請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54321完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王勝仕(Sheng-Shih Wang) | |
| dc.contributor.author | Chih-Kai Chang | en |
| dc.contributor.author | 張智凱 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:50:23Z | - |
| dc.date.available | 2025-12-31 | |
| dc.date.copyright | 2015-09-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-14 | |
| dc.identifier.citation | 1. Dinner, A.R., et al., Understanding protein folding via free-energy surfaces from theory and experiment. Trends Biochem Sci, 2000. 25(7): p. 331-9. 2. Uversky, V.N., Mysterious oligomerization of the amyloidogenic proteins. FEBS J, 2010. 277(14): p. 2940-53. 3. Bloemendal, H., et al., Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol, 2004. 86(3): p. 407-85. 4. Wang, W., S. Nema, and D. Teagarden, Protein aggregation--pathways and influencing factors. Int J Pharm, 2010. 390(2): p. 89-99. 5. Chi, E.Y., et al., Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res, 2003. 20(9): p. 1325-36. 6. Philo, J.S., A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol, 2009. 10(4): p. 359-72. 7. Morris, A.M., M.A. Watzky, and R.G. Finke, Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta, 2009. 1794(3): p. 375-97. 8. Weiss, W.F.t., T.M. Young, and C.J. Roberts, Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci, 2009. 98(4): p. 1246-77. 9. Gsponer, J. and M. Vendruscolo, Theoretical approaches to protein aggregation. Protein Pept Lett, 2006. 13(3): p. 287-93. 10. Wang, W., Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm, 2005. 289(1-2): p. 1-30. 11. Hamada, H., T. Arakawa, and K. Shiraki, Effect of additives on protein aggregation. Curr Pharm Biotechnol, 2009. 10(4): p. 400-7. 12. Wang, B., et al., Impact of sucrose level on storage stability of proteins in freeze-dried solids: II. Correlation of aggregation rate with protein structure and molecular mobility. J Pharm Sci, 2009. 98(9): p. 3145-66. 13. Shukla, A.A., P. Gupta, and X. Han, Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein. J Chromatogr A, 2007. 1171(1-2): p. 22-8. 14. Bee, J.S., et al., Monoclonal antibody interactions with micro- and nanoparticles: adsorption, aggregation, and accelerated stress studies. J Pharm Sci, 2009. 98(9): p. 3218-38. 15. Huppertz, T., et al., High pressure-induced changes in bovine milk proteins: a review. Biochim Biophys Acta, 2006. 1764(3): p. 593-8. 16. Mukherjee, S., P. Chowdhury, and F. Gai, Effect of dehydration on the aggregation kinetics of two amyloid peptides. J Phys Chem B, 2009. 113(2): p. 531-5. 17. Demeule, B., et al., Characterization of protein aggregation: the case of a therapeutic immunoglobulin. Biochim Biophys Acta, 2007. 1774(1): p. 146-53. 18. Krishnan, S., et al., Oxidative dimer formation is the critical rate-limiting step for Parkinson's disease alpha-synuclein fibrillogenesis. Biochemistry, 2003. 42(3): p. 829-837. 19. Baynes, B.M., D.I. Wang, and B.L. Trout, Role of arginine in the stabilization of proteins against aggregation. Biochemistry, 2005. 44(12): p. 4919-25. 20. Natalello, A., et al., Conformational plasticity of the Gerstmann-Straussler-Scheinker disease peptide as indicated by its multiple aggregation pathways. Journal of Molecular Biology, 2008. 381(5): p. 1349-1361. 21. Giurleo, J.T., X.L. He, and D.S. Talaga, beta-lactoglobulin assembles into amyloid through sequential aggregated intermediates. Journal of Molecular Biology, 2008. 381(5): p. 1332-1348. 22. Invernizzi, G., et al., Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol, 2012. 44(9): p. 1541-54. 23. Krebs, M.R.H., K.R. Domike, and A.M. Donald, Protein aggregation: more than just fibrils. Biochemical Society Transactions, 2009. 37: p. 682-686. 24. Krebs, M.R.H., G.L. Devlin, and A.M. Donald, Protein particulates: Another generic form of protein aggregation? Biophysical Journal, 2007. 92(4): p. 1336-1342. 25. Bennett, M.J., M.P. Schlunegger, and D. Eisenberg, 3D domain swapping: a mechanism for oligomer assembly. Protein Sci, 1995. 4(12): p. 2455-68. 26. Rousseau, F., J. Schymkowitz, and L.S. Itzhaki, Implications of 3D domain swapping for protein folding, misfolding and function. Adv Exp Med Biol, 2012. 747: p. 137-52. 27. Nelson, R. and D. Eisenberg, Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol, 2006. 16(2): p. 260-5. 28. Janowski, R., et al., Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol, 2001. 8(4): p. 316-20. 29. Eakin, C.M., et al., Oligomeric assembly of native-like precursors precedes amyloid formation by beta-2 microglobulin. Biochemistry, 2004. 43(24): p. 7808-15. 30. Resnikoff, S., et al., Vision 2020 - the right to sight. Ann Trop Med Parasitol, 2008. 102 Suppl 1: p. 3-5. 31. Pascolini, D. and S.P. Mariotti, Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 2012. 96(5): p. 614-618. 32. Papanikolopoulou, K., et al., Formation of amyloid fibrils in vitro by human gammaD-crystallin and its isolated domains. Mol Vis, 2008. 14: p. 81-9. 33. Colon, W. and J.W. Kelly, Partial Denaturation of Transthyretin Is Sufficient for Amyloid Fibril Formation Invitro. Biochemistry, 1992. 31(36): p. 8654-8660. 34. Kelly, J.W., The environmental dependency of protein folding best explains prion and amyloid diseases. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(3): p. 930-932. 35. Michael, R., et al., Changes in the refractive index of lens fibre membranes during maturation--impact on lens transparency. Exp Eye Res, 2003. 77(1): p. 93-9. 36. Javitt, J.C., F. Wang, and S.K. West, Blindness due to cataract: Epidemiology and prevention. Annual Review of Public Health, 1996. 17: p. 159-177. 37. Asbell, P.A., et al., Age-related cataract. Lancet, 2005. 365(9459): p. 599-609. 38. Foster, A., C. Gilbert, and J. Rahi, Epidemiology of cataract in childhood: a global perspective. J Cataract Refract Surg, 1997. 23 Suppl 1: p. 601-4. 39. Endres, W. and Y.S. Shin, Cataract and metabolic disease. J Inherit Metab Dis, 1990. 13(4): p. 509-16. 40. Taylor, H.R., Epidemiology of age-related cataract. Eye (Lond), 1999. 13 ( Pt 3b): p. 445-8. 41. Ayala, M.N. and P.G. Soderberg, Vitamin E can protect against ultraviolet radiation-induced cataract in albino rats. Ophthalmic Research, 2004. 36(5): p. 264-269. 42. Minassian, D.C., V. Mehra, and B.R. Jones, Dehydrational crises from severe diarrhoea or heatstroke and risk of cataract. Lancet, 1984. 1(8380): p. 751-3. 43. Klein, B.E., R. Klein, and K.E. Lee, Incidence of age-related cataract over a 10-year interval: the Beaver Dam Eye Study. Ophthalmology, 2002. 109(11): p. 2052-7. 44. Truscott, R., Age-related human nuclear cataract. Blindness due to inexorable protein deterioration. Acta Ophthalmologica, 2013. 91. 45. Clayton, J.A., et al., Prevalence of posterior subcapsular cataracts in volunteer cytapheresis donors. Transfusion, 2011. 51(5): p. 921-8. 46. Lai, S.W., et al., Increased risk of Parkinson's disease in cataract patients: A population-based cohort study. Parkinsonism Relat Disord, 2015. 21(1): p. 68-71. 47. Zheng Selin, J., et al., High-dose supplements of vitamins C and E, low-dose multivitamins, and the risk of age-related cataract: a population-based prospective cohort study of men. Am J Epidemiol, 2013. 177(6): p. 548-55. 48. Kelman, C.D., Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report. Am J Ophthalmol, 1967. 64(1): p. 23-35. 49. Delaye, M. and A. Tardieu, Short-range order of crystallin proteins accounts for eye lens transparency. Nature, 1983. 302(5907): p. 415-7. 50. McAvoy, J.W., Cell division, cell elongation and distribution of alpha-, beta- and gamma-crystallins in the rat lens. J Embryol Exp Morphol, 1978. 44: p. 149-65. 51. Andley, U.P., Crystallins in the eye: Function and pathology. Prog Retin Eye Res, 2007. 26(1): p. 78-98. 52. de Jong, W.W., J.A. Leunissen, and C.E. Voorter, Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol, 1993. 10(1): p. 103-26. 53. Van Leen, R.W., et al., Developmental expression of crystallin genes: in situ hybridization reveals a differential localization of specific mRNAs. Dev Biol, 1987. 123(2): p. 338-45. 54. Ueda, Y., M.K. Duncan, and L.L. David, Lens proteomics: the accumulation of crystallin modifications in the mouse lens with age. Invest Ophthalmol Vis Sci, 2002. 43(1): p. 205-15. 55. Ma, Z., et al., Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. Exp Eye Res, 1998. 67(1): p. 21-30. 56. Srinivasan, A.N., C.N. Nagineni, and S.P. Bhat, Alpha-a-Crystallin Is Expressed in Nonocular Tissues. Journal of Biological Chemistry, 1992. 267(32): p. 23337-23341. 57. Bloemendal, H. and W.W. Dejong, Lens Proteins and Their Genes. Progress in Nucleic Acid Research and Molecular Biology, 1991. 41: p. 259-281. 58. de Jong, W.W., G.J. Caspers, and J.A. Leunissen, Genealogy of the alpha-crystallin--small heat-shock protein superfamily. Int J Biol Macromol, 1998. 22(3-4): p. 151-62. 59. Ingolia, T.D. and E.A. Craig, Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A, 1982. 79(7): p. 2360-4. 60. Horwitz, J., Alpha-Crystallin Can Function as a Molecular Chaperone. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(21): p. 10449-10453. 61. Ray, N., et al., Design of heat shock-resistant surfaces to prevent protein aggregation: Enhanced chaperone activity of immobilized alpha-Crystallin. Bioconjug Chem, 2014. 25(5): p. 888-95. 62. Kosinski-Collins, M.S. and J. King, In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Protein Sci, 2003. 12(3): p. 480-90. 63. Peek, R., et al., Activation and repression sequences determine the lens-specific expression of the rat gamma D-crystallin gene. Nucleic Acids Res, 1992. 20(18): p. 4865-71. 64. Peek, R., et al., Rise and fall of crystallin gene messenger levels during fibroblast growth factor induced terminal differentiation of lens cells. Dev Biol, 1992. 152(1): p. 152-60. 65. Wang, X., et al., Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Invest Ophthalmol Vis Sci, 2004. 45(10): p. 3608-19. 66. Herbrink, P., H. Vanwestreenen, and H. Bloemendal, Further Studies on Polypeptide-Chains of Beta-Crystallin. Experimental Eye Research, 1975. 20(6): p. 541-548. 67. Lampi, K.J., et al., Lens proteomics: analysis of rat crystallin sequences and two-dimensional electrophoresis map. Invest Ophthalmol Vis Sci, 2002. 43(1): p. 216-24. 68. Zigler, J.S., Jr., J. Horwitz, and J.H. Kinoshita, Human beta-crystallin. I. Comparative studies on the beta 1, beta 2 and beta 3-crystallins. Exp Eye Res, 1980. 31(1): p. 41-55. 69. Siezen, R.J., R.D. Anello, and J.A. Thomson, Interactions of lens proteins. Concentration dependence of beta-crystallin aggregation. Exp Eye Res, 1986. 43(3): p. 293-303. 70. Bennett, M.J., S. Choe, and D. Eisenberg, Domain Swapping - Entangling Alliances between Proteins. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(8): p. 3127-3131. 71. Slingsby, C., et al., X-ray diffraction and structure of crystallins. Progress in Retinal and Eye Research, 1997. 16(1): p. 3-29. 72. Hanson, S.R., D.L. Smith, and J.B. Smith, Deamidation and disulfide bonding in human lens gamma-crystallins. Exp Eye Res, 1998. 67(3): p. 301-12. 73. Sinha, D., et al., Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin. Mol Vis, 1998. 4: p. 8. 74. Wang, X., et al., Expression and regulation of gamma S-crystallin in the lens epithelium: An epithelial 'stress crystallin'. Investigative Ophthalmology Visual Science, 2003. 44: p. U409-U409. 75. Das, P., J.A. King, and R. Zhou, Aggregation of gamma-crystallins associated with human cataracts via domain swapping at the C-terminal beta-strands. Proc Natl Acad Sci U S A, 2011. 108(26): p. 10514-9. 76. Kosinski-Collins, M.S., S.L. Flaugh, and J. King, Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Sci, 2004. 13(8): p. 2223-35. 77. Chen, J., et al., Mechanism of the highly efficient quenching of tryptophan fluorescence in human gammaD-crystallin. Biochemistry, 2006. 45(38): p. 11552-63. 78. Schafheimer, N., et al., Tyrosine/cysteine cluster sensitizing human gammaD-crystallin to ultraviolet radiation-induced photoaggregation in vitro. Biochemistry, 2014. 53(6): p. 979-90. 79. Moran, S.D., et al., Amyloid fiber formation in human gammaD-Crystallin induced by UV-B photodamage. Biochemistry, 2013. 52(36): p. 6169-81. 80. Flaugh, S.L., M.S. Kosinski-Collins, and J. King, Contributions of hydrophobic domain interface interactions to the folding and stability of human gammaD-crystallin. Protein Sci, 2005. 14(3): p. 569-81. 81. Das, P., J.A. King, and R. Zhou, beta-Strand interactions at the domain interface critical for the stability of human lens gammaD-crystallin. Protein Sci, 2010. 19(1): p. 131-40. 82. Kong, F. and J. King, Contributions of aromatic pairs to the folding and stability of long-lived human gammaD-crystallin. Protein Sci, 2011. 20(3): p. 513-28. 83. Goulet, D.R., K.M. Knee, and J.A. King, Inhibition of unfolding and aggregation of lens protein human gamma D crystallin by sodium citrate. Exp Eye Res, 2011. 93(4): p. 371-81. 84. Wu, J.W.R., et al., Human gamma D-crystallin aggregation induced by ultraviolet C irradiation is suppressed by resveratrol. Biochemical Engineering Journal, 2013. 78: p. 189-197. 85. Rentala, S., et al., Docking studies of Vitamin C, Vitamin E, Damnacanthal and Scopoletin with human lens gamma D-crystalline. Bioinformation, 2013. 9(14): p. 721-4. 86. Metlapally, S., et al., Analysis of nuclear fiber cell cytoplasmic texture in advanced cataractous lenses from Indian subjects using Debye-Bueche theory. Exp Eye Res, 2008. 86(2): p. 434-44. 87. Gilliland, K.O., et al., Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts. Exp Eye Res, 2004. 79(4): p. 563-76. 88. Wu, J.W., et al., Comparative Analysis of Human gammaD-Crystallin Aggregation under Physiological and Low pH Conditions. PLoS One, 2014. 9(11): p. e112309. 89. Meehan, S., et al., Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. J Biol Chem, 2004. 279(5): p. 3413-9. 90. Wride, M.A., Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci, 2011. 366(1568): p. 1219-33. 91. Pande, A., et al., Decrease in protein solubility and cataract formation caused by the Pro23 to Thr mutation in human gamma D-crystallin. Biochemistry, 2005. 44(7): p. 2491-500. 92. Mills, I.A., et al., Folding and stability of the isolated Greek key domains of the long-lived human lens proteins gammaD-crystallin and gammaS-crystallin. Protein Sci, 2007. 16(11): p. 2427-44. 93. Chen, J., P.R. Callis, and J. King, Mechanism of the very efficient quenching of tryptophan fluorescence in human gamma D- and gamma S-crystallins: the gamma-crystallin fold may have evolved to protect tryptophan residues from ultraviolet photodamage. Biochemistry, 2009. 48(17): p. 3708-16. 94. Moreau, K.L. and J. King, Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin. J Biol Chem, 2009. 284(48): p. 33285-95. 95. Banerjee, P.R., et al., Increased hydrophobicity and decreased backbone flexibility explain the lower solubility of a cataract-linked mutant of gammaD-crystallin. J Mol Biol, 2011. 412(4): p. 647-59. 96. Sahin, E., et al., Computational design and biophysical characterization of aggregation-resistant point mutations for gammaD crystallin illustrate a balance of conformational stability and intrinsic aggregation propensity. Biochemistry, 2011. 50(5): p. 628-39. 97. Wang, L., et al., A novel mutation in gammaD-crystallin associated with autosomal dominant congenital cataract in a Chinese family. Mol Vis, 2011. 17: p. 804-9. 98. Ji, F., J. Jung, and A.M. Gronenborn, Structural and biochemical characterization of the childhood cataract-associated R76S mutant of human gammaD-crystallin. Biochemistry, 2012. 51(12): p. 2588-96. 99. Moran, S.D., S.M. Decatur, and M.T. Zanni, Structural and sequence analysis of the human gammaD-crystallin amyloid fibril core using 2D IR spectroscopy, segmental 13C labeling, and mass spectrometry. J Am Chem Soc, 2012. 134(44): p. 18410-6. 100. Moreau, K.L. and J.A. King, Cataract-causing defect of a mutant gamma-crystallin proceeds through an aggregation pathway which bypasses recognition by the alpha-crystallin chaperone. PLoS One, 2012. 7(5): p. e37256. 101. Ji, F., et al., The human W42R gammaD-crystallin mutant structure provides a link between congenital and age-related cataracts. J Biol Chem, 2013. 288(1): p. 99-109. 102. Lam, A.R., et al., Study of the gammaD-crystallin protein using two-dimensional infrared (2DIR) spectroscopy: experiment and simulation. J Phys Chem B, 2013. 117(49): p. 15436-43. 103. Schafheimer, N. and J. King, Tryptophan cluster protects human gammaD-crystallin from ultraviolet radiation-induced photoaggregation in vitro. Photochem Photobiol, 2013. 89(5): p. 1106-15. 104. Moran, S.D., T.O. Zhang, and M.T. Zanni, An alternative structural isoform in amyloid-like aggregates formed from thermally denatured human gammaD-crystallin. Protein Sci, 2014. 23(3): p. 321-31. 105. Yang, Z., et al., Dissecting the contributions of beta-hairpin tyrosine pairs to the folding and stability of long-lived human gammaD-crystallins. Nanoscale, 2014. 6(3): p. 1797-807. 106. Salsbury, F.R., Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology, 2010. 10(6): p. 738-744. 107. Durrant, J.D. and J.A. McCammon, Molecular dynamics simulations and drug discovery. Bmc Biology, 2011. 9. 108. McCammon, J.A., B.R. Gelin, and M. Karplus, Dynamics of folded proteins. Nature, 1977. 267(5612): p. 585-90. 109. Zhang, J., et al., Protein folding simulations: from coarse-grained model to all-atom model. IUBMB Life, 2009. 61(6): p. 627-43. 110. Cho, S.S., P. Weinkam, and P.G. Wolynes, Origins of barriers and barrierless folding in BBL. Proc Natl Acad Sci U S A, 2008. 105(1): p. 118-23. 111. Agarwal, P.K., A. Geist, and A. Gorin, Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A. Biochemistry, 2004. 43(33): p. 10605-18. 112. Salsbury, F.R., Jr., M.F. Crowley, and C.L. Brooks, 3rd, Modeling of the metallo-beta-lactamase from B. fragilis: structural and dynamic effects of inhibitor binding. Proteins, 2001. 44(4): p. 448-59. 113. Karplus, M. and J.A. McCammon, Molecular dynamics simulations of biomolecules. Nat Struct Biol, 2002. 9(9): p. 646-52. 114. Cai, W., J. Li, and S. Yip, Molecular Dynamics. Comprehensive Nuclear Materials, ed. R.J.M. Konings. Vol. 1. 2012, Amsterdam: Elsevier. 115. Cornell, W.D., et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules (vol 117, pg 5179, 1995). Journal of the American Chemical Society, 1996. 118(9): p. 2309-2309. 116. Wang, J.M., et al., Development and testing of a general amber force field. Journal of Computational Chemistry, 2004. 25(9): p. 1157-1174. 117. Brooks, B.R., et al., Charmm - a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computational Chemistry, 1983. 4(2): p. 187-217. 118. Christen, M., et al., The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 2005. 26(16): p. 1719-1751. 119. Martin, M.G., Comparison of the AMBER, CHARMM, COMPASS, GROMOS, OPLS, TraPPE and UFF force fields for prediction of vapor-liquid coexistence curves and liquid densities. Fluid Phase Equilibria, 2006. 248(1): p. 50-55. 120. Jorgensen, W.L., D.S. Maxwell, and J. TiradoRives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996. 118(45): p. 11225-11236. 121. Huang, Z.A. and C.F. Wong, Docking Flexible Peptide to Flexible Protein by Molecular Dynamics Using Two Implicit-Solvent Models: An Evaluation in Protein Kinase and Phosphatase Systems. Journal of Physical Chemistry B, 2009. 113(43): p. 14343-14354. 122. Van Der Spoel, D., et al., GROMACS: fast, flexible, and free. J Comput Chem, 2005. 26(16): p. 1701-18. 123. Hess, B., et al., LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 1997. 18(12): p. 1463-1472. 124. D. van der Spoel, E.L., B. Hess, A. R. van Buuren, E. Apol, P. J. Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, K. A. Feenstra, R. van Drunen and H. J. C. Berendsen, Gromacs User Manual version 4.5. 2010. 125. Ehrlich, L.P. and R.C. Wade, Protein-Protein Docking. Reviews in Computational Chemistry, Vol 17, 2001. 17: p. 61-97. 126. DeMarco, M.L. and V. Daggett, From conversion to aggregation: protofibril formation of the prion protein. Proc Natl Acad Sci U S A, 2004. 101(8): p. 2293-8. 127. Benyamini, H., et al., Fibril modelling by sequence and structure conservation analysis combined with protein docking techniques: beta(2)-microglobulin amyloidosis. Biochim Biophys Acta, 2005. 1753(1): p. 121-30. 128. Correia, B.E., et al., A structural model of an amyloid protofilament of transthyretin. Protein Sci, 2006. 15(1): p. 28-32. 129. Katchalskikatzir, E., et al., Molecular-Surface Recognition - Determination of Geometric Fit between Proteins and Their Ligands by Correlation Techniques. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(6): p. 2195-2199. 130. Andrusier, N., R. Nussinov, and H.J. Wolfson, FireDock: fast interaction refinement in molecular docking. Proteins, 2007. 69(1): p. 139-59. 131. Lyskov, S. and J.J. Gray, The RosettaDock server for local protein-protein docking. Nucleic Acids Res, 2008. 36(Web Server issue): p. W233-8. 132. Mashiach, E., R. Nussinov, and H.J. Wolfson, FiberDock: Flexible induced-fit backbone refinement in molecular docking. Proteins, 2010. 78(6): p. 1503-19. 133. Chen, R., L. Li, and Z. Weng, ZDOCK: an initial-stage protein-docking algorithm. Proteins, 2003. 52(1): p. 80-7. 134. Tovchigrechko, A. and I.A. Vakser, GRAMM-X public web server for protein-protein docking. Nucleic Acids Res, 2006. 34(Web Server issue): p. W310-4. 135. Macindoe, G., et al., HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res, 2010. 38(Web Server issue): p. W445-9. 136. Schneidman-Duhovny, D., et al., PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research, 2005. 33: p. W363-W367. 137. Dominguez, C., R. Boelens, and A.M. Bonvin, HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc, 2003. 125(7): p. 1731-7. 138. Mashiach, E., R. Nussinov, and H.J. Wolfson, FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking. Nucleic Acids Res, 2010. 38(Web Server issue): p. W457-61. 139. Chen, R. and Z.P. Weng, Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins-Structure Function and Genetics, 2002. 47(3): p. 281-294. 140. Li, L., R. Chen, and Z. Weng, RDOCK: refinement of rigid-body protein docking predictions. Proteins, 2003. 53(3): p. 693-707. 141. Janin, J., Welcome to CAPRI: A Critical Assessment of PRedicted Interactions. Proteins-Structure Function and Genetics, 2002. 47(3): p. 257-257. 142. Janin, J., Assessing predictions of protein-protein interaction: the CAPRI experiment. Protein Sci, 2005. 14(2): p. 278-83. 143. Fandrich, M., On the structural definition of amyloid fibrils and other polypeptide aggregates. Cellular and Molecular Life Sciences, 2007. 64(16): p. 2066-2078. 144. Harrison, R.S., et al., Amyloid peptides and proteins in review. Reviews of Physiology, Biochemistry and Pharmacology, Vol 159, 2007. 159: p. 1-77. 145. Chiti, F. and C.M. Dobson, Amyloid formation by globular proteins under native conditions. Nature Chemical Biology, 2009. 5(1): p. 15-22. 146. Ventura, S., et al., Short amino acid stretches can mediate amyloid formation in globular proteins: The Src homology 3 (SH3) case. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(19): p. 7258-7263. 147. Pastor, M.T., A. Esteras-Chopo, and L. Serrano, Hacking the code of amyloid formation: the amyloid stretch hypothesis. Prion, 2007. 1(1): p. 9-14. 148. Teng, P.K. and D. Eisenberg, Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Engineering Design Selection, 2009. 22(8): p. 531-536. 149. Caflisch, A., Computational models for the prediction of polypeptide aggregation propensity. Current Opinion in Chemical Biology, 2006. 10(5): p. 437-444. 150. Kallberg, Y., et al., Prediction of amyloid fibril-forming proteins. J Biol Chem, 2001. 276(16): p. 12945-50. 151. Yoon, S. and W.J. Welsh, Detecting hidden sequence propensity for amyloid fibril formation. Protein Sci, 2004. 13(8): p. 2149-60. 152. Kim, C., et al., NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res, 2009. 37(Web Server issue): p. W469-73. 153. Hamodrakas, S.J., C. Liappa, and V.A. Iconomidou, Consensus prediction of amyloidogenic determinants in amyloid fibril-forming proteins. Int J Biol Macromol, 2007. 41(3): p. 295-300. 154. Hamodrakas, S.J., A protein secondary structure prediction scheme for the IBM PC and compatibles. Comput Appl Biosci, 1988. 4(4): p. 473-7. 155. Lopez de la Paz, M. and L. Serrano, Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A, 2004. 101(1): p. 87-92. 156. Fernandez-Escamilla, A.M., et al., Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol, 2004. 22(10): p. 1302-6. 157. Zhang, Z., H. Chen, and L. Lai, Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics, 2007. 23(17): p. 2218-25. 158. Galzitskaya, O.V., S.O. Garbuzynskiy, and M.Y. Lobanov, Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol, 2006. 2(12): p. e177. 159. Zibaee, S., et al., A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci, 2007. 16(5): p. 906-18. 160. Conchillo-Sole, O., et al., AGGRESCAN: a server for the prediction and evaluation of 'hot spots' of aggregation in polypeptides. BMC Bioinformatics, 2007. 8: p. 65. 161. Tian, J., et al., Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics, 2009. 10 Suppl 1: p. S45. 162. Maurer-Stroh, S., et al., Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods, 2010. 7(3): p. 237-42. 163. O'Donnell, C.W., et al., A method for probing the mutational landscape of amyloid structure. Bioinformatics, 2011. 27(13): p. i34-42. 164. Frousios, K.K., et al., Amyloidogenic determinants are usually not buried. BMC Struct Biol, 2009. 9: p. 44. 165. Tsolis, A.C., et al., A consensus method for the prediction of 'aggregation-prone' peptides in globular proteins. PLoS One, 2013. 8(1): p. e54175. 166. Beckstein, O., et al., Zipping and unzipping of adenylate kinase: atomistic insights into the ensemble of open<-->closed transitions. J Mol Biol, 2009. 394(1): p. 160-76. 167. Michaud-Agrawal, N., et al., MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J Comput Chem, 2011. 168. Pauling, L. and R.B. Corey, The polypeptide-chain configuration in hemoglobin and other globular proteins. Proc Natl Acad Sci U S A, 1951. 37(5): p. 282-5. 169. Pauling, L. and R.B. Corey, The structure of fibrous proteins of the collagen-gelatin group. Proc Natl Acad Sci U S A, 1951. 37(5): p. 272-81. 170. Pauling, L. and R.B. Corey, The structure of hair, muscle, and related proteins. Proc Natl Acad Sci U S A, 1951. 37(5): p. 261-71. 171. Pauling, L. and R.B. Corey, The structure of feather rachis keratin. Proc Natl Acad Sci U S A, 1951. 37(5): p. 256-61. 172. Pauling, L. and R.B. Corey, The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci U S A, 1951. 37(5): p. 251-6. 173. Pauling, L. and R.B. Corey, The structure of synthetic polypeptides. Proc Natl Acad Sci U S A, 1951. 37(5): p. 241-50. 174. Levitt, M. and J. Greer, Automatic Identification of Secondary Structure in Globular Proteins. Journal of Molecular Biology, 1977. 114(2): p. 181-239. 175. Kabsch, W. and C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983. 22(12): p. 2577-637. 176. Hayward, S. and B.L. de Groot, Normal modes and essential dynamics. Methods Mol Biol, 2008. 443: p. 89-106. 177. David, C.C. and D.J. Jacobs, Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol, 2014. 1084: p. 193-226. 178. Hayward, S., A. Kitao, and H.J. Berendsen, Model-free methods of analyzing domain motions in proteins from simulation: a comparison of normal mode analysis and molecular dynamics simulation of lysozyme. Proteins, 1997. 27(3): p. 425-37. 179. Hayward, S. and H.J.C. Berendsen, Systematic analysis of domain motions in proteins from conformational change: New results on citrate synthase and T4 lysozyme. Proteins-Structure Function and Genetics, 1998. 30(2): p. 144-154. 180. Hayward, S. and R.A. Lee, Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J Mol Graph Model, 2002. 21(3): p. 181-3. 181. Poornam, G.P., et al., A method for the analysis of domain movements in large biomolecular complexes. Proteins-Structure Function and Bioinformatics, 2009. 76(1): p. 201-212. 182. Berendsen, H.J.C., D. Vanderspoel, and R. Vandrunen, Gromacs - a Message-Passing Parallel Molecular-Dynamics Implementation. Computer Physics Communications, 1995. 91(1-3): p. 43-56. 183. Lindahl, E., B. Hess, and D. Van Der Spoel, GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 2001. 7(8): p. 306-317. 184. Hess, B., et al., GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008. 4(3): p. 435-447. 185. Discovery studio modeling environment, Release 3.5. 2012. 186. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. J Mol Graph, 1996. 14(1): p. 33-8, 27-8. 187. Rostkowski, M., et al., Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct Biol, 2011. 11: p. 6. 188. Tina, K.G., R. Bhadra, and N. Srinivasan, PIC: Protein Interactions Calculator. Nucleic Acids Res, 2007. 35(Web Server issue): p. W473-6. 189. Basak, A., et al., High-resolution X-ray crystal structures of human gammaD crystallin (1.25 A) and the R58H mutant (1.15 A) associated with aculeiform cataract. J Mol Biol, 2003. 328(5): p. 1137-47. 190. Chandrasekhar, I., et al., A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. European Biophysics Journal with Biophysics Letters, 2003. 32(1): p. 67-77. 191. Hess, B., P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 2008. 4(1): p. 116-122. 192. Essmann, U., et al., A Smooth Particle Mesh Ewald Method. Journal of Chemical Physics, 1995. 103(19): p. 8577-8593. 193. Barlow, D.J. and J.M. Thornton, Ion-Pairs in Proteins. Journal of Molecular | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54321 | - |
| dc.description.abstract | 近期研究顯示約50%的失明是白內障(cataract)所造成,而白內障是由於水晶體蛋白聚集(aggregation)使水晶體混濁(opacification)造成視力衰退。水晶體中含有豐富,高濃度的水晶體蛋白使光線能夠順利通過並聚焦於視網膜。然而,許多環境因素如暴露於紫外光環境及酸性環境都會引發水晶體蛋白去摺疊產生聚集,進而造成水晶體混濁。人類γD型水晶體蛋白(HγDC)富含於水晶體核心處,俱有173個殘基,並由兩結構對稱的區域所組成(N端及C端區域)。過去研究發現酸性環境能夠誘導HγDC形成類澱粉纖維(amyloid fibril),且認為其聚集途徑可能與老化核型白內障(nuclear cataract)的形成有關,然而,其類澱粉纖維形成的機制目前尚不明確。 本研究利用分子動力學模擬(molecular dynamics simulations)及生物資訊預測軟體(bioinformatics tools)探討HγDC於酸性環境下的結構變化及可能的類澱粉纖維形成途徑。根據吾人結果,HγDC在酸性環境下出現顯著的結構擾動,尤其以C端區域之擾動較為明顯;主成分分析(principal components analysis, PCA)之結果顯示HγDC在酸性環境下出現較為明顯之與觸發區域置換(domain swapping)聚集機制相關的區域間旋轉現象;在酸性環境下,吾人發現C端區域上的原態鹽橋對(native salt-bridge)Asp96-Arg151由於Asp96的質子化因素減弱其間的鹽橋作用力;此外,模擬過程中HγDC的二級結構在殘基N160至G164出現延伸之β-strand結構,其與Glu119-Arg162間的靜電作用力減弱與Asp107-Arg168的原態鹽橋作用力隨模擬時間之變化有相當明顯的關聯性;而透過分子對接模擬,吾人發現motif-4參與了許多分子間作用力。吾人相信此研究之結果可讓研究者更了解HγDC之結構轉變及類澱粉纖維形成,並且期望能夠啟發研究人員發展更有效之預防白內障方法。 | zh_TW |
| dc.description.abstract | Recent evidence indicates that approximately 50% of blindness is caused by cataract, a well-known disease of the eye lens related to protein aggregation. The high concentration of well-ordered crystallin proteins distributed throughout the entire eye lens retains the transparency of the lens. Unfortunately, several factors including the exposure of ultraviolet irradiation and possibly acidic conditions may induce the unfolding and/or aggregation of the crystallin proteins, eventually leading to lens opacification. Human γD-crystallin (HγDC), a 173 residue structural protein com-posed of two structurally homologous domains (N-terminal and C-terminal domains), is abundant in the nucleus of the human eye lens. Previous studies have demonstrated that acidic conditions may induce the formation of amyloid fibrils in HγDC and that this aggregation pathway is likely to be related to the initiation of age-related nuclear cataract. However, the detailed mechanism of fibril formation remains elusive. In this work, the structural alteration and the possible amyloid-fibril formation pathway of HγDC at acidic condition was examined on the molecular level by molecular dynamics (MD) sim-ulations and bioinformatics tools. According to our results, a significant structural fluctuation was found in HγDC under acidic conditions, especially in the C-terminal domain. Principal components analysis (PCA) revealed a stronger inter-domain rotation under acidic condition, which supports the hypothesis of the domain-swapping aggregation mechanism. Furthermore, the native salt-bridge interaction between Asp96-Arg151 on the C-terminal domain was found to diminish under the acidic conditions due to the protonation of Asp96. In addition, the weakening of electrostatic inter-action between Glu119-Arg162 and the regaining of Asp107-Arg168 native salt-bridge interaction after 100 ns simulation time were coincided with an extention of beta-strand from the region en-compassing residues N160 to G164. The docking simulation results suggest that motif-4 is mainly involved in the inter-molecular interaction. We believe the outcome from this work provides detailed insights into the structural transition leading to amyloid-fibril formation of HγDC. Moreover, the information obtained herein would definitely contribute to the development of effective ways to prevent cataract. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:50:23Z (GMT). No. of bitstreams: 1 ntu-104-R02524027-1.pdf: 17869252 bytes, checksum: c4c9d8b85ff328a5de752e872e1971c5 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝 I 中文摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 章節概述 2 第二章 文獻回顧 3 2.1 蛋白質聚集(Protein aggregation) 3 2.1.1 蛋白質聚集途徑 8 2.1.2 蛋白質聚集形態(morphology) 9 2.1.3 以區域置換(domain swapping)方式產生蛋白質聚集 11 2.2 白內障(Cataract) 14 2.2.1 水晶體 14 2.2.2 白內障成因 16 2.2.3 白內障種類 19 2.2.4 白內障治療方法 22 2.3 水晶體蛋白(crystallin) 24 2.3.1 α型水晶體蛋白 25 2.3.2 βγ型水晶體蛋白 26 2.3.3 人類γD型水晶體蛋白(Human γD crystallin,HγDC) 28 2.4 電腦模擬(computer simulations) 37 2.4.1 分子動力學模擬(molecular dynamics simulations) 37 2.4.2 蛋白質對接模擬(protein docking simulations) 43 2.4.3 生物資訊軟體 50 2.5 模擬分析方法原理介紹 54 2.5.1 方均根變異(Root mean square deviation, RMSD)分析 54 2.5.2 方均根擾動(Root mean square fluctuation, RMSF)分析 54 2.5.3 原態接觸(Native contact)分析 55 2.5.4 蛋白質二級結構分析(Dictionary of protein secondary structure, DSSP) 55 2.5.5 主成分分析(Principal components analysis, PCA) 57 2.5.6 區域間旋轉分析(Inter-domain rotation analysis) 59 第三章 實驗儀器與步驟 62 3.1 模擬系統與軟體 62 3.1.1 模擬系統 62 3.1.2 模擬軟體 62 3.2 分子動力學模擬及數據分析 63 3.2.1 HγDC原態結構取得 63 3.2.2 Gromacs模擬流程 63 3.2.3 Root Mean Square Deviation (RMSD)分析 64 3.2.4 Root Mean Square Fluctuation (RMSF)分析 65 3.2.5 Native Contact分析 65 3.2.6 離子與蛋白質間交互作用分析 66 3.2.7 氫鍵作用力分析 66 3.2.8 鹽橋作用力(Salt-bridge interaction)分析 67 3.2.9 DSSP二級結構預測分析 67 3.2.10 主成分分析(Principal components analysis) 68 3.2.11 區域間旋轉分析(Inter-domain rotation analysis) 68 3.3 生物資訊預測軟體(Bioinformatics prediction tools) 71 3.4 蛋白質-蛋白質對接模擬(Protein-protein docking simulations) 73 3.4.1 ZDOCK[133] 73 3.4.2 RDOCK[140] 73 3.4.3 FiberDock[132, 138] 74 3.4.4 RosettaDock[131] 75 3.4.5 分子對接動力學模擬 78 3.4.6 蛋白質分子間作用力分析 78 第四章 實驗結果與討論 80 4.1 HγDC在中性及酸性環境下的整體結構變化 80 4.1.1 RMSD分析結果 80 4.1.2 原態接觸分析結果 81 4.1.3 主成分分析結果 82 4.2 探討HγDC結構不穩定區域及其不穩定原因 84 4.2.1 HγDC個別區域之原態接觸分析 84 4.2.2 離子與蛋白質間交互作用分析 87 4.2.3 鹽橋作用力於酸性環境下對HγDC結構穩定性之影響 89 4.2.4 HγDC結構擾動分析 97 4.2.5 以生物資訊軟體預測HγDC的類澱粉聚集熱點區域 98 4.2.6 HγDC二級結構分析 99 4.3 推測HγDC可能的聚集機制 102 4.3.1 區域間旋轉分析 102 4.3.2 剛體對接 104 4.3.3 剛體對接結果修飾 105 4.3.4 對接結構作用力分析 106 第五章 結論與建議 109 5.1 結論 109 5.2 建議 112 Reference 113 | |
| dc.language.iso | zh-TW | |
| dc.subject | 人類γD型水晶體蛋白 | zh_TW |
| dc.subject | 類澱粉纖維 | zh_TW |
| dc.subject | 酸性環境 | zh_TW |
| dc.subject | 蛋白質聚集 | zh_TW |
| dc.subject | 分子動力學模擬 | zh_TW |
| dc.subject | 人類γD型水晶體蛋白 | zh_TW |
| dc.subject | 類澱粉纖維 | zh_TW |
| dc.subject | 酸性環境 | zh_TW |
| dc.subject | 蛋白質聚集 | zh_TW |
| dc.subject | 分子動力學模擬 | zh_TW |
| dc.subject | Human γD-crystallin | en |
| dc.subject | Molecular dynamics (MD) simulations | en |
| dc.subject | Protein aggregation | en |
| dc.subject | Acidic condition | en |
| dc.subject | Amyloid fibril | en |
| dc.subject | Human γD-crystallin | en |
| dc.subject | Molecular dynamics (MD) simulations | en |
| dc.subject | Protein aggregation | en |
| dc.subject | Acidic condition | en |
| dc.subject | Amyloid fibril | en |
| dc.title | 以電腦模擬方式探討人類γD型水晶體蛋白之可能聚集機制 | zh_TW |
| dc.title | Investigating the Possible Aggregation Mechanism of Human γD-Crystallin by Computer Simulations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴進此(Jinn-Tsyy Lai),林達顯(Ta-Hsien Lin),王孟菊(Meng-Jiy Wang),吳宛儒(Wan-Ru Wu),廖思婷(Shih-Ting Liaw) | |
| dc.subject.keyword | 人類γD型水晶體蛋白,分子動力學模擬,蛋白質聚集,酸性環境,類澱粉纖維, | zh_TW |
| dc.subject.keyword | Human γD-crystallin,Molecular dynamics (MD) simulations,Protein aggregation,Acidic condition,Amyloid fibril, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 17.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
