Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54329
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊哲人
dc.contributor.authorPo-Yen Tungen
dc.contributor.author童博彥zh_TW
dc.date.accessioned2021-06-16T02:50:48Z-
dc.date.available2018-07-23
dc.date.copyright2015-07-23
dc.date.issued2015
dc.date.submitted2015-07-14
dc.identifier.citation[1] C. Garcia-Mateo, F.G. Caballero, H. Bhadeshia, Isij International, 43 (2003) 1821-1825.
[2] W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, S.Y. Zhang, Acta Materialia, 61 (2013) 4142-4154.
[3] G.V. Kurdjumov, G. Sachs, Z.Phys, 64 (1930) 325.
[4] Z. Nishiyama, Sci. Rep. Tohoku Nuiv, 64 (1934) 325.
[5] S.B. Singh, H. Bhadeshia, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 245 (1998) 72-79.
[6] H.K.D.H. Bhadeshia, Bainite in steels : transformations, microstructure and properties, IOM Communications, London, 2001.
[7] E. Swallow, H. Bhadeshia, Mater. Sci. Technol., 12 (1996) 121-125.
[8] L.C. Chang, H. Bhadeshia, Mater. Sci. Technol., 12 (1996) 233-236.
[9] H. Bhadeshia, D.V. Edmonds, Metallurgical Transactions a-Physical Metallurgy and Materials Science, 10 (1979) 895-907.
[10] H. Bhadeshia, Acta Metallurgica, 29 (1981) 1117-1130.
[11] K.R. Olson, P.K. Roy, T.K. Ghosh, J.S.D. Munshi, Anat. Rec., 238 (1994) 92-107.
[12] G.B. Olson, M. Cohen, Jom-Journal of Metals, 28 (1976) A15-A15.
[13] H.K.D.H. Bhadeshia, Int. Conf. on Phase Transformation in Ferrous Alloys, (1984) 335-340.
[14] G.B. Olson, M. Cohen, Scripta Metallurgica, 11 (1977) 345-347.
[15] H. Bhadeshia, D.V. Edmonds, Metal Science, 17 (1983) 411-419.
[16] E. Kozeschnik, H.K.D.H. Bhadeshia, Mater. Sci. Technol., 24 (2008) 343-347.
[17] C. Garcia-Mateo, M. Peet, F.G. Caballero, H. Bhadeshia, Mater. Sci. Technol., 20 (2004) 814-818.
[18] C. Garcia-Mat-Feo, F.G. Caballero, Isij International, 45 (2005) 1736-1740.
[19] A.G. Allten, P. Payson, Transactions of the American Society for Metals, 45 (1953) 498-532.
[20] C. Garcia-Mateo, F.G. Caballero, H. Bhadeshia, Journal De Physique Iv, 112 (2003) 285-288.
[21] F.G. Caballero, H. Bhadeshia, Current Opinion in Solid State & Materials Science, 8 (2004) 251-257.
[22] H. Huang, M.Y. Sherif, P.E.J. Rivera-Diaz-del-Castillo, Acta Materialia, 61 (2013) 1639-1647.
[23] F.G. Caballero, H. Bhadeshia, K.J.A. Mawella, D.G. Jones, P. Brown, Mater. Sci. Technol., 17 (2001) 512-516.
[24] C. Garcia-Mateo, F.G. Caballero, H. Bhadeshia, Mechanical properties of low-temperature bainite, in: J.M. RodriguezIbabe, I. Gutierrez, B. Lopez, I. IzaMendia (Eds.) Microalloying for New Steel Processes and Applications, 2005, pp. 495-501.
[25] S.B. Singh, H. Bhadeshia, Mater Sci. Eng. A, 245 (1998) 72-79.
[26] N.A. Chester, H. Bhadeshia, Journal De Physique Iv, 7 (1997) 41-46.
[27] G. Langford, M. Cohen, Asm Transactions Quarterly, 62 (1969) 623-&.
[28] H.K.D.H. Bhadeshia, Mathematical modelling of weld phenomena, 3 (1997) 235-255.
[29] R.W.K. Honeycombe, H.K.D.H. Bhadeshia, Steels. Microstructure and Properties, 1995.
[30] ASTM, in, United States, 2004.
[31] Y.Z. Bao, Y. Adachi, Y. Toomine, P.G. Xu, T. Suzuki, Y. Tomota, Scripta Materialia, 53 (2005) 1471-1476.
[32] E.J. Pavlina, C.J.V. Tyne, Materials Engineering and Performance, 17 (2008) 888-893.
[33] C.H. Young, H.K.D.H. Bhadeshia, Mater Sci Technol, 10 (1994) 209-214.
[34] W. Gong, Y. Tomota, M.S. Koo, Y. Adachi, Scripta Materialia, 63 (2010) 819-822.
[35] B. HKDH., Geometry of crystals, Institute of Materials, London, 2001.
[36] S. Chatterjee, H.S. Wang, J.R. Yang, H. Bhadeshia, Mater. Sci. Technol., 22 (2006) 641-644.
[37] J.J. Jonas, Y.L. He, S. Godet, Scripta Materialia, 52 (2005) 175-179.
[38] E. Schmid, Elektrochem Z (1931) 447.
[39] A.A. Shirzadi, H. Abreu, L. Pocock, D. Klobcar, P.J. Withers, H.K.D.H. Bhadeshia, International Journal of Materials Research, 100 (2009) 40-45.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54329-
dc.description.abstract奈米變韌鐵具有很高的潛力作為防彈材料,也因此被廣泛地研究許多年。雖然奈米變韌鐵同時具有高強度以及高伸長率,但是由於其中的塊狀沃斯田鐵的不穩定,使其為此材料嚴重的缺點。因此,在我們的研究中,主要的目的是改善材料中塊狀沃斯田鐵的性能。首先,我們引進沃斯成行製程—在等溫變韌鐵相變態之前,對材料進行低溫塑性變形—來改變傳統奈米變韌鐵的微結構。第二,我們更進一步利用EBSD技術來測量沃斯成形後塊狀沃斯田鐵的穩定性。除此之外,我們也同樣利用EBSD技術來分析殘留塊狀沃斯田鐵和變韌鐵之間的方位關係。在有沃斯成形的變韌鐵中,塊狀沃斯田鐵以及變韌鐵會同時被細化而變得均勻分布。藉由沃斯成形,被細化的塊狀沃斯田鐵也被更進一步地機械穩定。也因為沃斯成形的緣故,Shockley部分差排在滑移面上的滑動也促進了變體選擇,並利用EBSD技術測量之。zh_TW
dc.description.abstractNanostructured bainite, having high potential as the bulletproofing material, has been studied for many years. Nanostructured bainite possesses high strength, high elongation, but its low toughness due to the instability of blocky austenite is a serious disadvantage. So, the primary propose in this work is to improve the properties of blocky austenite. First, we introduce ausforming process—plastic deformation at low temperature before isothermal bainitic transformaiton—to change the microstructure of traditional nanostructured bainite. Second, we further measure the stability of blocky austenite in ausformed bainite by EBSD. Besides, the orientation relationship between blocky austenite and bainitic ferrite is analyzed by EBSD. In ausformed bainite, the blocky austenite and bainitic sheaves are simultaneously refined and well-distributed. The refined blocky austenite is further mechanical stabilized by ausforming process, which might benefit to mechanical properties. Due to ausforming process, variant selection is assisted by Shockley partial dislocations and measured by EBSD.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:50:48Z (GMT). No. of bitstreams: 1
ntu-104-R02527051-1.pdf: 28583110 bytes, checksum: f84005a273ac4bf1434f02ec67652215 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 I
中文摘要 III
ABSTRACT IV
CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES XIII
Chapter 1 General Introduction 1
Chapter 2 Literature Survey 3
2.1 Introduction of Banitic Ferrite 3
2.1.1 Morphology 3
2.1.2 Nucleation 7
2.1.3 Growth 15
2.2 Nanostructured bainitic ferrite 21
2.2.1 Introduction 21
2.2.2 Alloy Design 25
2.2.3 Mechanical Properties 26
Chapter 3 Experimental Procedures 30
3.1 Materials 30
3.2 Instruments and methods 31
3.2.1 Transmission Electron Microscope (TEM) 31
3.2.2 Scanning Electron Microscope (SEM) 32
3.2.3 Election Back-Scattered Diffraction (EBSD)32
3.2.4 Vickers Hardness Testing 32
3.3 Procedures 33
3.3.1 Non-ausformed Nanostructured Bainite 33
3.3.2 Ausformed Nanostructured Bainite 35
3.3.3 Stability of Austenite in Nanostructure Bainite35
Chapter 4 Non-Ausformed Nanostructured Bainite 37
4.1 Development of microstructure and hardness 37
4.1.1 Isothermal Transformation at 300°C in 6C1Mn 40
4.1.2 Isothermal Transformation at 300°C in 6C2Mn 40
4.1.3 Isothermal Transformation at 300°C in 6CNb 41
4.2 Thickness of Bainitic Ferrite Plates 47
4.3 Electron Microscope Images 53
4.3.1 Scanning electron microscope images 53
4.3.2 Analysis of transmission electron microscope 57
4.4 Orientation relationship 71
Chapter 5 Ausformed Nanostructured Bainite 78
5.1 Development of Microstructure and Hardness 78
5.2 Microstructure Characterization of Bainite Platelets 83
5-3 Variant selection 95
Chapter 6 Stability of Austenite in Ausformed Bainite 102
6.1 Stability of Prior Austenite 102
6.2 Thermal Stability (continuous cooling) 107
6.3 Thermal Stability (cryogenic treatment) 109
6.3.1 Non-ausformed Bainite 109
6.3.2 Ausformed Bainite 109
Chapter 7 General Conclusions 119
Future Works 121
Reference 122
dc.language.isoen
dc.title"低溫沃斯成形對Fe-0.6C-2Si-xMn (x=1, 2, wt%)合金鋼奈米變韌鐵微結構發展之影響"zh_TW
dc.titleEffects of low-temperature asuforming on the miscrostructural evolution in Fe-0.6C-2Si-xMn (x=1, 2, wt%) nanobainitic steelsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉均蔚,林新智,王星豪,黃慶淵
dc.subject.keyword低溫沃斯成形,沃斯田鐵之機械穩定,奈米變韌鐵結構,殘留塊狀沃斯田鐵,極圖,沃斯田鐵之熱穩定性,zh_TW
dc.subject.keywordlow-temperature ausforming,mechanical stabilization of austenite,nanobainite structure,retained blocky austenite,pole-figure,thermal stability of austenite,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2015-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-104-1.pdf
  Restricted Access
27.91 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved