-Alonso, A.; Fioravanti, G.; Marcaccio, M.; Paolucci, F.; Rahman, G. M. A.; Ehli, C.; Guldi, D. M.; Prato, M., An electrochemically driven molecular shuttle controlled and monitored by C60. Chem. Commun. 2007, (19), 1945-1947.
15. (a) Arai, T.; Tokumaru, K., Photochemical one-way adiabatic isomerization of aromatic olefins. Chem. Rev. 1993, 93 (1), 23-39; (b) Arai, T.; Karatsu, T.; Misawa, H.; Kuriyama, Y.; Okamoto, H.; Hiresaki, T.; Furuuchi, H.; Zeng, H.; Sakuragi, H.; Tokumaru, K., Novel insights into photoisomerization of olefins. Pure Appl. Chem. 1988, 60 (7), 989-998.
16. Coelho, P. J.; Castro, M. C. R.; Raposo, M. M. M., Reversible trans–cis photoisomerization of new pyrrolidene heterocyclic imines. J. Photochem. Photobiol. A. Chem. 2013, 259, 59-65.
17. Lakowicz, J. R., Principles of fluorescence spectroscopy. Springer Science & Business Media: 2007.
18. Thims, L., On the Nature of the Human Chemical Bond. Journal of Human Thermodynamics 2005, 1, 36-61.
19. Arai, T.; Furuya, Y.; Furuuchi, H.; Tokumaru, K., One-way Z→ E isomerization around the double bond of N-methoxy-1-(2-anthryl) ethanimine in the excited triplet state. Direct observation of one-way isomerization from Z triplet to E triplet of the C N bond. Chem. Phys. Lett. 1993, 212 (6), 597-603.
20. Lewis, F. D.; Yang, J.-S., Molecular Structure and Photochemistry of (E)- and (Z)-Ethyl 3-(2-Indolyl)propenoate. Ground State Conformational Control of Photochemical Behavior and One-Way E → Z Photoisomerization. J. Phys. Chem. 1996, 100 (34), 14560-14568.
21. Arai, T.; Karatsu, T.; Sakuragi, H.; Tokumari, K., “One-way” photoisomerization between cis-and trans-olefin. A novel adiabatic process in the excited state. Tetrahedron Lett. 1983, 24 (28), 2873-2876.
22. Ganapathy, S.; Liu, R. S., Photoisomerization of polyenes. 30. Quantum chain processes in photoisomerization of the all-trans, 7-cis, and 11-cis isomers of retinal. J. Am. Chem. Soc. 1992, 114 (9), 3459-3464.
23. (a) Liu, R. S.; Hammond, G. S., The case of medium-dependent dual mechanisms for photoisomerization: one-bond-flip and hula-twist. PNAS. 2000, 97 (21), 11153-11158; (b) Liu, R. S. H., Photoisomerization by Hula-Twist:  A Fundamental Supramolecular Photochemical Reaction. Acc. Chem. Res. 2001, 34 (7), 555-562; (c) Liu, R. S.; Hammond, G. S., Examples of Hula‐Twist in Photochemical cis–trans Isomerization. Chem. Eur. J. 2001, 7 (21), 4536-4545; (d) Saltiel, J.; Bremer, M. A.; Laohhasurayotin, S.; Krishna, T. S. R., Photoisomerization of cis,cis- and cis,trans-1,4-Di-o-tolyl-1,3-butadiene in Glassy Media at 77 K: One-Bond-Twist and Bicycle-Pedal Mechanisms. Angew. Chem. Int. Ed. 2008, 47 (7), 1237-1240.
24. Saltiel, J.; Krishna, T. S.; Clark, R. J., Photoisomerization of cis, cis-1, 4-diphenyl-1, 3-butadiene in the solid state: The bicycle-pedal mechanism. J. Phys. Chem. A 2006, 110 (5), 1694-1697.
25. (a) Dürr, H.; Bouas-Laurent, H., Photochromism: Molecules and Systems: Molecules and Systems. Gulf Professional Publishing: 2003; (b) Beveridge, D. L.; Jaffe, H., The Electronic Structure and Spectra of cis-and trans-Stibene1. J. Am. Chem. Soc. 1965, 87 (23), 5340-5346; (c) Waldeck, D. H., Photoisomerization dynamics of stilbenes. Chem. Rev. 1991, 91 (3), 415-436.
26. Yang, J.-S.; Chiou, S.-Y.; Liau, K.-L., Fluorescence Enhancement of trans-4-Aminostilbene by N-Phenyl Substitutions:  The “Amino Conjugation Effect”. J. Am. Chem. Soc. 2002, 124 (11), 2518-2527.
27. Quick, M.; Berndt, F.; Dobryakov, A. L.; Ioffe, I. N.; Granovsky, A. A.; Knie, C.; Mahrwald, R.; Lenoir, D.; Ernsting, N. P.; Kovalenko, S. A., Photoisomerization Dynamics of Stiff-Stilbene in Solution. J. Phys. Chem. B 2014, 118 (5), 1389-1402.
28. Fuß, W.; Kosmidis, C.; Schmid, W. E.; Trushin, S. A., The Photochemical cis–trans Isomerization of Free Stilbene Molecules Follows a Hula-Twist Pathway. Angew. Chem. Int. Ed. 2004, 43 (32), 4178-4182.
29. Oelgemöller, M.; Frank, R.; Lemmen, P.; Lenoir, D.; Lex, J.; Inoue, Y., Synthesis, structural characterization and photoisomerization of cyclic stilbenes. Tetrahedron 2012, 68 (21), 4048-4056.
30. Shimasaki, T.; Kato, S.-i.; Shinmyozu, T., Synthesis, Structural, Spectral, and Photoswitchable Properties of cis- and trans-2,2,2‘,2‘-Tetramethyl-1,1‘-indanylindanes1. J. Org. Chem. 2007, 72 (16), 6251-6254.
31. Huang, Z.; Yang, Q.-Z.; Kucharski, T. J.; Khvostichenko, D.; Wakeman, S. M.; Boulatov, R., Macrocyclic Disulfides for Studies of Sensitized Photolysis of the SS Bond. Chem. Eur. J. 2009, 15 (21), 5212-5214.
32. (a) Yan, X.; Xu, J.-F.; Cook, T. R.; Huang, F.; Yang, Q.-Z.; Tung, C.-H.; Stang, P. J., Photoinduced transformations of stiff-stilbene-based discrete metallacycles to metallosupramolecular polymers. PNAS. 2014, 111 (24), 8717-8722; (b) Wang, Y.; Xu, J.-F.; Chen, Y.-Z.; Niu, L.-Y.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z., Photoresponsive supramolecular self-assembly of monofunctionalized pillar[5]arene based on stiff stilbene. Chem. Commun. 2014, 50 (53), 7001-7003.
33. (a) Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z., Aggregation‐Induced Emission: The Whole Is More Brilliant than the Parts. Adv. Mater. 2014, 26 (31), 5429-5479; (b) Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission. Chem. Soc. Rev. 2011, 40 (11), 5361-5388.
34. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, (18), 1740-1741.
35. (a) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z., Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater. 2003, 15 (7), 1535-1546; (b) Chen, J.; Cao, Y., Fluorescence responses of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole thin layer to vapors of common solvents. Sens. Actuators. B Chem. 2006, 114 (1), 65-70.
36. (a) An, B.-K.; Lee, D.-S.; Lee, J.-S.; Park, Y.-S.; Song, H.-S.; Park, S. Y., Strongly Fluorescent Organogel System Comprising Fibrillar Self-Assembly of a Trifluoromethyl-Based Cyanostilbene Derivative. J. Am. Chem. Soc. 2004, 126 (33), 10232-10233; (b) Chung, J. W.; You, Y.; Huh, H. S.; An, B.-K.; Yoon, S.-J.; Kim, S. H.; Lee, S. W.; Park, S. Y., Shear- and UV-Induced Fluorescence Switching in Stilbenic π-Dimer Crystals Powered by Reversible [2 + 2] Cycloaddition. J. Am. Chem. Soc. 2009, 131 (23), 8163-8172.
37. (a) Zhang, G.-F.; Aldred, M. P.; Chen, Z.-Q.; Chen, T.; Meng, X.; Zhu, M.-Q., Efficient green-red piezofluorochromism of bisanthracene-modified dibenzofulvene. RSC Adv. 2015, 5 (2), 1079-1082; (b) Luo, X.; Li, J.; Li, C.; Heng, L.; Dong, Y. Q.; Liu, Z.; Bo, Z.; Tang, B. Z., Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli. Adv. Mater. 2011, 23 (29), 3261-3265.
38. (a) Gaede, H. C., NMR exchange spectroscopy. Modern NMR Spectroscopy in Education 2007, 969, 176; (b) Perrin, C. L.; Dwyer, T. J., Application of two-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 1990, 90 (6), 935-967.
39. Kao, C. Y.; Lee, I.; Prabhakar, C.; Yang, J. S., Light‐and Redox‐Gated Molecular Brakes Consisting of a Pentiptycene Rotor and an Indole Pad. J. Chin. Chem. Soc. 2014, 61 (5), 507-516.
40. (a) Hart, H.; Bashir-Hashemi, A.; Luo, J.; Meador, M. A., Iptycenes: extended triptycenes. Tetrahedron 1986, 42 (6), 1641-1654; (b) Shahlai, K.; Hart, H., Synthesis of supertriptycene and two related iptycenes. J. Org. Chem. 1991, 56 (24), 6905-6912; (c) Hart, H.; Shamouilian, S.; Takehira, Y., Generalization of the triptycene concept. Use of diaryne equivalents in the synthesis of iptycenes. J. Org. Chem. 1981, 46 (22), 4427-4432; (d) Yang, J.-S.; Swager, T. M., Fluorescent Porous Polymer Films as TNT Chemosensors:  Electronic and Structural Effects. J. Am. Chem. Soc. 1998, 120 (46), 11864-11873.
41. Yang, J.-S.; Ko, C.-W., Pentiptycene Chemistry:  New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2006, 71 (2), 844-847.
42. Yang, J.-S.; Yan, J.-L.; Jin, Y.-X.; Sun, W.-T.; Yang, M.-C., Synthesis of new halogenated pentiptycene building blocks. Org. Lett. 2009, 11 (6), 1429-1432.
43. (a) Kundu, S. K.; Tan, W. S.; Yan, J.-L.; Yang, J.-S., Pentiptycene Building Blocks Derived from Nucleophilic Aromatic Substitution of Pentiptycene Triflates and Halides. J. Org. Chem. 2010, 75 (13), 4640-4643; (b) Tan, W. S.; Kao, C. Y.; Yang, J. S., Synthesis of Triptycene and Pentiptycene Halides via Nucleophilic Aromatic Substitution of Triflate Precursors. J. Chin. Chem. Soc. 2012, 59 (3), 399-406.
44. Yang, J.-S.; Yan, J.-L., Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem. Commun. 2008, (13), 1501-1512.
45. Zhu, Z.; Swager, T. M., Conjugated polymers containing 2, 3-dialkoxybenzene and iptycene building blocks. Org. Lett. 2001, 3 (22), 3471-3474.
46. Annunziata, R.; Benaglia, M.; Cinquini, M.; Raimondi, L.; Cozzi, F., A molecular gate: control of free intramolecular rotation by application of an external signal. J. Phys. Org. Chem. 2004, 17 (9), 749-751.
47. Yang, J.-S.; Huang, Y.-T.; Ho, J.-H.; Sun, W.-T.; Huang, H.-H.; Lin, Y.-C.; Huang, S.-J.; Huang, S.-L.; Lu, H.-F.; Chao, I., A pentiptycene-derived light-driven molecular brake. Org. Lett. 2008, 10 (11), 2279-2282.
48. Sun, W. T.; Huang, Y. T.; Huang, G. J.; Lu, H. F.; Chao, I.; Huang, S. L.; Huang, S. J.; Lin, Y. C.; Ho, J. H.; Yang, J. S., Pentiptycene‐Derived Light‐Driven Molecular Brakes: Substituent Effects of the Brake Component. Chem. Eur. J. 2010, 16 (38), 11594-11604.
49. Chen, Y. C.; Sun, W. T.; Lu, H. F.; Chao, I.; Huang, G. J.; Lin, Y. C.; Huang, S. L.; Huang, H. H.; Lin, Y. D.; Yang, J. S., A Pentiptycene‐Derived Molecular Brake: Photochemical E→ Z and Electrochemical Z→ E Switching of an Enone Module. Chem. Eur. J. 2011, 17 (4), 1193-1200.
50. Tan, W. S.; Chuang, P. Y.; Chen, C. H.; Prabhakar, C.; Huang, S. J.; Huang, S. L.; Liu, Y. H.; Lin, Y. C.; Peng, S. M.; Yang, J. S., Light‐Gated Molecular Brakes Based on Pentiptycene‐Incorporated Azobenzenes. Chem. Asian J. 2015, 10 (4), 989-997.
51. Sun, W.-T.; Huang, G.-J.; Huang, S.-L.; Lin, Y.-C.; Yang, J.-S., A Light-Gated Molecular Brake with Antilock and Fluorescence Turn-On Alarm Functions: Application of Singlet-State Adiabatic Cis→ Trans Photoisomerization. J. Org. Chem. 2014, 79 (13), 6321-6325.
52. Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Gavin Tsai, H.-H.; Lee, G.-H.; Peng, S.-M., Probing the Intrachain and Interchain Effects on the Fluorescence Behavior of Pentiptycene-Derived Oligo(p-phenyleneethynylene)s. J. Am. Chem. Soc. 2006, 128 (43), 14109-14119.
53. Zhang, X.; Han, J.-B.; Li, P.-F.; Ji, X.; Zhang, Z., Improved, Highly Efficient, and Green Synthesis of Bromofluorenones and Nitrofluorenones in Water. Synthetic. Commun® 2009, 39 (21), 3804-3815.
54. Andrievsky, A. M.; Gorelik, M. V., Competition of Aromatic Bromination and Nitration in Concentrated Sulfuric Acid. SciRes. 2013.
55. Abdel-Mottaleb, M., Fluorescence quantum yield and free rotor effect. Laser. Chem. 1984, 4, 305-310.
56. Law, K., Fluorescence probe for microenvironments: anomalous viscosity dependence of the fluorescence quantum yield of p-N, N-dialkylaminobenzylidenemalononitrile in 1-alkanols. Chem. Phys. Lett. 1980, 75 (3), 545-549.
57. Kenney-Wallace, G., Picosecond molecular relaxations: the role of the fluid in electron solvation. Can. J. Chem. 1977, 55 (11), 2009-2016.
58. Loutfy, R. O.; Arnold, B. A., Effect of viscosity and temperature on torsional relaxation of molecular rotors. J. Phys. Chem. 1982, 86 (21), 4205-4211.
59. Haidekker, M.; Brady, T.; Lichlyter, D.; Theodorakis, E., Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg. Chem. 2005, 33 (6), 415-425.
60. Kuimova, M. K.; Yahioglu, G.; Levitt, J. A.; Suhling, K., Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J. Am. Chem. Soc. 2008, 130 (21), 6672-6673.
61. Borst, J. W.; Hink, M. A.; van Hoek, A.; Visser, A. J., Effects of refractive index and viscosity on fluorescence and anisotropy decays of enhanced cyan and yellow fluorescent proteins. J. Fluoresc. 2005, 15 (2), 153-160.
62. Levitt, J. A.; Kuimova, M. K.; Yahioglu, G.; Chung, P.-H.; Suhling, K.; Phillips, D., Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging†. J. Phys. Chem. C 2009, 113 (27), 11634-11642.
63. Haidekker, M. A.; Brady, T. P.; Lichlyter, D.; Theodorakis, E. A., A ratiometric fluorescent viscosity sensor. J. Am. Chem. Soc. 2006, 128 (2), 398-399.
64. Aminabhavi, T. M.; Gopalakrishna, B., Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40 (4), 856-861.
65. Alkindi, A. S.; Al-Wahaibi, Y. M.; Muggeridge, A. H., Physical properties (density, excess molar volume, viscosity, surface tension, and refractive index) of ethanol+ glycerol. J. Chem. Eng. Data 2008, 53 (12), 2793-2796.
66. Jensen, N., Tryptamines as Ligands and Modulators of the Serotonin 5-HT2A Receptor. 2004.
67. Reith, B.; Strating, J.; Van Leusen, A., Sulfonylation of alkylidene-and arylidenephosphoranes. An unexpected rearrangement. J. Org. Chem. 1974, 39 (18), 2728-2736.
68. Pérez-Trujillo, M.; Maestre, I.; Jaime, C.; Alvarez-Larena, A.; Piniella, J. F.; Virgili, A., Enantioselective preparation and structural and conformational analysis of the chiral solvating agent α, α′-bis (trifluoromethyl)-1, 8-anthracenedimethanol. Tetrahedron: Asymmetry 2005, 16 (18), 3084-3093.
69. Sharma, A. K.; Subramani, A. V.; Gorman, C. B., Efficient synthesis of halo indanones via chlorosulfonic acid mediated Friedel–Crafts cyclization of aryl propionic acids and their use in alkylation reactions. Tetrahedron 2007, 63 (2), 389-395.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54335-
dc.description.abstract五苯荑分子具有三度空間、結構剛硬且具有高對稱性的性質,此外,結構中具有U-及V-形凹槽,所以插入〝栓子〞時就可以達到分子煞車的效果。本篇論文主要合成並探討有別於以往實驗室以單軸為設計概念的分子煞車系統,以五苯荑分子作為轉子(rotor);stiff-stilbene 兼具定子(stator) 及煞車器(brake-unit) 兩角色,設計出雙軸分子煞車系統化合物3。
我們利用氫譜與碳譜VT-NMR來探討五苯荑分子於室溫轉動快慢,並利用譜線形狀分析(LSA) 得到順式組態轉動的動力學參數。(Z)-3 中轉子與煞車器之間由於立體障礙造成旋轉速度減緩,達到煞車啟動(brake-on);(E)-3 的X-ray單晶顯示轉子與煞車器之間不具有立體障礙,所以轉子可以自由旋轉,為煞車關閉(brake-off) 的狀態。另外,化合物3 於正己烷溶劑中的光化學控制達轉換效率為26 %,具有可逆性及重複性。化合物 3 除了具分子煞車的功能外,分子也具有聚集誘導放光(AIE) 效應。我們利用(E)-3 及 (Z)-3 來證實五苯荑分子旋轉的快慢將會影響其放光程度,亦即我們所設計的分子煞車系統的放光具有自由旋轉子效應(free rotor effect)。
zh_TW
dc.description.abstractMolecular brake is a type of molecular devices that could reversibly slow down the motions of a molecular subunit through external stimuli. We have reported a series of
light- and electrochemically driven molecular brakes using a rigid and H-shaped pentiptycene group as a four-bladed rotor. In this thesis, we designed molecule 3, which consists of a pentiptycene rotor, an indane brake-unit, and an indane stator, as a new generation of light-gated molecular brake.
Experimental results show that rotation of the pentiptycene rotor is fast in (E)-3 but slow in (Z)-3 at 298 K. Furthermore, compound 3 can be reversibly and repetitive switched by light with a net efficiency of 26 % in n-hexane.
In addition, compound 3 has the properties of aggregation-induced emission (AIE-effect). A combination of the luminescence and brake properties allows one to prove the concept of free rotor effect on photoluminescence, which cannot be achieved with our previous molecular brake systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:51:07Z (GMT). No. of bitstreams: 1
ntu-104-R02223147-1.pdf: 20738956 bytes, checksum: 899f30ffb64aec2f1229e2890a83f0cc (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝誌 ii
中文摘要 v
Abstract vi
目錄 vii
圖目錄 xi
表目錄 xvii
附圖目錄 xviii
第一章 前言 1
1-1 分子機械 (Molecular machines)1 1
1-2 人造分子機械 3
1-2-1 人造分子機械之要素 3
1-2-2 人造分子機械的分類 4
1-2-2.1分子馬達 (molecular motor) 6
1-2-2.1.1布朗運動 (Brownian motion) 6
1-2-2.1.2非布朗運動 (non-Brownian motion) 6
1-2-2.2分子開關 (molecular switch) 9
1-2-2.2.1分子開關-旋轉運動 9
1-2-2.2.2分子開關-線性運動 12
1-3 光學異構化作用 (photoisomerization) 13
1-3-1 單向異構化過程 (process of one-way isomerization)15a,15b 16
1-3-2 雙鍵異構化機制 21
1-3-2.1 OBF (one-bond flip mechanism)23 21
1-3-2.2 HT (hula-twist mechanism) 21
1-3-2.3 BP (bicycle-pedal mechanism)24 23
1-3-3 二苯乙烯光異構化25 25
1-3-4 Stiff-stilbene光異構化27 26
1-4 Stiff-stilbene的特徵 (characteristics of stiff-stilbene)29 29
1-4-1 分子結構 (molecular structure) 29
1-4-2 分子異構化之特性 31
1-4-3 應用 (application)32 35
1-5 聚集誘導發光 (aggregation-induced emission, AIE)33 37
1-6動力學NMR (Dynamic NMR, DNMR)38 41
1-6-1 譜線形狀分析 (line-shape analysis, LSA) 42
1-6-2 交換訊號光譜圖 (2D-exchange spectroscopy, 2D-EXSY) 44
1-7 苯荑 (iptycene) 分子介紹 47
1-7-1 苯荑分子的結構與命名 47
1-7-2 五苯荑分子 48
1-7-3 五苯荑分子之官能基化 48
1-7-4 五苯荑分子的應用44 51
1-7-4.1 作為化學感應分子40d 51
1-7-4.2 應用在有機硫醇的金屬表面45 52
1-7-4.3 五苯荑分子之分子機械 53
1-8 研究動機 59
第二章 結果與討論 61
2-1 化合物之合成 61
2-1-1 目標化合物之逆合成分析 61
2-1-2 目標分析物之合成 63
2-1-3 目標分析物的瓶頸 70
2-2 化合物的結構與特性 70
2-2-1 化合物(E)-3 之NMR圖譜結構鑑定與標定 71
2-2-2 VT-NMR 預測化合物(E)-3 之旋轉運動 76
2-2-3 化合物(E)-3 之X-ray單晶繞射結構 79
2-2-4 化合物(Z)-3 之NMR圖譜結構鑑定與標定 80
2-2-5 VT-NMR 測量化合物(Z)-3 之旋轉運動 84
2-3 化合物 3 的光學性質 91
2-3-1 化合物 3 之吸收光譜圖 91
2-3-2 化合物 3 之光異構化性質 92
2-3-3 化合物 3 之整體轉換 96
2-4 化合物 3 之AIE 效應 98
2-4-1 化合物3之放光光譜圖 98
2-4-2 AIE實驗結果與討論 102
2- 5 化合物 3 之自由旋轉子效應 (free rotor effect) 105
2-5-1自由旋轉子效應 (free rotor effect) 105
2-5-2設計概念 109
2-5-3 證明自由旋轉效應之操作環境及樣品配置 110
2-5-4 自由旋轉效應之實驗結果與討論 111
第三章 結論 117
第四章 實驗部分 118
4-1 實驗藥品與溶劑 118
表4- 1 實驗所使用之藥品 118
4-2 實驗儀器及設定與操作 122
4-3 實驗黏滯度參數 65 128
4-4實驗步驟 129
4-4-1旋轉子─五苯荑分子的合成 129
4-4-2化合物1及2之煞車器 (brake-unit) ─ 金鋼烷分子的合成 131
4-4-3化合物1合成 132
4-4-4化合物2合成 137
4-4-5化合物3合成 140
文獻資料 145
附圖 155
dc.language.isozh-TW
dc.title五苯荑衍生之新型光控分子煞車系統zh_TW
dc.titleA New Generation of Pentiptycene-Derived Light-Gated Molecular Brakesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林英智(Ying-Chih Lin),鄭原忠(Yuan-Chung Cheng),趙奕姼(Ito Chao)
dc.subject.keyword分子煞車,五苯荑,自由旋轉子效應,zh_TW
dc.subject.keywordmolecular brake,pentiptycene,free-rotor effect,en
dc.relation.page206
dc.rights.note有償授權
dc.date.accepted2015-07-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
20.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved