請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54318完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林江珍 | |
| dc.contributor.author | Ya-Chen Lin | en |
| dc.contributor.author | 林亞蓁 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:50:13Z | - |
| dc.date.available | 2020-10-12 | |
| dc.date.copyright | 2015-10-12 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-15 | |
| dc.identifier.citation | 1. El-Nour, K. M. A., Eftaiha, A. A., Al-Warthan, A. and Ammar, R. A., Synthesis and applications of silver nanoparticles, Arabian Journal of Chemistry, 2010, 3, 135-140.
2. Huang, S., Dai, L., Mau, A. W. H., Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films, The Journal of Physical Chemistry B, 1999, 103, 4223-4227. 3. Huang, S., Dai, L. and Mau, A. W., Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science 2003, 28, 1539-1641. 4. Pinnavaia, T. J., Intercalated clay catalysts. Science, 1983, 220, 365-371. 5. Laszlo, P., Chemical reactions on clays, Science, 1987, 235, 1473-1477. 6. Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M. and Buglass, J. G., Delaminated zeolite precursors as selective acidic catalysts, Nature, 1998, 396, 353-356. 7. Celis, R., Hermosin, M. C., Carrizosa, M. J. and Cornejo, J., Inorganic and organic clays as carriers for controlled release of the herbicide hexazinone, J. Agric. Food Chem, 2002, 50, 2324-2330. 8. Kiraly, Z., Veisz, B., Mastalir, A. and Kofarago, G., Preparation of ultrafine palladium particles on cationic and anionic clays, mediated by oppositely charged surfactants: catalytic probes in hydrogenations, Langmuir, 2001, 17, 5381-5387. 9. Giannelis, E. P., Polymer-layered silicate nanocomposites: synthesis, properties and applications, Appl. Organometal Chem, 1998, 12, 675-680. 10. Balogh, M. and Laszlo, P., Organic chemistry using clays, Springer-Verlag, Berlin Heidelberg, 1993. 11. Mitchell, J. K. and Kenichi S., Fundamentals of soil behavior. New York: Wiley, 1976. 12. Gârea, S. A., Iovu, H. and Bulearca, A, New organophilicagents of montmorillonite used as reinforcing agent in epoxynanocompostes. Polym. Test, 2008, 27, 100-13. 13. The Mineral Montmorillonite, Amethyst Galleries Inc., 2006, Home Page: www.mineral.galleries.com, accessed July, 2007. 14. Theng, B. K. G., The Chemistry of Clay-Organic Reactions, John Wiley & Sons: New York, 1974. 15. Giannelis, E. P., Krishnamoorti, R. and Manias, E., Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes, Polymers in confined environments, Springer Berlin Heidelberg. 1999, 8, 107-147. 16. Maity, A. and Biswas, M., Recent progress in conducting polymer, mixed polymer-inorganic hybrid nanocomposites, Journal of Industrial and Engineering Chemistry, 2006, 12, 311-351. 17. Lin, J. J., Cheng, I. J. Wng, R. and Lee, R. J., Tailoring basal spacings of montmorillonite by poly (oxyalkylene) diamine intercalation, Macromolecules, 2001, 34, 8832-8834. 18. Ijdo, W. L. and Pinnavaia, T. J., Solid solution formation in amphiphilic organic-inorganic clay heterostructures, Chemistry of materials, 1999, 11, 3227-3231. 19. Chu, C. C., Chiang, M. L., Tsai, C. M. and Lin, J. J., Exfoliation of montmorillonite clay by mannich polyamines with multiple quaternary salts, Macromolecules, 2005, 38, 6240-6243. 20. Amir Parviz, B., Ryan, D. and Whitesides, G. M., Using self-assembly for the fabrication of nano-scale electronic and photonic devices, Advanced Packaging, 2003, 26, 233-241. 21. Chowdhury, D., Maoz, R. and Sagiv, J., Wetting Driven Self-Assembly as a New Approach to Template-Guided Fabrication of Metal Nanopatterns, Nano Letters, 2007, 7, 1770-1778. 22. Herranz, M. Á., Colonna, B. and Echegoyen, L., Metal ion recognition and molecular templating in self-assembled monolayers of cyclic and acyclic polyethers, Proceedings of the National Academy of Sciences, 2002, 99, 5040-5047. 23. Kim, J. H., Rahman, M. S., Lee, J.-S. and Park, J.-W., Liquid Crystalline Ordering in the Self-Assembled Monolayers of Tethered Rodlike Polymers. Journal of the American Chemical Society, 2007, 129, 7756-7757. 24. Bhargava, P., Zheng, J. X., Li, P., Quirk, R. P., Harris, F. W. and Cheng, S. Z. D., Self-Assembled Polystyrene-block-poly(ethylene oxide) Micelle Morphologies in Solution, Macromolecules, 2006, 39, 4880-4888. 25. Agut, W., Brûlet, A., Taton, D. and Lecommandoux, S., Thermoresponsive Micelles from Jeffamine-b-poly(l-glutamic acid) Double Hydrophilic Block Copolymers, Langmuir: the ACS journal of surfaces and colloids, 2007, 23, 11526-11533. 26. Mountrichas, G.and Pispas, S., Synthesis and pH Responsive Self-Assembly of New Double Hydrophilic Block Copolymers, Macromolecules, 2006, 39, 4767-4774. 27. Alexandridis, P. and Yang, L., SANS Investigation of Polyether Block Copolymer Micelle Structure in Mixed Solvents of Water and Formamide, Ethanol, or Glycerol, Macromolecules, 2000, 33, 5574-5587. 28. Okada, A. and Usuki, A., Twenty Years of Polymer-Clay Nanocomposites, Macromolecular Materials and Engineering, 2006, 291, 1449-1476. 29. Peng, Y. H. and Lin, J. J., Synthesis and Properties of Amphiphilic Organoclays by Poly(oxyalkylene)-segmented Amine-salts as Modifiers, Master Thesis, 2013. 30. Azeez, A. A., Rhee, K. Y., Park, S. J. and Hui, D., Epoxy clay nanocomposites – processing, properties and applications: A review. Composites Part B: Engineering, 2013, 45, 308-320. 31. Liu, L., Qi, Z. and Zhu, X., Studies on nylon 6/clay nanocomposites by melt-intercalation process, Journal of Applied Polymer Science, 1999, 71, 1133-1138. 32. Katiyar, V., Gerds, N., Koch, C. B., Risbo, J., Hansen, H. C. B. and Plackett, D., Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide, Polymer Degradation and Stability, 2010, 95, 2563-2573. 33. Akelah, A. and Moet, A., Polymer-clay nanocomposites: Free-radical grafting of polystyrene on to organophilic montmorillonite interlayers, Journal of Materials Science, 1996, 31, 3589-3596. 34. Jin, Y. H., Park, H. J., Im, S. S., Kwak, S. Y. and Kwak, S., Polyethylene/Clay Nanocomposite by In-Situ Exfoliation of Montmorillonite During Ziegler-Natta Polymerization of Ethylene, Macromolecular Rapid Communications, 2002, 23, 135-140. 35. Ke, Y., Long, C. and Qi, Z., Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites, Journal of Applied Polymer Science, 1999, 71, 1139-1146. 36. Jan, I. N., Lee, T. M., Chiou, K. C. and Lin, J. J., Comparisons of Physical Properties of Intercalated and Exfoliated Clay/Epoxy Nanocomposites, Industrial & Engineering Chemistry Research, 2005, 44, 2086-2090. 37. Chiu, C. W., Cheng, W. T., Wang, Y. P. and Lin, J. J., Fine Dispersion of Hydrophobic Silicate Platelets in Anhydride-Cured Epoxy Nanocomposites, Industrial & Engineering Chemistry Research, 2007, 46, 7384-7388. 38. Chu, C. C., Lin, J. J., Shiu, C. R. and Kwan, C. C., Fine dispersion and property differentiation of nanoscale silicate platelets and spheres in epoxy nanocomposites, Polymer journal, 2005, 37, 239-245. 39. Ray, S. S. and Okamoto M., Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in polymer science, 2003, 28, 1539-1641. 40. Paul J., Cherian, A. B., Unnikrishnan K. P. and Thachil, E. T., Synthesis of pendant epoxy functional polydimethylsiloxane for modification of Diglycidyl Ether of Bis-phenol A. Advances in Polymer Science and Technology: An International Journal, 2011, 1, 22-29. 41. Alexandre, M. and Dubois, P., Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials, Mater. Sci. Eng, 2000, 28, 1-36. 42. Vaia, R. A., Ishii, H. and Giannelis, E. P., Synthesis and Properties of Two-Dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates, Chem. Mater, 1993, 5, 1694-1696. 43. Park, J. H. and Jana, S. C., Mechanism of Exfoliation of Nanoclay Particles in Epoxy-Clay Nanocomposites, Macromolecules, 2003, 36, 2758-2768. 44. Chiu, C. W., Chu, C. C., Cheng, W. T. and Lin, J. J, Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites, European Polymer Journal, 2008, 44, 628-636. 45. Lee, T. M., Ma, C. C. M., Hsu, C. W. and Wu, H. L, Effect of molecular structures and mobility on the thermal and dynamical mechanical properties of thermally cured epoxy-bridged polyorganosiloxanes, Polymer, 2005, 46, 8286-8296. 46. Chen, Y. M., Liao, Y. L. and Lin, J. J., Synergistic effect of silicate clay and phosphazene-oxyalkyleneamines on thermal stability of cured epoxies. Journal of Colloid and Interface Science, 2010, 343, 209-216. 47. Kang, S., Hong, S. I., Choe, C. R., Park, M., Rim, S. and Kim, J., Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process, Polymer, 2001, 42, 879-887. 48. Stober W, Fink A and Bohn E. J., Controlled growth of monodisperse silica spheres in the micron size range, Journal of colloid and interface science, 1968, 26, 62-69. 49. Brinker, C. J. and Scherer, G. W., Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press, 2013. 50. Vansant, E. F., Van Der Voort, P. and Vrancken, K. C., Characterization and chemical modification of the silica surface, Amsterdam: Elsevier, 1995. 51. Wegner, G., Nanoarchitectures and molecular composites as advanced materials, Macromolecular Symposia, 1996, 104, 29-30. 52. Chen, Y. M., Lin, H. C., Hsu, R. S., Hsieh, B. Z., Su, Y. A., Sheng, Y. J. and Lin, J. J., Thermoresponsive Dual-Phase Transition and 3D Self-Assembly of Poly(N-Isopropylacrylamide) Tethered to Silicate Platelets, Chem. Mater, 2009, 21, 4071-4079. 53. Fu X. and Qutubuddin S., Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene, Polymer, 2001, 42, 807-813. 54. Herrera N.N. and Letoffe J.M., Reymond J.P. and Bourgeat-Lami E., Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes, Journal of Materials Chemistry, 2005, 15, 863-871. 55. Herrera N.N., Letoffe J.M., Putaux J.L., David L. and Bourgeat-Lami E., Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites, Langmuir, 2004, 20, 1564-1571. 56. Negrete-Herrera, N., Putaux, J. L., David, L. and Bourgeat-Lami, E, Polymer/laponite composite colloids through emulsion polymerization: influence of the clay modification level on particle morphology, Macromolecules, 2006, 39, 9177-9184. 57. Leu C. M., Wu Z. W. and Wei K. H., Novel luminescent terbium molecular-based hybrids with modified meta-aminobenzoic acid covalently bonded with silica, Chem. Mater, 2002, 14, 3016-3021. 58. Standard, A. S. T. M., Annual Book of ASTM Standards. American Society of Testing and Materials, Philadelphia, 1988, 06.01. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54318 | - |
| dc.description.abstract | 新穎性之高分子聚乙烯醚胺鏈段矽氧烷偶合劑(polymeric sol-gel agents, PSA)主要是由低分子量的聚乙烯醚胺鏈段矽氧烷(APTES)所製備出來,其可增進環氧樹酯與黏土奈米複材的物理性質。本研究利用二級胺與環氧樹酯製備出環氧樹酯交聯系統,並進一步與矽氧烷試劑反應成新穎性PSA系統。將先前發明之奈米矽片以grafting to即graftting from兩種方式添加於PSA系統中,可發現PSA與奈米矽片產生溶膠-凝膠反應,進而增進環氧樹酯/矽片奈米複材硬度與熱性質等效能、並以傅里葉轉換紅外光譜與29Si固態核磁共振光譜儀進行鑑定,熱重分析儀、鉛筆硬度測試後端性質。本研究為新式高分子聚乙烯醚胺鏈段矽氧烷偶合劑與矽片形成分子複合材料而有效增進物理性質。
本研究已成功開發一系列新型反應型高分子聚乙烯醚胺鏈段矽氧烷偶合劑 (PSA)。藉溶膠-凝膠法(sol-gel reaction),可有效與奈米矽片形成共價鍵結,並使奈米矽片均勻分散於基材中。此奈米矽片/環氧樹脂複合材料可有效提升膜材硬度,僅需添加0.7wt% 奈米矽片,硬度即可由F顯著提升至2H。且因奈米矽片有效分散於環氧樹脂基材中,亦不影響膜材透明度性質,膜材穿透度可維持於 87%。於未來此奈米複合材料將可應用於封裝材、包裝材等應用,提升膜材硬度性質。 | zh_TW |
| dc.description.abstract | Polymeric sol-gel agents (PSA) were synthesized from the common sol-gel compounds such as 3-aminopropyltrimethoxysilane (APTES) and the amine/epoxy reaction. The epoxy resin, diglycidyl ether of bisphenol-A (DGEBA), was allowed to react with a diamine and APTES to afford the newly designed PSA. The conventional clay/epoxy nanocomposites were further improved via the in situ PSA reaction into the covalently bonded molecular composites. The previously developed nanoscale silicate platelets were adopted to demonstrate the advanced properties in the epoxies. The structures of PSA were designed to facilitate the in situ sol-gel reaction between clays and APTES by grafting from and grafting to methods. The physical properties such as hardness, transparency, and thermal stability were examined. The molecular level of APTES on silicate clays was characterized by solid-state 29Si-NMR. The advances of the physical properties of the molecular level versus nanoscale dispersed composites were first time evidenced. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:50:13Z (GMT). No. of bitstreams: 1 ntu-104-R02549004-1.pdf: 2732466 bytes, checksum: f9684be34dd8206f2ad647facf65838f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Acknowledgement …………………………………………………………........... I
中文摘要 …………………………………………………………........................ II Abstract ………………………………………………………............................ III Contents ………………..…………………………………................................ IV Figure captions …………………………………………………………............... VI Table captions ………………………………………………………................... VIII Scheme captions ………………………………………………………............... IX Chapter 1 Introduction and Literature Review…….....……............................. 1 1.1. Intercalation and Exfoliation of Layered Clays………......…………...……… 1 1.1.1 Introduction of Nanomaterial……………….….…….................…….….… 1 1.1.2 Introduction to Nanoclay and NSP.……….................…………..……….. 3 1.1.3 Development of Organic Clays……….....…………................................ 5 1.2 Clay–polymer Nanocomposites.………………………......…………............. 7 1.2.1 Background……………………………………………......................……… 7 1.2.2 Clay–polymer Nanocomposites.…………..........….........................…… 7 1.2.3 Clay-epoxy Nanocomposites………………………….................………… 9 1.3. Molecular Composites…………………………………….....…………........ 10 1.3.1 Background...……………………..............…………………….……....…. 10 1.3.2 Sol-gel Reaction…………........…………………………......................... 11 1.3.3 Covalent Bonding between Silicates and Clay.…............................…. 13 1.4 Research Objectives………………………..……....................……………. 14 Chapter 2 Experimental Section……………………..........…………................ 15 2.1. Materials………………………………………......….............……...…..….. 15 2.2. Synthesis of Different Structures of Polymeric Sol-gel Agent (PSA)….... 16 2.2.1 Linear PSA System…………………............................………………… 16 2.2.2 Branched PSA System………………...........................………………... 17 2.2.3 Comb-like PSA System…………….......................…………….......….. 17 2.3. Preparation of Clay/PSA Molecular Composites………...…................... 18 2.3.1 Clay/PSA Molecular Composites (the grafting to method) …............… 18 2.3.2 Clay/PSA Molecular Composites (the grafting from method) ….…....… 19 2.4. Preparation of PSA and Clay/PSA Film……….....................…………… 21 2.5. POP-D400/epoxy Reaction…………………………......................………. 21 2.6. Clay/epoxy Nanocomposites…………..................……………………….. 21 2.7. Characterization…………………….....................…………………………. 22 Chapter 3 Results and Discussion……………………..................……………. 23 3.1. Synthesis of Three Designed Structures of PSA…………..................... 23 3.2. Properties Comparison with Three Designed Structure of PSA Systems. 28 3.3. Comparison with Grafting from and Grafting to Method…….................... 30 3.4. Clay/PSA Molecular Composites versus by Clay/epoxy Nanocomposites.…………………………………………………………………………………… 32 3.5. The Various OH Species on Clay/APTES according to 29Si-NMR…..…. 36 3.6. Structural Characterizations of Clay/APTES………………............……... 37 3.7. Gel time of Clay/comb-like PSA Molecular Composites……….........…… 40 3.8. Thermal Properties by the Thermal Gravimetric Analysis….…….........… 42 Chapter 4 Conclusion……………………..………………………………………… 44 Chapter 5 References………………………………………….………………...…. 46 | |
| dc.language.iso | en | |
| dc.subject | 環氧樹酯交聯 | zh_TW |
| dc.subject | 分子複合材料 | zh_TW |
| dc.subject | 奈米矽片 | zh_TW |
| dc.subject | 奈米複材 | zh_TW |
| dc.subject | 溶膠–凝膠 | zh_TW |
| dc.subject | 環氧樹酯交聯 | zh_TW |
| dc.subject | 分子複合材料 | zh_TW |
| dc.subject | 奈米矽片 | zh_TW |
| dc.subject | 溶膠–凝膠 | zh_TW |
| dc.subject | 奈米複材 | zh_TW |
| dc.subject | clay | en |
| dc.subject | sol-gel reaction | en |
| dc.subject | nanocomposite | en |
| dc.subject | curing | en |
| dc.subject | molecular composite | en |
| dc.subject | clay | en |
| dc.subject | sol-gel reaction | en |
| dc.subject | nanocomposite | en |
| dc.subject | curing | en |
| dc.subject | molecular composite | en |
| dc.title | 新型高分子聚乙烯醚胺鏈段矽氧烷偶合劑之合成
與分子複合材料應用 | zh_TW |
| dc.title | Synthesis of Novel Polymeric Sol-Gel Agents
for Molecular Composites | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝國煌,張信貞,王逸萍,沈永清 | |
| dc.subject.keyword | 溶膠–凝膠,奈米複材,奈米矽片,分子複合材料,環氧樹酯交聯, | zh_TW |
| dc.subject.keyword | clay,sol-gel reaction,nanocomposite,curing,molecular composite, | en |
| dc.relation.page | 53 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
