Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54322
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林江珍(Jiang-Jen Lin)
dc.contributor.authorYow-An Leuen
dc.contributor.author呂佑安zh_TW
dc.date.accessioned2021-06-16T02:50:26Z-
dc.date.available2020-10-12
dc.date.copyright2015-10-12
dc.date.issued2015
dc.date.submitted2015-07-14
dc.identifier.citation1. Abou El-Nour, K. M. M.; Eftaiha, A. a.; Al-Warthan, A.; Ammar, R. A. A. Synthesis and Applications of Silver Nanoparticles. Arabian Journal of Chemistry, 2010, 3, 135-140.
2. Huang, S.; Dai, L.; Mau, A. W. H. Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. The Journal of Physical Chemistry B, 1999, 103, 4223-4227.
3. Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Progress in Polymer Science, 2003, 28, 1539-1641.
4. Liu, W. F.; Chen, C. S. Engineering Biomaterials to Control Cell Function. Materials Today, 2005, 8, 28-35.
5. Lin, J. J.; Dong, R. X.; Tsai, W. C. High Surface Clay-Supported Silver Nanohybrids, Silver Nanoparticles. InTech, 2010, 161-176.
6. Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry, 2004, 32, 33-177.
7. Braun, J. H. Titanium Dioxide - a Review. Journal of Coatings Technology, 1997, 69, 59-72.
8. Baur, W. H.; Khan, A. A. Rutile-Type Compounds. IV. SiO2, GeO2 and a Comparison with Other Rutile-Type Structures. Acta Crystallographica Section B, 1971, 27, 2133-2139.
9. Horn, M.; Schwebdtfeger C, F.; Meagher E, P. Refinement of the Structure of Anatase at Several Temperatures. In Zeitschrift für Kristallographie - Crystalline Materials, 1972; Vol. 136, p 273.
10. Hanaor, D. H.; Sorrell, C. Review of the Anatase to Rutile Phase Transformation. Journal of Materials Science, 2011, 46, 855-874.
11. Braun, J. H.; Baidins, A.; Marganski, R. E. TiO2 Pigment Technology: A Review. Progress in Organic Coatings, 1992, 20, 105-138.
12. J.F. Rolinson; R. Lambourne; (Eds.), T. A. S. Paint and Surface Coatings: Theory and Practice. Woodhead Publication Ltd, Cambridge 1999, 111.
13. Holmberg, K. Handbook of Applied Surface and Colloid Chemistry. John Wiley & Sons, New York 2002, 1.
14. Keidel, E. Die Beeinflussung Der Lichtechtheit Von Teerfarblacken Durch Titanweiss [Influence of Titanium White on the Fastness to Light of Coal-Tar Days]. Farben-Zeitung, 1929, 34, 1242-1243.
15. Goodeve, C. F.; Kitchener, J. A. The Mechanism of Photosensitisation by Solids. Transactions of the Faraday Society, 1938, 34, 902-908.
16. Fujishima, A.; Zhang, X.; Tryk, D. A. TiO2 Photocatalysis and Related Surface Phenomena. Surface Science Reports, 2008, 63, 515-582.
17. Lan, Y.; Lu, Y.; Ren, Z. Mini Review on Photocatalysis of Titanium Dioxide Nanoparticles and Their Solar Applications. Nano Energy, 2013, 2, 1031-1045.
18. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238, 37-38.
19. O'Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 1991, 353, 737-740.
20. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Porphyrin-Sensitized Solar Cells with Cobalt (Ii/Iii)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011, 334, 629-634.
21. Green, M. A. Photovoltaic Principles. Physica E: Low-dimensional Systems and Nanostructures, 2002, 14, 11-17.
22. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon P‐N Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954, 25, 676-677.
23. Grätzel, M. Recent Advances in Sensitized Mesoscopic Solar Cells. Accounts of Chemical Research, 2009, 42, 1788-1798.
24. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline Titanium Dioxide Electrodes. Journal of the American Chemical Society, 1993, 115, 6382-6390.
25. Henry, C. H. Limiting Efficiencies of Ideal Single and Multiple Energy Gap Terrestrial Solar Cells. Journal of Applied Physics, 1980, 51, 4494-4500.
26. Vernardakis, T. G.; D. Satas, A. A. T. E. Coatings Technology Handbook. Marcel Dekker Inc, New York 2001, 609.
27. Pettersson, A.; Marino, G.; Pursiheimo, A.; Rosenholm, J. B. Electrosteric Stabilization of Al2O3, ZrO2, and 3Y–ZrO2 Suspensions: Effect of Dissociation and Type of Polyelectrolyte. Journal of colloid and interface science, 2000, 228, 73-81.
28. Farrokhpay, S.; Morris, G. E.; Fornasiero, D.; Self, P. Effects of Chemical Functional Groups on the Polymer Adsorption Behavior onto Titania Pigment Particles. Journal of colloid and interface science, 2004, 274, 33-40.
29. van den Haak, H. W. Design of Pigment Dispersants: Methodology for Selection of Anchoring Groups. Journal of Coatings Technology, 1997, 69, 137-142.
30. Chen, H. T.; Ravishankar, S. A.; Farinato, R. S. Rational Polymer Design for Solid–Liquid Separations in Mineral Processing Applications. International Journal of Mineral Processing, 2003, 72, 75-86.
31. Creutz, S.; Jérôme, R.; Kaptijn, G. M. P.; van der Werf, A. W.; Akkerman, J. M. Design of Polymeric Dispersants for Waterborne Coatings. Journal of Coatings Technology, 1998, 70, 41-46.
32. Chang, L. Y.; Lee, C. P.; Huang, K. C.; Wang, Y. C.; Yeh, M. H.; Lin, J. J.; Ho, K. C. Facile Fabrication of PtNP/MWCNT Nanohybrid Films for Flexible Counter Electrode in Dye-Sensitized Solar Cells. Journal of Materials Chemistry, 2012, 22, 3185-3191.
33. Huang, K. C.; Wang, Y. C.; Chen, P. Y.; Lai, Y. H.; Huang, J. H.; Chen, Y. H.; Dong, R. X.; Chu, C. W.; Lin, J. J.; Ho, K. C. High Performance Dye-Sensitized Solar Cells Based on Platinum Nanoparticle/Multi-Wall Carbon Nanotube Counter Electrodes: The Role of Annealing. Journal of Power Sources, 2012, 203, 274-281.
34. Wang, Y. C.; Huang, K. C.; Dong, R. X.; Liu, C. T.; Wang, C. C.; Ho, K. C.; Lin, J. J. Polymer-Dispersed MWCNT Gel Electrolytes for High Performance of Dye-Sensitized Solar Cells. Journal of Materials Chemistry, 2012, 22, 6982-6989.
35. Shih, P. T.; Dong, R. X.; Shen, S. Y.; Vittal, R.; Lin, J. J.; Ho, K. C. Transparent Graphene-Platinum Nanohybrid Films for Counter Electrodes in High Efficiency Dye-Sensitized Solar Cells. Journal of Materials Chemistry A, 2014, 2, 8742-8748.
36. Chen, P. W.; Lee, C. P.; Chang, L. Y.; Chang, J.; Yeh, M. H.; Lin, L. Y.; Vittal, R.; Lin, J. J.; Ho, K. C. Dye-Sensitized Solar Cells with Low-Cost Catalytic Films of Polymer-Loaded Carbon Black on Their Counter Electrode. RSC Advances, 2013, 3, 5871-5881.
37. Chang, L. Y.; Lee, C. P.; Vittal, R.; Lin, J. J.; Ho, K. C. Control of Morphology and Size of Platinum Crystals through Amphiphilic Polymer-Assisted Microemulsions and Their Uses in Dye-Sensitized Solar Cells. Journal of Materials Chemistry, 2012, 22, 12305-12312.
38. Wei, K. L.; Wu, J. Y.; Chen, Y. M.; Hsu, Y. C.; Lin, J. J. Easy Preparation of Crosslinked Polymer Films from Polyoxyalkylene Diamine and Poly(Styrene–Maleic Anhydride) for Electrostatic Dissipation. Journal of Applied Polymer Science, 2007, 103, 716-723.
39. Lin, J. J.; Hsu, Y. C.; Wei, K. L. Mechanistic Aspects of Clay Intercalation with Amphiphilic Poly(Styrene-Co-Maleic Anhydride)-Grafting Polyamine Salts. Macromolecules, 2007, 40, 1579-1584.
40. Hsu, Y. C.; Chen, Y. M.; Lin, W. L.; Lan, Y. F.; Chan, Y. N.; Lin, J. J. Hierarchical Synthesis of Silver Nanoparticles and Wires by Copolymer Templates and Visible Light. Journal of colloid and interface science, 2010, 352, 81-86.
41. Guimarães, D. H.; Brioude, M. d. M.; Fiúza, R. d. P.; Prado, L. A. S. d. A.; Boaventura, J. S.; José, N. M. Synthesis and Characterization of Polyesters Derived from Glycerol and Phthalic Acid. Materials Research, 2007, 10, 257-260.
42. Mohammadnia, M. S.; Salaryan, P.; Azimi, Z. K.; Seyidov, F. T. Preparation and Characterization of Polyesters with Controlled Molecular Weight Method. International Journal of Chemical and Biochemical Sciences, 2012, 2, 36-41.
43. Bieleman, J. Additives for Coatings. WILEY-VCH, Weinheim 2000.
44. Von Bardeleben, M. TiO2-Marketing Is Tightening. European Coatings Journal, 2006, 1-2, 18.
45. Chen, Y. M.; Hsu, R. S.; Lin, H. C.; Chang, S. J.; Chen, S. C.; Lin, J. J. Synthesis of Acrylic Copolymers Consisting of Multiple Amine Pendants for Dispersing Pigment. Journal of colloid and interface science, 2009, 334, 42-49.
46. Farrokhpay, S. A Review of Polymeric Dispersant Stabilisation of Titania Pigment. Advances in Colloid and Interface Science, 2009, 151, 24-32.
47. Smith, G. A.; Zulli, A. L.; Grieser, M. D.; Counts, M. C. Dispersion of Titanium Dioxide Pigments by Alkyl Polyglycoside Surfactants in Aqueous Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 88, 67-73.
48. Boisvert, J. P.; Persello, J.; Castaing, J. C.; Cabane, B. Dispersion of Alumina-Coated TiO2 Particles by Adsorption of Sodium Polyacrylate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 178, 187-198.
49. Taylor, M. L.; Morris, G. E.; Smart, R. S. C. Polyphosphate Interaction with Aluminium-Doped Titania Pigment Particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 190, 285-294.
50. Farrokhpay, S.; Morris, G. E.; Fornasiero, D.; Self, P. Influence of Polymer Functional Group Architecture on Titania Pigment Dispersion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 183-191.
51. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chemical Reviews, 2010, 110, 6595-6663.
52. Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent Advances in Dye-Sensitized Solar Cells: From Photoanodes, Sensitizers and Electrolytes to Counter Electrodes. Materials Today, 2015, 18, 155-162.
53. Benkö, G.; Kallioinen, J.; Korppi-Tommola, J. E. I.; Yartsev, A. P.; Sundström, V. Photoinduced Ultrafast Dye-to-Semiconductor Electron Injection from Nonthermalized and Thermalized Donor States. Journal of the American Chemical Society, 2002, 124, 489-493.
54. Ramakrishna, G.; Jose, D. A.; Kumar, D. K.; Das, A.; Palit, D. K.; Ghosh, H. N. Strongly Coupled Ruthenium−Polypyridyl Complexes for Efficient Electron Injection in Dye-Sensitized Semiconductor Nanoparticles. The Journal of Physical Chemistry B, 2005, 109, 15445-15453.
55. Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian, T. Femtosecond Ir Study of Excited-State Relaxation and Electron-Injection Dynamics of Ru(Dcbpy)2(Ncs)2 in Solution and on Nanocrystalline TiO2 and Al2O3 Thin Films. The Journal of Physical Chemistry B, 1999, 103, 3110-3119.
56. O'Regan, B.; Moser, J.; Anderson, M.; Graetzel, M. Vectorial Electron Injection into Transparent Semiconductor Membranes and Electric Field Effects on the Dynamics of Light-Induced Charge Separation. The Journal of Physical Chemistry, 1990, 94, 8720-8726.
57. Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J. E.; Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.; Grätzel, M. Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids. Journal of the American Chemical Society, 2005, 127, 6850-6856.
58. Grätzel, M. Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3-14.
59. Vougioukalakis, G. C.; Philippopoulos, A. I.; Stergiopoulos, T.; Falaras, P. Contributions to the Development of Ruthenium-Based Sensitizers for Dye-Sensitized Solar Cells. Coordination Chemistry Reviews, 2011, 255, 2602-2621.
60. Ellingson, R. J.; Asbury, J. B.; Ferrere, S.; Ghosh, H. N.; Sprague, J. R.; Lian, T.; Nozik, A. J. Dynamics of Electron Injection in Nanocrystalline Titanium Dioxide Films Sensitized with [Ru(4,4‘-Dicarboxy-2,2‘-Bipyridine)2(Ncs)2] by Infrared Transient Absorption. The Journal of Physical Chemistry B, 1998, 102, 6455-6458.
61. Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M. A Swift Dye Uptake Procedure for Dye Sensitized Solar Cells. Chemical Communications, 2003, 1456-1457.
62. Feldt, S. M.; Wang, G.; Boschloo, G.; Hagfeldt, A. Effects of Driving Forces for Recombination and Regeneration on the Photovoltaic Performance of Dye-Sensitized Solar Cells Using Cobalt Polypyridine Redox Couples. The Journal of Physical Chemistry C, 2011, 115, 21500-21507.
63. Tian, H.; Sun, L. Iodine-Free Redox Couples for Dye-Sensitized Solar Cells. Journal of Materials Chemistry, 2011, 21, 10592-10601.
64. Cong, J.; Yang, X.; Kloo, L.; Sun, L. Iodine/Iodide-Free Redox Shuttles for Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Energy & Environmental Science, 2012, 5, 9180-9194.
65. Li, P.; Wu, J.; Lin, J.; Huang, M.; Huang, Y.; Li, Q. High-Performance and Low Platinum Loading Pt/Carbon Black Counter Electrode for Dye-Sensitized Solar Cells. Solar Energy, 2009, 83, 845-849.
66. Hino, T.; Ogawa, Y.; Kuramoto, N. Dye‐Sensitized Solar Cell with Single‐Walled Carbon Nanotube Thin Film Prepared by an Electrolytic Micelle Disruption Method as the Counterelectrode. Fullerenes, Nanotubes and Carbon Nanostructures, 2006, 14, 607-619.
67. Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano, 2010, 4, 6203-6211.
68. Xia, J.; Chen, L.; Yanagida, S. Application of Polypyrrole as a Counter Electrode for a Dye-Sensitized Solar Cell. Journal of Materials Chemistry, 2011, 21, 4644-4649.
69. Cho, S.; Hwang, S. H.; Kim, C.; Jang, J. Polyaniline Porous Counter-Electrodes for High Performance Dye-Sensitized Solar Cells. Journal of Materials Chemistry, 2012, 22, 12164-12171.
70. Ahmad, S.; Yum, J. H.; Xianxi, Z.; Gratzel, M.; Butt, H. J.; Nazeeruddin, M. K. Dye-Sensitized Solar Cells Based on Poly (3,4-Ethylenedioxythiophene) Counter Electrode Derived from Ionic Liquids. Journal of Materials Chemistry, 2010, 20, 1654-1658.
71. Maçaira, J.; Andrade, L.; Mendes, A. Review on Nanostructured Photoelectrodes for Next Generation Dye-Sensitized Solar Cells. Renewable and Sustainable Energy Reviews, 2013, 27, 334-349.
72. Maldonado-Valdivia, A. I.; Galindo, E. G.; Ariza, M. J.; García-Salinas, M. J. Surfactant Influence in the Performance of Titanium Dioxide Photoelectrodes for Dye-Sensitized Solar Cells. Solar Energy, 2013, 91, 263-272.
73. Fan, K.; Liu, M.; Peng, T.; Ma, L.; Dai, K. Effects of Paste Components on the Properties of Screen-Printed Porous TiO2 Film for Dye-Sensitized Solar Cells. Renewable Energy, 2010, 35, 555-561.
74. Tsoukleris, D. S.; Arabatzis, I. M.; Chatzivasiloglou, E.; Kontos, A. I.; Belessi, V.; Bernard, M. C.; Falaras, P. 2-Ethyl-1-Hexanol Based Screen-Printed Titania Thin Films for Dye-Sensitized Solar Cells. Solar Energy, 2005, 79, 422-430.
75. Atkinson, A.; Guppy, R. M. Mechanical Stability of Sol-Gel Films. Journal of Materials Science, 1991, 26, 3869-3873.
76. Ito, S.; Kitamura, T.; Wada, Y.; Yanagida, S. Facile Fabrication of Mesoporous TiO2 Electrodes for Dye Solar Cells: Chemical Modification and Repetitive Coating. Solar Energy Materials and Solar Cells, 2003, 76, 3-13.
77. Jo, E. H.; Chang, H.; Kim, S. K.; Roh, K. M.; Kim, J.; Jang, H. D. Pore Size-Controlled Synthesis of Peg-Derived Porous TiO2 Particles and Photovoltaic Performance of Dye-Sensitized Solar Cells. Materials Letters, 2014, 131, 244-247.
78. Wan, J.; Lei, Y.; Zhang, Y.; Leng, Y.; Liu, J. Study on TiO2 Photoelectrode to Improve the Overall Performance of Dye-Sensitized Solar Cells. Electrochimica Acta, 2012, 59, 75-80.
79. Saito, Y.; Kambe, S.; Kitamura, T.; Wada, Y.; Yanagida, S. Morphology Control of Mesoporous TiO2 Nanocrystalline Films for Performance of Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, 2004, 83, 1-13.
80. Furukawa, S.; Iino, H.; Iwamoto, T.; Kukita, K.; Yamauchi, S. Characteristics of Dye-Sensitized Solar Cells Using Natural Dye. Thin Solid Films, 2009, 518, 526-529.
81. Lee, K. M.; Suryanarayanan, V.; Ho, K. C. The Influence of Surface Morphology of TiO2 Coating on the Performance of Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, 2006, 90, 2398-2404.
82. Shen, Q.; Toyoda, T. Studies of Optical Absorption and Electron Transport in Nanocrystalline TiO2 Electrodes. Thin Solid Films, 2003, 438-439, 167-170.
83. Gemeiner, P.; Mikula, M. The Relation between TiO2 Nano-Pastes Rheology and Dye Sensitized Solar Cell Photoanode Efficiency. Materials Science in Semiconductor Processing, 2015, 30, 605-611.
84. Dhungel, S. K.; Park, J. G. Optimization of Paste Formulation for TiO2 Nanoparticles with Wide Range of Size Distribution for Its Application in Dye Sensitized Solar Cells. Renewable Energy, 2010, 35, 2776-2780.
85. Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M. K.; Grätzel, M. Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency over 10%. Thin Solid Films, 2008, 516, 4613-4619.
86. Neo, C. Y.; Ouyang, J. Graphene Oxide as Auxiliary Binder for TiO2 Nanoparticle Coating to More Effectively Fabricate Dye-Sensitized Solar Cells. Journal of Power Sources, 2013, 222, 161-168.
87. Karthick, S. N.; Hemalatha, K. V.; Justin Raj, C.; Subramania, A.; Kim, H.-J. Preparation of TiO2 Paste Using Poly(vinylpyrrolidone) for Dye Sensitized Solar Cells. Thin Solid Films, 2012, 520, 7018-7021.
88. Park, K. H.; Hong, C. K. Morphology and Photoelectrochemical Properties of TiO2 Electrodes Prepared Using Functionalized Plant Oil Binders. Electrochemistry Communications, 2008, 10, 1187-1190.
89. Nam, J. G.; Lee, E. S.; Jung, W. C.; Park, Y. J.; Sohn, B. H.; Park, S. C.; Kim, J. S.; Bae, J. Y. Photovoltaic Enhancement of Dye-Sensitized Solar Cell Prepared from [TiO2/Ethyl Cellulose/Terpineol] Paste Employing Triton™ X-Based Surfactant with Carboxylic Acid Group in the Oxyethylene Chain End. Materials Chemistry and Physics, 2009, 116, 46-51.
90. Zhang, Y.; Cai N.; Zhao, Y.; Zhao, D. W.; Liu, G. L.; Ji, W. W.; Yang, R. X. Influence of Triton X-100 on the Performance of Dye-Sensitized Solar Cell. Imaging Science and Photochemistry, 2008, 26, 125-130.
91. Kang, M. S.; Yang, Y.; Jee, S. S.; Kwon, S. J.; Lee, E. S.; Bae, J. Y. Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cell Using Self-Charring Phosphate Ester Surfactant. Materials Chemistry and Physics, 2011, 130, 203-210.
92. Xu, S.; Zhou, C. H.; Yang, Y.; Hu, H.; Sebo, B.; Chen, B.L.; Tai, Q.D.; Zhao, X. Effects of Ethanol on Optimizing Porous Films of Dye-Sensitized Solar Cells. Energy & Fuels, 2011, 25, 1168-1172.
93. Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Péchy, P.; Grätzel, M. Fabrication of Screen-Printing Pastes from TiO2 Powders for Dye-Sensitised Solar Cells. Progress in Photovoltaics: Research and Applications, 2007, 15, 603-612.
94. Barbé, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications. Journal of the American Ceramic Society, 1997, 80, 3157-3171.
95. Huang, C. Y.; Hsu, Y. C.; Chen, J. G.; Suryanarayanan, V.; Lee, K. M.; Ho, K. C. The Effects of Hydrothermal Temperature and Thickness of TiO2 Film on the Performance of a Dye-Sensitized Solar Cell. Solar Energy Materials and Solar Cells, 2006, 90, 2391-2397.
96. Mann, J. R.; Gannon, M. K.; Fitzgibbons, T. C.; Detty, M. R.; Watson, D. F. Optimizing the Photocurrent Efficiency of Dye-Sensitized Solar Cells through the Controlled Aggregation of Chalcogenoxanthylium Dyes on Nanocrystalline Titania Films. The Journal of Physical Chemistry C, 2008, 112, 13057-13061.
97. Tao, L.; Huo, Z.; Ding, Y.; Li, Y.; Dai, S.; Wang, L.; Zhu, J.; Pan, X.; Zhang, B.; Yao, J.; Nazeeruddin, M. K.; Gratzel, M. High-Efficiency and Stable Quasi-Solid-State Dye-Sensitized Solar Cell Based on Low Molecular Mass Organogelator Electrolyte. Journal of Materials Chemistry A, 2015, 3, 2344-2352.
98. Wu, W. Q.; Lei, B. X.; Rao, H. S.; Xu, Y. F.; Wang, Y. F.; Su, C. Y.; Kuang, D. B. Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire Arrays on FTO Glass for Dye-Sensitized Solar Cells. Scientific reports, 2013, 3, doi:10.1038/srep01352.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54322-
dc.description.abstract本論文主要分為三部分。第一部分為合成分支狀聚酯型高分子分散劑 (命名為PTT),第二部分為將此高分子分散劑用於二氧化鈦顏料之分散,第三部分則為將此高分子分散劑用於水熱法製備之二氧化鈦奈米粒子分散並應用於製備染料敏化太陽能電池之工作電極。
一系列分支狀聚酯型高分子分散劑之反應物乃使用二元醇、三元醇以及三元酸以3:1:3之莫耳比例進行合成,二元醇之選擇包括不同分子量之聚乙二醇 (分子量為600 g/mol、1000 g/mol、2000 g/mol)、聚丙二醇 (分子量為700 g/mol、1000 g/mol) 或聚乙二醇與聚丙二醇之混合液,三元醇乃使用1,1,1-三羥甲基丙烷作為,三元酸乃使用1,2,4-苯三甲酸酐。此一高分子分散劑主鏈具備可調控之環氧乙烷或環氧丙烷鏈段與酯類官能基、尾端具備羧酸官能基與羥基官能基以及分支狀之分子結構。反應時其官能基與分子量之變化藉用傅里葉轉換紅外光譜(Fourier Transform InfraRed, FT-IR)、酸價(Acid Value)、凝膠滲透層析儀(Gel permeation chromatography, GPC)分析以進行控制 (Chap. 2)。
在二氧化鈦顏料分散的部分,使用聚乙二醇合成所得之含環氧乙烷分支狀聚酯型高分子分散劑作為水相白漿之分散,藉由粒徑分布評估以最佳化漿體之組成並進一步探討分支狀分子結構以及不同環氧乙烷鏈段長短差異對於二氧化鈦顏料分散性之影響(Chap. 3)。此外,亦使用此一含環氧乙烷分支狀聚酯型高分子分散劑於分散水熱法製備之二氧化鈦奈米粒子並將此一所分散之膠體用於製備染料敏化太陽能電池 (Dye-sensitized solar cell, DSSC)之光陽極薄膜,研究發現具備較常之環氧乙烷鏈段分散劑以及其分支狀的分子設計有助於二氧化鈦奈米粒子之分散,使用分散良好之膠體具備較緻密高比表面積之光陽極薄膜以吸附較多的染料以提升最終染料敏化太陽能電池之光電轉換效能 (η) 至8.28% 高於以聚乙二醇分散之二氧化鈦膠體所製得之傳統光陽極(η = 7.18%) (Chap. 4)。二氧化鈦顏料漿體以及二氧化鈦奈米粒子膠體乃藉由動態光散射分析(Dynamic light scattering, DLS).以及穿透式電子顯微鏡(Transmission electron microscope, TEM) 觀察評估其分散性。所製備之二氧化鈦光陽極薄膜進一步使用BET (Brunauer–Emmett–Teller)法、X光繞射儀 (X–ray diffraction, XRD)分析其孔徑分布、比表面積與晶體結構。此外,亦利用電化學交流阻抗分析(Electrochemical impedance spectra, EIS) 、光強度調制光電流分析(intensity modulated photocurrent spectroscopy, IMPS)以及光強度調制光電壓分析(intensity modulated photovoltage spectroscopy, IMVS)分析電子於光陽極之動力學參數。
zh_TW
dc.description.abstractThe thesis consists of three parts, the synthesis of a family of poly(oxyalkylene)-segmented ester (designated as PTT), their application in titanium dioxide pigment dispersion, and their application in titanium dioxide nanoparticle dispersion for photoanode of dye-sensitized solar cell (DSSC).
A family of home-made polymeric dispersants, PTT, were synthesized from diol, triol and triacid starting materials with the molar ratio of 3:1:3. Polyalkyene glycols including PEG600, PEG1000, PEG2000, PPG700, PPG1000, PEG1000/PPG1000 were selected as the diols, trimethylolpropane (TMP) as the triol, and trimellitic anhydride (TMA) as the triacid monomers. PTT products contain structure features including ester linkage, tunable weight fraction of poly(oxyalkylene)-segement, hydroxyl and carboxylic acid group termini, and molecular architecture in branched shape. The structures of PTT were characterized by using Fourier-Transformed Infrared Spectrometry (FT-IR), acid value (AV), and gel permeation chromatography (GPC), and the basic properties of the synthesized dispersant were also documented. (Chap. 2)
The PEG derived PTT were further applied in dispersing titanium dioxide pigment in water suspension for white pigment usage. The slurry composition optimization, effect of branching molecular structure and the weight fraction of poly(oxyethylene)-segement of the polymeric dispersant on its pigment dispersibility were discussed (Chap. 3). The PEG derived PTT were also used to homogenize the hydrothermally prepared TiO2 and then fabricated into films of photoanodes in DSSC. The weight fraction of poly(oxyethylene)-segment in the dispersants and the molecular architecture in favoring the branched shape were found to be two predominant factors for the effective dispersion. The ultimate performance of DSSC was measured to be 8.28% for the device efficiency (η) which was significantly higher than the conventional TiO2 photoanode at η = 7.18% (Chap. 4). TiO2 pigment and hydrothermal prepared TiO2 nanoparticles dispersibility was evaluated by dynamic light scattering (DLS) and Transmission Electron Microscopy (TEM) The photoanode film was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) for surface area and dye loading amount measurement. The kinetics of photo-generated electron in the photoanode including electron life time and electron transit time of the film were studied via electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS).
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:50:26Z (GMT). No. of bitstreams: 1
ntu-104-R02549016-1.pdf: 4313763 bytes, checksum: 56a3dde1e8a966812402776762d26f13 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents中文摘要 I
Abstract III
Table of Contents V
List of Tables VII
List of Figures VIIVII
List of Scheme X
Chapter 1 Introduction 1
1.1. Dispersion of nanomaterials 1
1.1.1. Introduction of nanomaterials 1
1.1.2. History and development of dispersion techniques 3
1.2. Titanium dioxide 5
1.2.1. Basic properties of titanium dioxide 5
1.2.2. Traditional application of titanium dioxide on pigments and cosmetics……….……………………………………………………7
1.2.3. Applications of titanium dioxide on photovoltaics 8
1.3. Solar cells 10
1.3.1. Background 10
1.3.2. The measured environment of solar cells 12
1.3.3. Photovoltaic parameters of DSSCs 14
Chapter 2 Synthesis of Poly(oxyalkylene)-Segmented Ester 19
2.1. Introduction 19
2.2. Experimental 23
2.2.1. Materials 23
2.2.2. Synthesis of branched and poly(oxyalkylene)-segmented esters 23
2.2.3. Instrumentation 27
2.3. Results and discussions 28
2.3.1. Reaction profile of ester formation from anhydride and triol 28
2.3.2. Crystallinity of PTT 33
2.3.3. Solubility of PTT 34
2.4. Conclusions 35
Chapter 3 Poly(oxyalkylene)-Segmented Ester for Titanium Dioxide Pigment Dispersion 36
3.1. Introduction 36
3.2. Experimental 39
3.2.1. Materials 39
3.2.2. Preparation of slurry containing TiO2 pigment 39
3.2.3. Instrumentation 39
3.3. Results and discussions 41
3.3.1. Dispersing ability of TiO2 white pigment 41
3.3.2. Effect of polymeric segment onTiO2 pigment dispersing ability 47
3.4. Conclusions 51
Chapter 4 Poly(oxyalkylene)-Segmented Ester for Titanium Dioxide Dispersion and Uses in Photoanode of Dye-Sensitized Solar Cells 52
4.1. Introduction 53
4.1.1. Dye-sensitized solar cells (DSSCs) 53
4.1.2. Construction of DSSC 56
4.1.3. Polymer addictive for TiO2 paste formulation for preparing photoanode of dye-sensitized solar cells 59
4.2. Experimental 62
4.2.1. Materials 62
4.2.2. Preparation of TiO2 paste 63
4.2.3. Preparation of TiO2 photoanodes 63
4.2.4. Assembly of DSSCs 64
4.2.5. Instrumentation 64
4.3. Results and Discussions 67
4.3.1. Dispersion of TiO2 67
4.3.2. Effect of dispersant on TiO2 photoanodes 72
4.3.3. Photovoltaic performances analyses of DSSCs 76
4.3.4. Electron transit and recombination time in DSSC 80
4.4. Conclusions 83
Chapter 5 Conclusions and Future Works 84
5.1. Conclusions 84
5.2. Future Works 86
Chapter 6 References 88
Appendix 96
dc.language.isoen
dc.title分支狀聚酯型高分子分散劑之合成及其於二氧化鈦顏料分散及染料敏化太陽能電池光電極之應用zh_TW
dc.titleSynthesis of Branch Poly(oxyalkylene)-Segmented Polyester and Uses for Dispersing Titanium Dioxide and Photoanode of Dye-Sensitized Solar Cellsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.coadvisor何國川(Kuo-Chuan Ho)
dc.contributor.oralexamcommittee謝國煌,張信貞(Shinn-Jen Chang),王逸萍
dc.subject.keyword聚酯,高分子分散劑,黏合劑,二氧化鈦,染料敏化太陽能電池,光陽極,zh_TW
dc.subject.keywordPolyester,polymeric dispersant,binder,titanium dioxide,dye-sensitized solar cell,photoanode,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2015-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved