Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54330
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorShang-Yin Chiangen
dc.contributor.author江尚殷zh_TW
dc.date.accessioned2021-06-16T02:50:51Z-
dc.date.available2020-07-20
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-14
dc.identifier.citationAl-Salihi, M.A., Herhaus, L., Macartney, T., and Sapkota, G.P. (2012). USP11 augments TGFbeta signalling by deubiquitylating ALK5. Open biology 2, 120063.
Anckar, J., and Bonni, A. (2015). Regulation of neuronal morphogenesis and positioning by ubiquitin-specific proteases in the cerebellum. PloS one 10, e0117076.
Angevine Jun, J.B., and Sidman, R.L. (1961). Autoradiographic Study of Cell Migration during Histogenesis of Cerebral Cortex in the Mouse. Nature 192, 766-768.
Bain, G., Kitchens, D., Yao, M., Huettner, J.F., and Gottlieb, D.I. (1995). Embryonic Stem Cells Express Neuronal Properties in Vitro. Developmental biology 168, 342-357.
Bielle, F., Griveau, A., Narboux-Neme, N., Vigneau, S., Sigrist, M., Arber, S., Wassef, M., and Pierani, A. (2005). Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nature neuroscience 8, 1002-1012.
Caviness, V.S. (1982). Neocortical histogenesis in normal and reeler mice: A developmental study based upon [3H]thymidine autoradiography. Developmental Brain Research 4, 293–302.
Clerici, M., Luna-Vargas, M.P., Faesen, A.C., and Sixma, T.K. (2014). The DUSP-Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nature Communications 5, 5399.
Cobos, I., Puelles, L., and Martinez, S. (2001). The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Developmental biology 239, 30-45.
Cummings, B.J., Uchida, N., Tamaki, S.J., Salazar, D.L., Hooshmand, M., Summers, R., Gage, F.H., and Anderson, A.J. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America 102, 14069-14074.
Deshaies, R.J., and Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annual review of biochemistry 78, 399-434.
Doerks, T., Copley, R.R., Schultz, J., Ponting, C.P., and Bork, P. (2002). Systematic identification of novel protein domain families associated with nuclear functions. Genome research 12, 47-56.
Eichhorn, P.J., Rodon, L., Gonzalez-Junca, A., Dirac, A., Gili, M., Martinez-Saez, E., Aura, C., Barba, I., Peg, V., Prat, A., et al. (2012). USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nature medicine 18, 429-435.
Elliott, P.R., Liu, H., Pastok, M.W., Grossmann, G.J., Rigden, D.J., Clague, M.J., Urbe, S., and Barsukov, I.L. (2011). Structural variability of the ubiquitin specific protease DUSP-UBL double domains. FEBS letters 585, 3385-3390.
Englund, C., Fink, A., Lau, C., Pham, D., Daza, R.A., Bulfone, A., Kowalczyk, T., and Hevner, R.F. (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. The Journal of Neuroscience 25, 247-251.
Faronato, M., Patel, V., Darling, S., Dearden, L., Clague, M.J., Urbe, S., and Coulson, J.M. (2013). The deubiquitylase USP15 stabilizes newly synthesized REST and rescues its expression at mitotic exit. Cell Cycle 12, 1964-1977.
Goぴ tz, M., Hartfuss, E., and Malatesta, P. (2002). Radial glial cells as neuronal precursors: A new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Research Bulletin 57, 777-788.
Gorski, J.A., Talley, T., Qiu, M., Puelles, L., Rubenstein, J.R., and Jones, K.R. (2002). Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage. The Journal of Neuroscience 22, 6309-6314.
Hansen, D.V., Lui, J.H., Parker, P.R., and Kriegstein, A.R. (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554-561.
Haubensak, W., Attardo, A., Denk, W., and Huttner, W.B. (2004). Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proceedings of the National Academy of Sciences of the United States of America 101, 3196-3201.
Huang, Z., Wu, Q., Guryanova, O.A., Cheng, L., Shou, W., Rich, J.N., and Bao, S. (2011). Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nature cell biology 13, 142-152.
Ideguchi, H., Ueda, A., Tanaka, M., Yang, J., Tsuji, T., Ohno, S., Hagiwara, E., Aoki, A., and Ishigatsubo, Y. (2002). Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM. Biochemical Journal 367, 87-95.
Imayoshi, I., Isomura, A., Harima, Y., Kawaguchi, K., Kori, H., Miyachi, H., Fujiwara, T., Ishidate, F., and Kageyama, R. (2013). Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors. Science 342, 1203-1208.
Itoh, M., Kim, C.H., Palardy, G., Oda, T., Jiang, Y.J., Maust, O., Yeo, S.Y., Lorick, K., Wright, G.J., Ariza-McNaughton, L., et al. (2003). Mind Bomb Is a Ubiquitin Ligase that Is Essential for Efficient Activation of Notch Signaling by Delta. Developmental Cell 4, 67–82.
Joannides, A.J., Fiore-Heriche, C., Battersby, A.A., Athauda-Arachchi, P., Bouhon, I.A., Williams, L., Westmore, K., Kemp, P.J., Compston, A., Allen, N.D., et al. (2007). A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem cells 25, 731-737.
Kamal, M.M., Sathyan, P., Singh, S.K., Zinn, P.O., Marisetty, A.L., Liang, S., Gumin, J., El-Mesallamy, H.O., Suki, D., Colman, H., et al. (2012). REST regulates oncogenic properties of glioblastoma stem cells. Stem cells 30, 405-414.
Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., N., S.I.,, and Sasai, Y. (2000). Induction of Midbrain Dopaminergic Neurons from ES Cells by Stromal Cell–Derived Inducing Activity. Neuron 28, 31–40.
Komander, D., Clague, M.J., and Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nature reviews Molecular cell biology 10, 550-563.
Komander, D., and Rape, M. (2012). The ubiquitin code. Annual review of biochemistry 81, 203-229.
Lakoma, J., Garcia-Alonso, L., and Luque, J.M. (2011). Reelin sets the pace of neocortical neurogenesis. Development 138, 5223-5234.
LaMonica, B.E., Lui, J.H., Hansen, D.V., and Kriegstein, A.R. (2013). Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nature Communications 4, 1665.
Lin, C.H., Chang, H.S., and Yu, W.C. (2008). USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity. The Journal of biological chemistry 283, 15681-15688.
Lindvall, O., and Kokaia, Z. (2006). Stem cells for the treatment of neurological disorders. Nature 441, 1094-1096.
Lindvall, O., Kokaia, Z., and Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders-how to make it work. Nature medicine 10 Suppl, S42-50.
Louvi, A., and Artavanis-Tsakonas, S. (2006). Notch signalling in vertebrate neural development. Nature reviews Neuroscience 7, 93-102.
Maertens, G.N., El Messaoudi-Aubert, S., Elderkin, S., Hiom, K., Peters, G. (2010). Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. The EMBO journal 29, 2553-2565.
Malatesta, P., Hartfuss, E., and Götz, M. (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253-5263.
Marín, O., and Rubenstein, J.L.R. (2001). A long, remarkable journey: Tangential migration in the telencephalon. Nature Reviews Neuroscience 2, 780-790.
McCarthy, M., Turnbull, D.H., Walsh, C.A., and Fishell, G. (2001). Telencephalic Neural Progenitors Appear To Be Restricted to Regional and Glial Fates before the Onset of Neurogenesis. The Journal of Neuroscience 21, 6772–6781.
Mizutani, K., Yoon, K., Dang, L., Tokunaga, A., and Gaiano, N. (2007). Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351-355.
Murry, C.E., and Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661-680.
Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K., and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786.
Noctor, S.C., Flint, A.C., Weissman, T.A., Dammerman, R.S., and Kriegstein, A.R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature 409.
Noctor, S.C., Martinez-Cerdeno, V., Ivic, L., and Kriegstein, A.R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature neuroscience 7, 136-144.
Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M., and McKay, R.D. (1996). Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mechanisms of Development 59, 89-102.
Parnavelas, J.G. (2000). The origin and migration of cortical neurones: new vistas. Trends in neurosciences 23, 126–131.
Perrier, A.L., Tabar, V., Barberi, T., Rubio, M.E., Bruses, J., Topf, N., Harrison, N.L., and Studer, L. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America 101, 12543-12548.
Rakic, P. (1971). Guidance of neurons migrating to the fetal monkey neocortex. Brain Research 33, 471-476
Regad, T., Bellodi, C., Nicotera, P., and Salomoni, P. (2009). The tumor suppressor Pml regulates cell fate in the developing neocortex. Nature neuroscience 12, 132-140.
Sansom, S.N., Griffiths, D.S., Faedo, A., Kleinjan, D.J., Ruan, Y., Smith, J., van Heyningen, V., Rubenstein, J.L., and Livesey, F.J. (2009). The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS genetics 5, e1000511.
Schoenfeld, A.R., Apgar, S., Dolios, G., Wang, R., Aaronson, S. A. (2004). BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Molecular and cellular biology 24, 7444-7455.
Setsuie, R., and Wada, K. (2007). The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochemistry international 51, 105-111.
Seuntjens, E., Nityanandam, A., Miquelajauregui, A., Debruyn, J., Stryjewska, A., Goebbels, S., Nave, K.A., Huylebroeck, D., and Tarabykin, V. (2009). Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nature neuroscience 12, 1373-1380.
Shimojo, H., Ohtsuka, T., and Kageyama, R. (2008). Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52-64.
Shinozaki, K., Miyagi, T., Yoshida, M., Miyata, T., Ogawa, M., Aizawa, S., and Suda, Y. (2002). Absence of Cajal-Retzius cells and subplate neurons associated with defects of tangential cell migration from ganglionic eminence in Emx1/2 double mutant cerebral cortex. Development 129, 3479-3492.
Smart, I.H., and McSherry, G.M. (1982). Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. Journal of Anatomy 134, 415-442.
Song, E.J., Werner, S.L., Neubauer, J., Stegmeier, F., Aspden, J., Rio, D., Harper, J.W., Elledge, S.J., Kirschner, M.W., and Rape, M. (2010). The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes & development 24, 1434-1447.
Sun, W., Tan, X., Shi, Y., Xu, G., Mao, R., Gu, X., Fan, Y., Yu, Y., Burlingame, S., Zhang, H., et al. (2010). USP11 negatively regulates TNFalpha-induced NF-kappaB activation by targeting on IkappaBalpha. Cellular signalling 22, 386-394.
Suter, D.M., Tirefort, D., Julien, S., and Krause, K.H. (2009). A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem cells 27, 49-58.
Swanson, D.A., Freund, C.L., Ploder, L., McInnes, R.R., and Valle, D. (1996). A ubiquitin C-terminal hydrolase gene on the proximal short arm of the X chromosome: implications for X-linked retinal disorders. Human Molecular Genetics 5, 533-538.
Todi, S.V., and Paulson, H.L. (2011). Balancing act: deubiquitinating enzymes in the nervous system. Trends in neurosciences 34, 370-382.
Tuoc, T.C., and Stoykova, A. (2008). Trim11 modulates the function of neurogenic transcription factor Pax6 through ubiquitin-proteosome system. Genes & development 22, 1972-1986.
Villar-Cervino, V., and Marin, O. (2012). Cajal-Retzius cells. Current biology : CB 22, R179.
Wang, X., Tsai, J.W., LaMonica, B., and Kriegstein, A.R. (2011). A new subtype of progenitor cell in the mouse embryonic neocortex. Nature neuroscience 14, 555-561.
Wernig, M., Zhao, J.P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., Broccoli, V., Constantine-Paton, M., Isacson, O., and Jaenisch, R. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America 105, 5856-5861.
Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385-397.
Wu, H.C., Lin, Y.C., Liu, C.H., Chung, H.C., Wang, Y.T., Lin, Y.W., Ma, H.I., Tu, P.H., Lawler, S.E., and Chen, R.H. (2014). USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nature Communications 5.
Xueming, Q.S., Goderie, S.K., He W. , Capela A. , Davis A. A. , and S., T. (2000). Timing of CNS Cell Generation: A Programmed Sequence of Neuron and Glial Cell Production from Isolated Murine Cortical Stem Cells. Neuron 28, 69-80.
Yamaguchi, T., Kimura, J., Miki, Y. ,Yoshida, K. (2007). The deubiquitinating enzyme USP11 controls an IkappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha). The Journal of biological chemistry 282, 33943-33948.
Yoon, K., and Gaiano, N. (2005). Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nature neuroscience 8, 709-715.
Yuasa-Kawada, J., Kinoshita-Kawada, M., Wu, G., Rao, Y., and Wu, J.Y. (2009). Midline crossing and Slit responsiveness of commissural axons require USP33. Nature neuroscience 12, 1087-1089.
Zhang, L., Zhou, F., Garcia de Vinuesa, A., de Kruijf, E.M., Mesker, W.E., Hui, L., Drabsch, Y., Li, Y., Bauer, A., Rousseau, A., et al. (2013). TRAF4 promotes TGF-beta receptor signaling and drives breast cancer metastasis. Molecular cell 51, 559-572.
Zhao, X., D, D.A., Lim, W.K., Brahmachary, M., Carro, M.S., Ludwig, T., Cardo, C.C., Guillemot, F., Aldape, K., Califano, A., et al. (2009). The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Developmental Cell 17, 210-221.
Zhao, X., Heng, J.I., Guardavaccaro, D., Jiang, R., Pagano, M., Guillemot, F., Iavarone, A., and Lasorella, A. (2008). The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature cell biology 10, 643-653.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54330-
dc.description.abstract在降解體路徑中,泛素藉由E3泛素連結酶的作用連接到目標蛋白質上,亦可被去泛素酶將泛素移除,雖然許多E3泛素連結酶已知在神經發育中扮演重要的角色,但對於去泛素酶了解甚少。在先前對於去泛素酶中USP家族的一員:USP11的研究中,我們實驗室發現抑制USP11有助於Notch對增加神經膠瘤初始細胞展現幹細胞特性的影響,有鑑於Notch訊息在控制神經幹細胞(stem cells)或神經前驅細胞的自我更新以及分化有重要的影響,我們進一步研究USP11在神經生成中的表現和功能。藉由原位雜合技術,我們發現USP11主要表現在發育中的中樞神經系統,其中包含小鼠胚胎期E12.5, E14.5和E17.5新皮層區的皮層板內。利用小鼠胚胎幹細胞進行體外誘導神經分化的技術,我們發現USP11隨著幹細胞分化成神經細胞表現量明顯上升,此外也發現在幹細胞中過度表現USP11會造成神經前驅細胞提早分化成神經細胞。相反地,當剔除USP11使得神經前驅細胞分化成神經細胞的能力受損。另一個有趣的發現,表現過多無催化活性的USP11突變體並不會促進神經前驅細胞分化成神經細胞,反而導致分化成神經膠細胞。透過從子宮基因剔除技術得到的活體結果,更加證實了體外實驗的結果。總之,我們的研究確認USP11對於神經命運的決定上扮演關鍵角色,後續我們的目標為找出USP11調控此功能的受質。zh_TW
dc.description.abstractIn the ubiquitin-proteasome pathway, ubiquitin is conjugated to the target proteins by ubiquitin E3 ligases and removed by deubiquitinating enzymes (DUBs). Although a number of E3 ligases are known to play roles in neural development, little is known about the function of DUBs in this process. Previous studies in our laboratory revealed that the repression of USP11, a USP family of DUB, contributes to the effect of Notch on potentiating the stemness properties of glioma-initiating cells. Given the importance of Notch signaling in controlling neural stem/progenitor cells self-renewal and differentiation, we investigated the expression and function of USP11 during neurogenesis. By in situ hybridization, we found that USP11 is most abundantly expressed in developing central nervous system, including cells located in cortical plate of neocortex in E12.5, E14.5 and E17.5 of mouse embryos. Using an ex vivo neural differentiation protocol of mouse embryonic stem (ES) cells, we found that USP11 expression is up-regulated during ES cells differentiation into neural progenitor cells (NPC) and further up-regulated during NPC differentiation into neurons. Consistent with this finding, overexpression of USP11 in ES cells leads to a precocious NPC and neuron differentiation, as evident by earlier induction of NPC and neuron markers. In contrast, depletion of USP11 attenuates NPC differentiation and impairs neuron differentiation. Interestingly, overexpression of a catalytically inactive mutant of USP11 does not promote NPC and neuron differentiation, but leads to an induction of glial cell fate. These ex vivo data were further verified by in vivo studies with an in uterus gene delivery technique. Together, our data identify a critical role of USP11 in neural fate determination. Future study will aim to identify USP11 substrate that mediates this function.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:50:51Z (GMT). No. of bitstreams: 1
ntu-104-R02b46010-1.pdf: 2690531 bytes, checksum: cecbb73476fea1aca9c88d4f3478de39 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContents
口試論文審定書......................................................i
誌謝....................................................................................ii
摘要..................................................................................iii
Abstract..............................................................................iv
I. Introduction......................................................................1
1. Neurogenesis in vertebrate central nervous system............................2
1.1 Early neural development.................................................2
1.2 Corticogenesis in mammals...............................................3
2. Ubiquitin-Proteasomal system (UPS) .....................................5
2.1 Regulation of neurogenesis by ubiquitination.............................6
3. Neural Differentiation of Embryonic stem cell.................................8
3.1 Clinical cell-based treatment of neurological disorders...................9
4. USP11..........................................................................10
II. Material and Methods.......................................................13
Cell culture.......................................................................14
Plasmids..........................................................................14
Lentivirus infection...............................................................14
Antibodies and reagents..........................................................15
In situ hybridization..............................................................15
Ex vivo neural differentiation....................................................16
Western blot......................................................................17
Real-time RT-PCR analysis.......................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,..18
Immunofluorescence staining....................................................18
In utero electroporation...........................................................18
III. Result...........................................................................20
USP11 is highly expressed in mouse embryo. ..................................21
USP11 expression coincides with the development of mouse neocortex. ......21
Establishment of a protocol for ex vivo neuron induction using
mouse ES cells...................................................................22
USP11 knockdown impairs ES cells differentiation towards neuron and
oligodendrocyte lineages. .......................................................23
USP11 overexpression causes a precocious ES differentiation towards
neuron lineages, whereas USP11 mutant promotes glial cell fate................24
Overexpression of USP11 promotes NPC differentiation in vivo. ..............26
IV. Discussion ......................................................................28
V.I References .....................................................................34
VI. Figures ..........................................................................43
dc.language.isozh-TW
dc.subject神經命運zh_TW
dc.subject分化zh_TW
dc.subject小鼠胎胚幹?胞zh_TW
dc.subject分化zh_TW
dc.subjectUSP11zh_TW
dc.subject小鼠胎胚幹?胞zh_TW
dc.subject神經命運zh_TW
dc.subjectUSP11zh_TW
dc.subjectneural fateen
dc.subjectUSP11en
dc.subjectneural fateen
dc.subjectdifferentiationen
dc.subjectmouse ES cellsen
dc.subjectUSP11en
dc.subjectdifferentiationen
dc.subjectmouse ES cellsen
dc.title探討USP11在神經細胞分化決定上扮演的角色zh_TW
dc.titleUSP11 is required for neural fate determinationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭紘志(Hung-Chih Kuo),周申如(Shen-Ju Chou),陳俊安(Jun-An Chen)
dc.subject.keywordUSP11,神經命運,分化,小鼠胎胚幹?胞,zh_TW
dc.subject.keywordUSP11,neural fate,differentiation,mouse ES cells,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2015-07-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved