Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54323
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林江珍
dc.contributor.authorPo-Ta Shihen
dc.contributor.author施柏達zh_TW
dc.date.accessioned2021-06-16T02:50:29Z-
dc.date.available2017-07-22
dc.date.copyright2015-07-22
dc.date.issued2015
dc.date.submitted2015-07-14
dc.identifier.citation[1] H. Kroto, J. Heath, S. O’Brien, R. Curl, R. Smalley. Nature, 1985, 318, 162.
[2] M. Dresselhaus, G. Dresselhaus, P. Eklund. San Diego: Academic Press. 1996, 15.
[3] S. Iijima, Nature, 1991, 354, 56.
[4] A. Geimandk, K. Novoselov, Nat Mater, 2007, 6, 183.
[5] P. Ajayan, Chem Rev, 1999, 99, 1787.
[6] B. Mortazavi, M. Pötschke, G. Cuniberti, Nanoscale, 2014, 6, 3344.
[7] M. Treacy, T. Ebessen, J. Gibson, Nature, 1996, 381, 678.
[8] C. Ma, W. Zhang, Y. Zhu, L. Ji, et al., Carbon, 2008, 46, 706.
[9] P. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 1994, 265, 1212.
[10] A. Jamal, R. Ali, M. Somayeh, J Macromol Sci Part B: Phys, 2007, 46, 877.
[11] H. Guo, T. Sreekumar, T. Liu, M. Minus, S. Kumar, Polymer, 2005, 46, 3001.
[12] F. He, S. Lau, H. Chan, J. Fan, Adv. Mater., 2009, 21, 710.
[13] M. Green, G. Marom, J. Li, J. Kim, Macromol. Rapid. Commun., 2008, 29, 1254.
[14] H. Yamaguchi, J. Granstrom, W. Nie, et al., Adv. Energy. Mater., 2014, 4.
[15] C. Chiu, J. Lin. Prog. Polym. Sci., 2012, 307, 406.
[16] A. Esmaeili, M. Entezari, J. Colloid. Interface. Sci., 2014.
[17] S. Niyogi, M. Hamon, H. Hu, et al. Acc. Chem. Res., 2002, 35, 1105.
[18] X. Zhang, T. Sreekumar, T. Liu, S. Kumar, J. Phys. Chem. B, 2004, 108, 16435.
[19] V. Georgakilas, K. Kordatos, M. Prato, D. Guldi, M. Holzingger, A. Hirsch, J. Am. Chem. Soc., 2002, 124, 760.
[20] Y. Zhang, Z. Shi, Z. Gu, S. Iijima, Carbon, 2000, 38, 2055.
[21] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon, 2008, 46, 833.
[22] M. Hemon, J. Chen, H. Hu, Y. Chen, A. Rao, P. Eklund, R. Haddon, Adv. Mater., 1999, 11, 834.
[23] S. Niyogi, M. Hamon, H. Hu, B. Zhao, P. Browmik, R. Sen, M. Itkis, R. Haddon, Acc. Chem. Res., 2002, 35, 1105.
[24] K. Kobashi, S. Ata, T. Yamada, D. Futaba, M. Yumura, K. Hata, Chem. Sci., 2013, 4, 727.
[25] S. Lin, K. Wei, T. Lee, K. Chiou, J. Lin, Nanotechnology, 2006, 17, 3197.
[26] E. Mickelson, C. Huffman, A. Rinzler, R. Smalley, R. Hauge, J. Mar-grave, Chem. Phys. Lett., 1998, 296, 188.
[27] E. Mickelson, I. Chiang, J. Zimmerman, P. Boul, J. Lozano, J. Liu, R. Smalley, R. Hauge, J. Margrave, J. Phys. Chem. B, 1999, 103, 4318.
[28] M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, Angew. Chem. Int. Ed., 2001, 40, 4002.
[29] J. Bahr, J. Yang, D. Kosynkin, M. Bronikowski, R. Smalley, J. Tour, J. Am. Chem. Soc., 2001, 123, 6536.
[30] K. Fu, W. Huang, Y. Lin, L. Riddle, D. Carroll, Y. Sun, Nano. Lett., 2001, 1, 439.
[31] Y. Lin, B. Zhou, K. Fernando, P. Liu, L. Allard, Y. Sun, Macromolecules, 2003, 36, 7199.
[32] R. Blake, Y. Gunko, J. Coleman, et al., J. Am. Chem. Soc., 2004, 126, 10226.
[33] L. Qu, L. Veca, Y. Lin, A. Kitaygorodskiy, B. Chen, A. M. McCall, J. W. Connell, Y. P. Sun, Macromolecules, 2005, 38, 10328.
[34] Z. Yao, N. Braidy, G. Botton, A. Adronov, J. Am. Chem. Soc., 2003, 125, 16015.
[35] H. Kong, C. Gao, D. Yan, Macromolecules, 2004, 37, 4022.
[36] H. Kong, W. Li, C. Gao, et al., Macromolecules, 2004, 37, 6683.
[37] L. Jiang, L. Gao, J. Sun, J. Coll. Interf. Sci., 2003, 260, 89.
[38] G. Sáfar, H. Ribeiro, L. Malard, et al., Chem. Phys. Lett., 2008, 462, 109.
[39] M. Islam, E. Rojas, D. Bergey, A. Johnson, A. Yodh, Nano Lett., 2003, 3, 269.
[40] Z. Guo, P. Sadler, S. Tsang, Adv. Mater., 1998, 10, 701.
[41] V. Lordi, N. Yao, J. Mater. Res., 2000, 15, 2770.
[42] M. O’Connell, P. Boul, L. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper,J. Tour, K. Ausman, R. Smalley, Chem. Phys. Lett., 2001, 342, 265.
[43] D. Steuerman, A. Star, R. Narizzano, H. Choi, R. Ries, C. Nicolini, J. Stoddart, J. Heath, J. Phys. Chem. B, 2002, 106, 3124.
[44] X. Pei, L. Hu, W. Liu, J. Hao, Eur. Polym. J., 2008, 44, 2458.
[45] F. Cheng, P. Imin, C. Maunders, G. Botton, A. Adronov, Macromolecules, 2008, 41, 2304.
[46] C. Hsu, L. Chang, C. Chiu, P. Lee, J. Lin, ACS. Appl. Mat. Interfaces, 2013, 5, 538.
[47] Y. Kang, T. Taton, J. Am. Chem. Soc., 2003, 125, 5650.
[48] E. Nativ-Roth, R. Shvartzman-Cohen, C. Bounioux, M. Florent, D. Zhang, I. Szleifer, Macromolecules, 2007, 40, 3676.
[49] O.Akhavan, E. Hashemi, M. Shamsara, R. Rahighi, A. Esfandiar, A. Tayefeh, RSC Adv., 2014, 4, 27213.
[50] X. Li, G. McKenna, G. Miquelard-Garnier, A. Guinault, C. Sollogoub, G. Regnier, A. Rozanski, Polymer, 2014, 55, 248.
[51] J. Thomassin, M. Trifkovic, W. Alkarmo, C. Detrembleur, C. Jérôme, C. Macosko, Macromolecules, 2014, 47, 2149.
[52] T. Wei, G. Luo, Z. Fan, C. Zheng, J. Yan, C. Yao, W. Li, C. Zhang, Carbon, 2009, 47, 2290.
[53] L. Ma, B. Yu, X. Qian, W. Yang, H. Pan, Y. Shi, L. Song, Y. Hu, Polym. Adv. Technol., 2014, 25, 605.
[54] H. Salavagione, M. Gomez, G. Martınez, Macromolecules, 2009, 42, 6331.
[55] H. Roghani-Mamaqani, V. Haddadi-Asl, K. Khezri, E. Zeinali, M. Salami-Kalajahiet al., Polym. Int., 2014.
[56] K. Worsley, P. Ramesh, S. Mandal, S. Niyogi, M. Itkis, R. Haddon, Chem. Phys. Lett., 2007, 445, 51.
[57] S. Niyogi, E. Bekyarova, M. Itkis, J. McWilliams, M. Hamon, R. Haddon, J. Am. Chem. Soc., 2006, 128, 7720.
[58] S. Stankovich, R. Piner, S. Nguyen, R. Ruoff, Carbon, 2006, 44, 3342.
[59] J. Kim, B. Kim, E. Kim, H. Park, H. Jeong, React. Funct. Polym., 2014, 74, 16.
[60] N. Kovtyukhova, P. Ollivier, Chem. Mater., 1999, 11, 771.
[61] S. Park, J. An, R. Piner, I. Jung, D. Yang, A. Velamakanni, S. Nguyen, R. Ruoff, Chem. Mate., 2008, 20, 6592.
[62] H. Ahn, T. Kim, H. Choi, C. Yoon, K. Um, J. Nam, Carbon, 2014, 71, 229.
[63] R. Hao, W. Qian, L. Zhang, Y. Hou, Chem. Commun., 2008, 6576.
[64] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, J. Am. Chem. Soc., 2008, 130, 5856.
[65] E. Katz, J. Electroanal. Chem., 1994, 365, 157.
[66] P. Shih, R. Dong, S. Shen, R. Vittal, J. Lin, K. Ho, J. Mater. Chem. A, 2014, 2, 8742.
[67] H. Bai, Y. Xu, L. Zhao, C. Li, G. Shi, Chem. Commun., 2009, 1667.
[68] L. Jiang, S. Gu, Y. Ding, F. Jiang, Z. Zhang, Nanoscale, 2014, 6, 207.
[69] P. Liu, K. Gong, P. Xiao, Carbon, 1999, 37, 2073.
[70] A. Kotov, I. Dékány , H. Fendler, Adv. Mater., 1996, 8, 637.
[71] B. Mi, Science, 2014, 343, 740.
[72] R. Dong, C. Liu, K. Huang, W. Chiu, K. Ho, J. Lin, ACS Appl. Mat. Interfaces, 2012, 4, 1449.
[73] S. Stankovich, D. Dikin, G. Dommett, K. Kohlhaas, E. Zimney, E. Stach, R. Piner, S. Nguyen, R. Ruoff , Nature, 2006, 442, 282.
[74] E. Nossol, A. Nossol, S. Guo, et al., J. Mater. Chem. C, 2014, 2, 870.
[75] S. Park, K. Lee, G. Bozoklu, W. Cai, S. Nguyen, R. Ruoff, ACS Nano, 2008, 2, 572.
[76] I. Ocsoy, B. Gulbakan, T. Chen, G. Zhu, Z. Chen, M. Sari, L. Peng, X. Xiong, X. Fang, W. Tan, Adv. Mater., 2013, 25, 2319.
[77] F. Chen, Y. Cao, D. Jia, Cryst. Eng. Comm., 2013, 15, 4747.
[78] J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang, Nanoscale, 2010, 2, 2733.
[79] W. Lu, R. Ning, X. Qin, et al., J. Hazard. Mater., 2011, 197, 320.
[80] V. Rao, C. Cabrera, R. Carlos, Y. Ishikawa, J. Phys. Chem. C, 2011, 115, 21963.
[81] Y. Ma, Z. Liu, B. Wang, L. Zhu, J. Yang, X. Li, New Carbon Mater., 2012, 27, 250.
[82] Y. Liu, Y. Huang, Y. Xie, Z. Yang, H. Huang, Q. Zhou, Chem. Eng. J., 2012, 197, 80.
[83] G. Cheng, Y. Liu, Z. Wang, J. Zhang, D. Sun, J. Ni, J. Mater. Chem., 2012, 22, 21998.
[84] W. Fan, W. Gao, C. Zhang, W. Tjiu, J. Pan, T. Liu, J. Mater. Chem., 2012, 22, 25108.
[85] S. Zhu, J. Guo, J. Dong, et al., Ultrason. Sonochem., 2013, 20, 872.
[86] S. Li, Z. Niu, X. Zhong, et al., J. Hazard. Mater., 2012, 229, 42.
[87] S. Wang, A. Manthiram, Electrochim. Acta, 2013, 88, 565.
[88] X. Sun, S. Dong, E. Kang, Macromolecules, 2004, 37, 7105.
[89] N. Lan, D. Chi, N. Dinh, et al., J. Alloy Compd. 2014, 615, 843.
[90] S. Liu, J. Tian, L. Wang, X. Sun, Carbon, 2011, 49, 3158.
[91] S. Liu, L. Wang, J. Tian, Y. Luo, X. Zhang, X. Sun, J. Colloid. Interf Sci., 2011, 363, 615.
[92] V. Nguyen, B. Kim, Y. Jo, J. Shim, J. Supercrit. Fluid, 2012, 72, 28.
[93] X. Qin, Y. Luo, W. Lu, G. Chang, A.. Asiri, A. Al-Youbi, X. Sun, Electrochim. Acta, 2012, 79, 46.
[94] Y. Zhou, X. Cheng, D. Du, J. Yang, N. Zhao, S. Ma, T. Zhong, Y. Lin, J. Mater. Chem. C, 2014, 2, 6850.
[95] M. Yola, V. Gupta, T. Eren, A. Şen, N. Atar, Electrochim. Acta, 2014, 120, 204.
[96] S. Palanisamy, C. Karuppiah, S. Chen, Colloids Surface B, 2014, 114, 164.
[97] L. Chang, C. Lee, K. Huang, Y. Wang, M. Yeh, J. Lin, K. Ho, J. Mater. Chem., 2012, 22, 3185.
[98] L. Chang, C. Lee, R. Vittal, J. Lin, K. Ho, J. Mater. Chem., 2012, 22, 12305.
[99] R. Bajai, S. Roy, P. Kumar, P Bajpai, N. Kulshrestha, J. Rafiee, N. Koratkar, D. Misra, ACS Appl. Mater. Interfaces, 2011, 3, 3884.
[100] M. Yen, C. Teng, M. Hsiao, P. Liu, W. Chuang, C. Ma, C. Hsieh, M. Tsai, C. Tsai, J. Mater. Chem., 2011, 21, 12880.
[101] N. Armaroli and V. Balzani, Angewandte Chemie, 2007, 46, 52.
[102] D. Gust, T. A. Moore and A. L. Moore, Acc. Chem. Res., 2009, 42, 1890.
[103] D. G. Nocera, Inorganic Chemistry, 2009, 48, 10001.
[104] M. Grätzel, Nature, 2001, 414, 338.
[105] B. O'Regan, M. Grätzel, Nature, 1991, 353, 737.
[106] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, Acc. Chem. Res., 1997, 80, 3157.
[107] A. Hagfeldt and M. Grätzel, Acc. Chem. Res, 2000, 33, 269.
[108] M. K. Nazeeruddin, F. De. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835.
[109] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2008, 130, 10720.
[110] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-Le, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, ACS Nano, 2009, 3, 3103.
[111] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Science, 2011, 334, 629.
[112] C. Y. Chen, S. J. Wu, C. G. Wu, J. G. Chen and K. C. Ho, Angewandte Chemie, 2006, 45, 5822.
[113] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chem. Rev., 2010, 110, 6595.
[114] M. Grätzel, J. Photochem. Photobiol. A: Chem, 2004, 164, 3.
[115] K. E. Lee, M. A. Gomez, S. Elouatik and G. P. Demopoulos, Langmuir, 2010, 26, 9575.
[116] M. Grätzel, Inorg. Chem., 2005, 44, 6841.
[117] A. Mishra, M. K. R. Fischer and P. Bauerle, Angew. Chem. Int. Ed., 2009, 48, 2474
[118] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen and Q. Meng, Electrochem. Commun., 2007, 9,596.
[119] E. Ramasamy, W. J. Lee, D. Y. Lee and J. S. Song, Appl. Phys. Lett., 2007, 90, 173103.
[120] J. G. Chen, H. Y. Wei and K. C. Ho, Sol. Energy Mater. Sol. Cells, 2007, 91, 1472.
[121] W. Hong, Y. Xu, G. Lu, C. Li and G. Shi, Electrochem. Commun., 2008, 10, 1555.
[122] A. Hauch and A. Georg, Electrochim. Acta, 2001, 46, 3457.
[123] N. Papageorgiou, W. F. Maier and M. Grätzel, J. Electrochem. Soc., 1997, 144, 876.
[124] E. Olsen, G. Hagen and S. E. Lindquist, Sol. Energy Mater. Sol. Cells., 2000, 63, 267.
[125] A. Kay and M. Grätzel, Sol. Energy Mater. Sol. Cells, 1996, 44, 99.
[126] K. Suzuki, M. Yamaguchi, M. Kumagai and S. Yanagida, Chem. Lett., 2003, 32, 28.
[127] J. D. Roy-Mayhew, D. J. Bozym, C. Punckt and I. A. Aksay, ACS Nano, 2010, 4, 6203.
[128] D. W. Zhang, X. D. Li, H.B. Li, S. Chen, Z. Sun, X. J. Yin and S. M. Huang, Carbon, 2011, 29, 5382.
[129] L. Bay, K. West, B. Winther-Jensen and T. Jacobsen, Sol. Energy. Mater. Sol. Cells, 2006, 90, 341.
[130] Y. Saito, T. Kitamura, Y. Wada and S. Yanagida, Chem. Lett., 2002, 10, 1060.
[131] Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, J. Photochem. Photobio., A, 2004, 164, 153.
[132] M. Wang, A. M. Anghel, B. Marsan, N. L. Cevey Ha, N. Pootrakulchote, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2009, 131, 15976.
[133] Y. F. Lan and J. J. Lin, J. Phys. Chem. A, 2009, 113, 8654.
[134] D. Baskaran, J. W. Mays and M. S. Bratcher, Chem. Mater., 2005, 17, 3389.
[135] G. Nesher, G. Marom and D. Avnir, Chem. Mater., 2008, 20, 4425.
[136] M. Sano, A. Kamino, J. Okamura and S. Shinkai, Langmuir, 2001, 17, 5125.
[137] H. C. Choi, M. Shim, S. Bangsaruntip and H. Dai, J. Am. Chem. Soc., 2002, 124, 9058.
[138] J. J. Lin, S. M. Shau and K. M. Wei, Polym. Degrad. Stab., 2000, 70, 171.
[139] R. X. Dong, W. C. Tsai and J. J. Lin, Eur. Polym. J., 2011, 47, 1383.
[140] I. Pastoriza-Santos and L. Liz-Marz´an, Nano Lett., 2002, 2, 903.
[141] D. Li, M. Muller, S. Gilje, R. Kaner, G. Wallace, Nature Nanotech., 2008, 3, 101.
[142] S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood, C. N. R. Rao, Appl. Phys. Lett. 2009, 95, 191911. (Femtosecond carrier dynamics and saturable absorption in graphene suspensions.)
[143] K. W. Lee, S. Kowalczyk and J. Shaw, Langmuir, 1991, 7, 2450.
[144] M.K. Nazeeruddin, R.H. Baker, P. Liska, M. Grätzel, J. Phys. Chem. B, 2003, 107, 8981.
[145] C. Sanchez, C. Boissi`ere, D. Grosso, C. Laberty, L. Nicole, Chem. Mater., 2008, 20, 682.
[146] K.H. Park, C.K. Hong, Electrochem. Commun., 2008, 10, 1187.
[147] Y. Qiu, W. Chen, S. Yang, Angew. Chem. Int. Edit., 2010, 49, 3675.
[148] W.Q. Wu, H.S. Rao, H.L. Feng, H.Y. Chen, D.B. Kuang, C.Y. Su, Nano Energy 9 (2014) 15–24. K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Nano Lett., 2007, 7, 3739.
[149] H. Bai, Y. Xu, L. Zhao, C. Li and G. Shi, Chem. Commun., 2009, 13, 1667.
[150] K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin and K. C. Ho, J. Mater. Chem., 2010, 20, 4067.
[151] V. D. Dao, H.S. Choi and K. D. Mater. Lett., 2013, 92, 11.
[152] R. Dong, S. Shen, H. Chen, C. Wang, P. Shih, C. Liu, R. Vittal, J. Lin, K. Ho, J. Mater. Chem. A, 2013, 1, 8471.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54323-
dc.description.abstract今日奈米材料已廣泛被應用於各種產業,針對奈米材料之應用及製備具自我排列特性的奈米材料,分散技術實為製程中之關鍵。其中奈米碳材如奈米碳管及石墨烯在水相及有機相之分散對於奈米材料及其下游之應用至關重要。添加奈米碳管及石墨烯以為複合材料之後端表現端視於是否能均一性地將此些奈米材料分散至其一級結構以期充分發揮其性能。後續,吾人進一步利用離子交換反應亦或非共價鍵方式製造奈米混摻材料,如:將奈米銀粒子修飾在奈米碳管及奈米白金粒子在石墨烯上。這篇論文將分別探討奈米材料之分散性、粒徑大小、粒徑分佈、電性及應用於染料敏化太陽能電池之效率探討。
本論文分為二部分,旨在研究奈米粒子如銀奈米粒子、二氧化鈦奈米粒子、白金奈米粒子及奈米碳材如奈米碳管及石墨烯之分散作用力及機制及其於染料敏化太陽能電池之應用。在第一部分,兩大類的功能性高分子被使用來作碳材之分散及評估。在第三章中,吾人提出分散奈米碳管及其原位還原奈米銀粒子以製備奈米銀粒子修飾於奈米碳管上之連續製程,此奈米混摻材料亦展現出低溫導電之性質;第四章描述合成具有不同官能基之功能性高分子以作石墨烯分散之機制探討。隨著聚乙烯醇之導入原本分散良好的石墨烯分散液中,可製備出具高導電度及尺寸安定度之石墨烯膜,同時亦藉以驗證所合成高分子分散劑之分散性能。水性聚氨酯的導入則能成功製備兼具導電度及可撓曲性質之導電膜。此外,利用此石墨烯分散之機制,吾人更進一步開發由天然石墨直接脫層為少層石墨烯之製程,能有效避免石墨烯表面結構的破壞以維持其優異特性及降低製備成本。第二部分中,吾人將此些奈米材料之分散液導入染料敏化太陽能電池中,以為奈米材料分散性及分散重要性之評估。第五章中利用均勻分散之二氧化鈦奈米粒子製備出可調控粒子尺寸及孔洞分布之功能性薄膜,並將之應用於染料敏化太陽能電池之工作電極上。第六章則講述利用高分子分散劑製備出白金粒子/石墨烯奈米混摻材料,並將之塗佈於導電玻璃上以為染料敏化太陽能電池之對電極使用。由於該白金粒子/石墨烯奈米混摻材料之均勻分散性,此對電極具有的高穿透度亦有利於背照式染料敏化太陽能電池使用。
zh_TW
dc.description.abstract“Dispersion technology” is considered as the key step in bottom-up process for self-assemblies and fabricating nanomaterial devices. Herein, dispersion of sp2 carbon materials, graphene and carbon nanotube (CNT), in aqueous or organic mediums is important process for utilizing nanomaterials in various downstream applications. Further, the performance of adding CNT and 2D platelet-like graphene as the nanoscale fillers to nanocomposites relies on the step of homogeneously dispersing the nanomaterials into their primary structure. Nanohybrids including silver nanoparticles decorated on the carbon nanotube (CNT) and platinum-on-graphene were fabricated by ionic excharge reaction and non-covalent method. These materials were investigated on dispersibility, particle size and distribution, electrical behavior, and the applications for dye-sensitized solar cells (DSSCs).
There are two parts in this dissertation, aiming to investigate the dispersion of nanomaterials including nanoparticles such as silver nanoparticle (AgNP), titanium dioxide and platinum nanoparticle (PtNP), carbon materials such as carbon nanotube (CNT) and graphene and the sequential hybridization for the use in DSSCs. In the first part, two families of functional polymers for homogeneously dispersing CNT and graphene in aqueous medium were reported. The tandem procedures of dispersing CNT and then AgNPs were developed to prepare CNT-tethered AgNPs nanohybrids, which allowed the conductive application at low temperature (Chapter 3); the structural differences in chemical functionalities of the synthesized polymers were allowed to evaluate their ability for dispersing graphene by disrupting the π-π stacking aggregation. With the assistance of adding polyvinyl alcohol, the homogeneously dispersed graphene in water was fabricated into a dimensionally stable film exhibiting high conductivity, evidenced the dispersing ability of the synthesized oligomers as the polymeric dispersants. With the introduction of waterborne polyurethane, conductive and flexible graphene films were prepared. In addition, by utilizing the dispersing mechanism of graphene, graphene directly exfoliated from graphite was realized, and that prevents the inevitable structural defects and lowers the cost of graphene preparation (Chapter 4). In the second part, dispersion of nanomaterials applied on DSSCs was exploited to assess the dispersibility and the importance of dispersion. The dispersion of TiO2 nanoparticles to generate the functional films effectively allows the control of TiO2 particle size and pore size distribution in film matrix for suitable uses as photoanodes in DSSCs (Chapter 5). A dispersion of platinum-on-graphene was prepared in the presence of a polymeric dispersant and subsequent in-situ reduction of dihydrogen hexachloroplatinate to metallic platinum on the graphene surface. The platinum-on-graphene dispersion was coated on an FTO glass to prepare a counter electrode (CE) for a DSSC. The hybrid film of platinum nanoparticles and graphene nanoplatelets (PtNP/GN) showed a transparency of 70% at 550 nm, indicating its suitability as a CE material for a rear-illuminated DSSC (Chapter 6).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:50:29Z (GMT). No. of bitstreams: 1
ntu-104-F00549025-1.pdf: 5080513 bytes, checksum: 3b9d85a80f94fdc8d8f259879c5c0966 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘 要………...…………………………………………......................……..….......…....i
Abstract…………………………….…………………………………………...….......iii
List of Tables.…………………………………………...…………………....…….…..ix
List of Schemes……………………………………………………………………....…x
List of Figures………………………………………………………………….............vi
Chapter 1. Introduction..............................................................................................1
1-1. Introduction to dispersion of carbon nanotube and graphene…………....……1
1-1-1. Dispersion of carbon materials via surface modifications………………….2
1-1-2. Hybridization of graphene with various functional nanoparticles………...14
1-2. Introduction to dye-sensitized solar cells (DSSCs)…………...……………..21
1-2-1. Sun light and photovoltaic performance of solar cells………….………...25
1-2-2. Photoanodes in dye-sensitized solar cell……….……….…………..…….28
1-2-3. Electrolytes in Dye-sensitized solar cell…..…………………….………..33
1-2-4. Counter electrode in dye-sensitized solar cell…………………………….36
Chapter 2. Materials…...…………………………………………………………..40
PART I Dispersion of Nanomaterials………………………………………………..43
Chapter 3. Polymer-assisted dispersion of carbon nanotubes and silver nanoparticles and their applications…………………………………43
3-1. Experimental…………………………………………………………...…….43
3-1-1. Preparation of poly(oxyalkylene)-segmented amidoacid and imide as the dispersants for CNT……………………………………………………….43
3-1-2. Preparation of organic dispersants nanohybrids with CNT……………….44
3-1-3. Preparation of POE-imide nanohybrids with Ag/CNT………………...….45
3-1-4. Measurements and analyses……………………………………………….45
3-2. Results and Discussion…………………………………...………………….47
3-2-1. Preparation of dispersants consisting of POE-segments and aromatic imide functionalities……………………………………….…………………… 47
3-2-2. Ability of home-made dispersants for dispersing CNT…………………...50
3-2-3. Reduction of AgNO3 to AgNPs in the presence of the POE-imide and the formation of Ag/CNT nanohybrid……………………………….………..54
3-2-4. Further isolation of the Ag/CNT nanohybrids…………………………….56
3-2-5. Conductive application of Ag/CNT nanohybrids………………………....58
3-3. Summary.…………………………………………………………………….59
Chapter 4. Synthesis of poly(oxyethylene)-segmented and imide/urea functionalized polymers for dispersing graphene nanoplatelets in water ……………………………………………………………..…….61
4-1. Experimental…………………………………………………………………61
4-1-1. Preparation of aqueous dispersion of graphene in polymeric dispersants………………………………………………………………...61
4-1-2. Preparation of graphene/POE-imide/PVA hybrid film………………...….61
4-1-3. Preparation of graphene/POE-imide/PU hybrid film……………………..62
4-1-4. Measurements and analyses……………………………………………….63
4-2. Results and Discussion………………………………………………………64
4-2-1. Preparation of dispersants consisting of POE-segments and aromatic-imide functionalities……………………………………………………………..64
4-2-2. Dispersibility for graphene…………………………………………..……69
4-2-3. Dispersibility of synthetic polymeric dispersants comprising with different functionalities……………………………………………………………..70
4-2-4. Conductivity of graphene-based PVA films……………………………....75
4-2-5. Conductivity of graphene-based PU films………………………………...77
4-2-6. Direct exfoliation of graphite to graphene by POE-imide in water……….79
4-3. Summary…………………………………………………………….…….…79
PART II Applications for Dye-Sensitized Solar Cells……………...……………..…83
Chapter 5. Dual Functional polymer-mediated titanium dioxide photoanodes for high performance dye-sensitized solar cells…………………………...83
5-1. Experimental………………………………………………………………....83
5-1-1. Preparation of paste containing nanocrystalline TiO2 particles…………...83
5-1-2. Preparation of TiO2 photoanode…………………………………………..83
5-1-3. Assembly of DSSC………………………………………………………..84
5-1-4. Instruments and Analyses…………………………………………………84
5-2. Results and Discussion………………………………………………………85
5-2-1. Dispersibility of TiO2 mediated by PEG and POE-imide………………....85
5-2-2. Characterization of various TiO2 films……………………………………88
5-2-3. Photovoltaic performance of the DSSCs with various photoanodes……...92
5-2-4. Resistance measurements of various photoanodes by electrochemical impedance spectra (EIS)…………………………………………………..95
5-2-5. Factors contributing to the enhancement of photocurrent density………..96
5-3. Summary..…………………………………………………………………..101
Chapter 6. Transparent graphene-platinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells………………102
6-1. Experimental……………………………………………………………..…102
6-1-1. Preparation of poly(oxyethylene)-segmented imide (POE-imide)………102
6-1-2. Preparation of the dispersion of PtNP/GN………………………………103
6-1-3. Preparation of the counter electrode…………………………………….103
6-1-4. Fabrication of the DSSC…………………………………………………104
6-1-5. Measurements and instruments………………………………………….104
6-2. Results and Discussion……………………………………………………..106
6-2-1. Synthesis of polymeric dispersant for graphene dispersion……………..106
6-2-2. Synthesis of dispersion of PtNP/GN nanohybrids……………………….108
6-2-3. Characterization of PtNP/GN films with varying compositions…………111
6-2-4. Photovoltaic performance of the DSSCs with various counter electrodes………………………………………………………………...112
6-2-5. Incident photo-to-current efficiency (IPCE) and electrochemical impedance spectra (EIS)……………………………………………………………..115
6-2-6. Potential in back-illuminated DSSCs……………………………………117
6-3. Summary…………………………………………………………………....120
Chapter 7. Conclusions and Suggestions………………………………………..122
7-1. Conclusions……………………………………………………………...…122
7-1-1. Dispersion of nanomaterials……………………………………………..122
7-1-2. Applications for DSSCs………………………………………………….124
7-2. Suggestions…………………………………………………………………125
7-2-1. Synthesis of graphene-incorporated polymeric electrolyte for DSSCs…125
7-2-2. Synthesis of graphene/iron nanoparticle nanohybrid…………………....125
7-2-3. Preparation of flexible counter electrodes for DSSCs………………….126
References…………………………………………………………………………….127
Appendix (curriculum vitae)…………………….....……………………………..…..139

List of Tables
Table 1.1. Dispersion of carbon materials via surface modifications.……………....3
Table 1.2. Graphene hybridization with nanoparticles…………….………………16
Table 3.1. Solubility or dispersibility of the poly(oxyalkylene)-segmented polymer………………………………………………………………....48
Table 3.2. Relative dispersibility of dianhydride-POE2000 adducts………………53
Table 4.1. Solubility or dispersibility of the poly(oxyethylenealkylene)-segmented Polymer…………………………..…………………….………………68
Table 4.2. Relative dispersibility of synthetic dispersants with different functionalities...........................................................................................71
Table 5.1. Characteristics of various photoanodes obtained using BET and BJH…...................................................................................................89
Table 5.2. Photovoltaic parameters of DSSCs with various TiO photoanodes at 100 mW cm-2 illumination………………………………………………….94
Table 6.1. Photovoltaic parameters of the DSSCs with PtNP/GN films, obtained by using platinum and graphene at different weight ratios, measured at 100 mW cm–2; the Table also shows the corresponding particle sizes..………………………………………………………………..…113
Table 6.2. Series resistance (Rs), charge transfer resistance (Rct1), short-circuit photocurrent density (JSC), and power conversion efficiency (η) of the DSSCs with PtNP/GN (5/1), PtNP/GN (20/1), and s-Pt………..……117
Table 6.3. Photovoltaic parameters of the DSSCs with PtNP/GN(5/1) and s-Pt, obtained for both front and rear illuminations and measured at 100 mW cm–2………………………………………………………………….119

List of Schemes
Scheme 1.1. Framework of this dissertation…………………………………………39
Scheme 3.1. Synthetic scheme for the poly(oxyalkylene)-segmented amidoacid (POA-amidoacid) and imide (POA-imide) dispersants. POA includes poly(oxypropylene)- or POP-2000 and poly(oxyethylene)- or POE-2000 diamines………………………………………………….………..…....49
Scheme 4.1. Synthetic scheme for (a) the poly(oxyalkylene)-segmented amidoacid (POA-amidoacid) and imide (POA-imide) dispersants. POA includes poly(oxyethylene) or POE2000 and poly(oxypropylene) or POP2000; (b) the poly(oxyethylene)-segmented urea or urethane type dispersants…………………………………………………..…………..67
Scheme 4.2. Illustrating diagram elaborating the intermolecular interactions among POE-imide, graphene and water……………………………..…………74

List of Figures
Figure 1.1. Synthesis of nylon-6-functionalized single-walled carbon nanotubes (Nylon-SWNT)………………...……………..………………………….6
Figure 1.2. The adsorption of different surfactants onto the nanotube surfaces……………………………………………………………....…..8
Figure 1.3. Manipulation of the surface roughness by dispersing CNT with a PIB-amine copolymer, and the formation of a superhydrophobic film………………………………………………………..……….……..8
Figure 1.4. GO contains a high concentration of exposed oxygen-containing functional groups, like hydroxyl, epoxy, and carboxyl, embedded in its carbon layers………………………………………………………..…11
Figure 1.5. Two synthetic strategies of the covalent functionalization of graphene sheets with PVA…………………….……………….………….………11
Figure 1.6. Illustration of the process making polymer dispersed CNT-AgNP nanohybrids……………………………………………………………..15
Figure 1.7. (a) Schematic of a typical DSSC. (b) the basic sequence of events in a DSSC……………………………………..…………………….……….25
Figure 1.8. Photon flux of the AM 1.5 G spectrum at 100 mW cm-2 (ASTM G173-03), and calculated accumulated photocurrent…………..………26
Figure 1.9. The carboxyl groups are directly coordinated to the surface titanium ions producing intimate electronic contact between the dye and the semiconductor………………………………………………..…………29
Figure 1.10. Possible anchoring modes for the COOH group to a metal oxide (TiO2)………………………………………………………….………..30
Figure 1.11. Absorption spectrum of the N719 dye in ethanol featuring two MLCT bands…………………………………………………..…….…….……31
Figure 1.12. Interfacial electron transfer involving a ruthenium complex bound to the surface of TiO via a carboxylated bipyridyl ligand……………..………31
Figure 1.13. Overview of processes and typical time constants under working conditions (1 sun) in a Ru–dye–sensitized solar cell with iodide/triiodide electrolyte. Recombination processes are indicated by red arrows……………………………………………….………………….32
Figure 1.14. Design principle of an organic dye for TiO2 photoanodes in DSSCs…………………………………………………………………..33
Figure 3.1. Characteristic FT-IR absorptions of (a) POE-amidoacid and (b) POE-imide………………………………………………….…..……….49
Figure 3.2. Comparison of TEM micrographs of solution (a) and (c), (b) CNT from the solution (sonication), (d) CNT from the solution with POE-imide and (e) HR-TEM micrographs of CNT/POE-imide solution…..……………51
Figure 3.3. CNTs dispersion analysis, (a) CNT/POE-imide, (b) CNT (sonication), and (c) CNT without sonication…………………………..……….……51
Figure 3.4. Generating nanohybrids by different mixing procedures for solution (a and c) with different appearances of aggregates in the bottom of vials; (b) TEM of the solution from in situ reduction of AgNO3 into AgNPs in the presence of CNT/ POE-imide with fine dispersion appeared on glass wall; (d) TEM of separated formation of AgNPs in POE-imide with NaBH4 and then added to CNT in DMF; aggregates on glass wall, and larger size of AgNP (15 vs. 35 nm diameters shown in the inserted)….….………..55
Figure 3.5. UV-vis absorption of AgNPs during the reduction of AgNO3 in CNT/POEimide; The inset of the figures present AgNP kinetic formation of POE-imide nanohybrid with (a) Ag/CNT in solution and (b) AgNPs without CNT……………………………………………………………57
Figure 3.6. TEM micrographs of AgNPs attached to the CNT………………..……58
Figure 3.7. Relative conductivity by four-point probe on POE-imide based films: (a) POE-imide by itself, (b) 5 wt% CNT in POE-imide, (c) AgNP/POE-imide (AgNO3 / POE-imide weight fraction of 1 : 1), (d) AgNP/CNT in POE-imide by separately prepared and mixed, and (e) in situ reduction of AgNO3 into AgNPs in the presence of CNT/POE-imide to have the same composition in (d)……………………………………59
Figure 4.1. Characteristic FT-IR absorptions of (a) POA-amidoacid and (b) POA-imide……………………………………….……………………..65
Figure 4.2. Comparative dispersions of graphene in water (a) without dispersant and (b) with POE-imide dispersant, and (c) and (d), TEM micrographs, respectively……………………………………………………..………74
Figure 4.3. Long-term analysis of graphene dispersion for (a) graphene/POE-imide, (b) graphene (sonication) and (c) graphene (without sonication)………75
Figure 4.4. Conductivity of graphene-based PVA films with the composition of (a) graphene/POE-imide=1/1; (b) graphene/POE-urea=1/1; (c) ultrasonicated graphene and (d) pristine graphene……………………………..………78
Figure 4.5. Conductivity of graphene-based PU films at varying graphene contents…………………………………………………………..……..78
Figure 4.6. Illustrating diagram and TEM elaborating the exfoliation process of graphite to graphene exploiting ultrasonication and POE-imide……….82
Figure 5.1. TEM images of the as-prepared TiO2 nanoparticles prepared by (a) PEG and (b) POE-imide; plane view of FE-SEM images of the TiO2 nanoparticles prepared by (c) PEG and (d) POE-imide; cross-sectional view of FE-SEM images of the TiO2 nanoparticles prepared by (e) PEG and (f) POE-imide………………………………………………………88
Figure 5.2. XRD patterns of TiO film prepared by PEG or POE-imide…............…91
Figure 5.3. Relationship between the cell efficiency and the thickness of the photoanodes……………………………………………...……………..91
Figure 5.4. J-V characteristics of DSSCs with various TiO2 photoanodes at 100 mWcm–2 illumination……………………….……...…...………………93
Figure 5.5. EIS of DSSCs with various TiO2 photoanodes at 100 mW cm–2 illumination……………………………………………………………..93
Figure 5.6. IPCE spectra of DSSCs with the various TiO2 photoanodes…………...99
Figure 5.7. Diffuse-reflectance spectra of various TiO2 photoanodes………...…...100
Figure 5.8. (a) Variations of charge recombination time and electron transit time of the DSSCs (open symbols: recombination time; filled symbols: electron transit time; and (b) effective diffusion length with various TiO2 photoanodes as a function of incident light intensity……………….…100
Figure 6.1. TEM images of (a) pristine graphene in the mixture of ethanol and water in absence of POE-imide, (b) dispersed GN in the presence of POE-imide, and (c) homogeneous dispersion containing PtNP/GN in POE-imide. The inset in (a) shows macro view of the vial containing the graphene without POE-imide, the inset in (b) shows the vial of graphene with POE-imide, and the inset in (c) shows the vial of PtNP/GN in POE-imide…….….108
Figure 6.2. (a) Synthetic scheme of POE-imide; (b) FTIR spectra of amidoacid intermediate and cyclic imide (POE-imide)…………………………109
Figure 6.3. (a) SEM image of the dispersed GN and PtNPs; (b) and (c) show corresponding EDX-mappings for carbon and platinum, respectively………………………………………………...………….110
Figure 6.4. SEM images of PtNP/GN films, obtained by using platinum and graphene at the weight ratios of (a) 1/1, (b) 5/1, and (c) 20/1; the image of s-Pt film is shown in (d)……………………………....…………….110
Figure 6.5. J-V characteristics of the DSSCs with different weight ratios of platinum and graphene, obtained at 100 mW cm–2…………………………….111
Figure 6.6. IPCE curves of the DSSCs with counter electrodes using the films of PtNP/GN (1/1), PtNP/GN (5/1), PtNP/GN (20/1), and s-Pt……..…..114
Figure 6.7. Nyquist plots of the DSSCs with the counter electrodes using the films of PtNP/GN (1/1), PtNP/GN (5/1), PtNP/GN (20/1), and s-Pt film, measured at 100 mW cm-2…………………………………...………114
Figure 6.8. Cyclic voltammograms (CV) of the counter electrodes using the films of PtNP/GN (1/1), PtNP/GN (5/1), PtNP/GN (10/1), and s-Pt CE…....…119
Figure 6.9. (a) Photographs of the counter electrodes with the PtNP/GN films formed by using PtNP and graphene at the ratios of 1/1, 2/1, 5/1, 10/1, 20/1 and with the s-Pt film; (b) transmittances of these counter electrodes.……120
dc.language.isoen
dc.subject非共價鍵鍵結zh_TW
dc.subject石墨烯zh_TW
dc.subject奈米碳管zh_TW
dc.subject染料敏化太陽能電池zh_TW
dc.subject分散zh_TW
dc.subject高分子分散劑zh_TW
dc.subject背照式染料敏化太陽能電池zh_TW
dc.subject奈米材料zh_TW
dc.subject非共價鍵鍵結zh_TW
dc.subject石墨烯zh_TW
dc.subject奈米碳管zh_TW
dc.subject染料敏化太陽能電池zh_TW
dc.subject分散zh_TW
dc.subject高分子分散劑zh_TW
dc.subject背照式染料敏化太陽能電池zh_TW
dc.subject奈米材料zh_TW
dc.subjectNoncovalent interactionsen
dc.subjectPolymeric dispersanten
dc.subjectDispersionen
dc.subjectDye-sensitized solar cellen
dc.subjectCarbon nanotubesen
dc.subjectGrapheneen
dc.subjectNanomaterialsen
dc.subjectRear-illuminated dye-sensitized solar cellen
dc.subjectPolymeric dispersanten
dc.subjectDispersionen
dc.subjectDye-sensitized solar cellen
dc.subjectCarbon nanotubesen
dc.subjectGrapheneen
dc.subjectNoncovalent interactionsen
dc.subjectNanomaterialsen
dc.subjectRear-illuminated dye-sensitized solar cellen
dc.title高分子型分散劑之設計合成與奈米材料分散及染料敏化太陽能電池應用zh_TW
dc.titleSynthesis of Polymeric Dispersants for Nanomaterials and Dye-Sensitized Solar Cellsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee何國川,戴憲弘,謝國煌,鄭如忠,何永盛
dc.subject.keyword高分子分散劑,分散,染料敏化太陽能電池,奈米碳管,石墨烯,非共價鍵鍵結,奈米材料,背照式染料敏化太陽能電池,zh_TW
dc.subject.keywordPolymeric dispersant,Dispersion,Dye-sensitized solar cell,Carbon nanotubes,Graphene,Noncovalent interactions,Nanomaterials,Rear-illuminated dye-sensitized solar cell,en
dc.relation.page141
dc.rights.note有償授權
dc.date.accepted2015-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
4.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved