Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54317
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國(Fuh-Kuo Chen)
dc.contributor.authorChun Fuen
dc.contributor.author富鈞zh_TW
dc.date.accessioned2021-06-16T02:50:09Z-
dc.date.available2025-08-04
dc.date.copyright2020-08-11
dc.date.issued2020
dc.date.submitted2020-08-04
dc.identifier.citation[1] Metallic Materials - Method of Hole Expanding Test, ISO/TS 16630, 2003.
[2] F. Hisker, R. Thiessen, and T. Heller, “Influence of Microstructure on Damage in Advanced High Strength Steels,” Materials Science Forum, Vol.706-709, pp.925-930, Jan. 2012.
[3] D.K. Kim, E.Y. Kim, J. Han, W. Woo, and S.H. Choi, “Effect of microstructural factors on void formation by ferrite/martensite interface decohesion in DP980 steel under uniaxial tension,” International Journal of Plasticity, Vol.94, pp.3-23, July. 2017.
[4] O.R. Terrazas, K.O. Findley, and C.J. Van Tyne, “Influence of Martensite Morphology on Sheared-Edge Formability of Dual-Phase Steels,” ISIJ International, Vol. 57, No. 5, pp. 937–944, 2017.
[5] L. Xu, F. Barlat, M. G. Lee, K. S. Choi, and X. Sun, “Hole expansion of dual phase steels” in Proc. High Performance Structures and Materials VI, vol.124, pp.75-83, 2012.
[6] B. Levy, and C. Van Tyne, “Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching,” Journal of materials engineering and performance, vol.21, no.5, pp.1205-1213, 2012.
[7] 李炳坤, “370MPa~590MPa熱軋高強度鋼擴孔性研究,” 中國鋼鐵公司產品應用研究室. Apr. 2005.
[8] 張育銘, “高厚徑比多道次沖孔成形之研究,” 國立台灣大學機械工程研究所碩士論文. July. 2011.
[9] K. Wang, L. Greve, and T. Wierzbicki, “FE simulation of edge fracture considering pre-damage from blanking process,” International Journal of Solids and Structures, Vol. 71, pp. 206-218, Oct. 2015.
[10] K. Wang, M. Luo, and T. Wierzbicki, “Experiments and modeling of edge fracture for an AHSS sheet,” Massachusetts Institute of Technology, Impact and Crashworthiness Laboratory, Department of Mechanical Engineering. Dec. 2013.
[11] N. Pathak, C. Buther, M. J. Worswick, E. Bellhouse, and J. Gao, “Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching,” Materials, March. 2017.
[12] H. Kim, J. Shang, J. Dykeman, A. Samant, and C. Hoschouer, “Practical Evaluation and Prediction of Edge Cracking in Forming Advanced High Strength Steels (AHSS),” SAE Technical Paper. March. 2017.
[13] J. Gu, H. Kim, H. C. Shih, and J. Dykeman, “Effects of Blanking Conditions to Edge Cracking in Stamping of Advanced-High Strength Steels (AHSS),” SAE Technical Paper. June. 2018.
[14] H. Shih, C. Hsiung, and B. Wendt, “Optimal Production Trimming Process for AHSS Sheared Edge Stretchability Improvement,” SAE Technical Paper, 2014.
[15] J. Gu, L. Zoller and H. Kim, “A New Testing Method to Evaluate Edge Cracking with Considerations of the Shear Clearance and Press Speed,” SAE Technical Paper, Apr. 2020.
[16] H. Kim, A.R. Bandar, Y-P. Yang, J.H Sung, and R.H. Wagoner, “Failure Analysis of Advanced High Strength Steels (AHSS) During Draw Bending” in Proc. International Deep Drawing Research Group, vol.1-3, Golden, CO, USA , June. 2009, pp.450-460.
[17] A.M. Freudenthal, The inelastic behaviour of engineering materials and structure, New York: John Wiley Sons Inc, 1950, pp. 587
[18] M.G. Cockcroft, and D.J. Latham, “Ductility and workability of metals,” Journal of the Institute of Metals, pp. 33-39, 1966.
[19] S.I. Oh, C.C. Chen, and S. Kobayashi, “Ductile fracture in axisymmetric extrusion and drawing—part 2: workability in extrusion and drawing,” Journal of Engineering for Industry, vol.101, pp.36-44, 1979.
[20] P. Brozzo, B. Deluca, and R. Rendina, “A new method for the prediction of formability limits in metal sheets, sheet metal forming and formability” in Proc. Proceeding of the Seventh Biennial Conference of the International Deep Drawing Research Group, Amsterdam, Netherlands, 1972.
[21] F.A. McClintock, “A criterion for ductile fracture by the growth of holes,” Journal of Applied Mechanics, vol.35, pp.363-371, 1968.
[22] X. Chena, H. Jianga, Z. Cuia, C. Liana, and C. Lua, “Hole expansion characteristics of ultra high strength steels” in Proc. 11th International Conference on Technology of Plasticity, Nagoya Congress Center, Nagoya, Japan, Oct. 2014, pp. 718-723.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54317-
dc.description.abstract先進高強度鋼由於具有高強度及良好的塑性,目前已經被廣泛應用於汽車結構件,然而先進高強度鋼在沖壓成形上容易產生邊緣破裂。邊緣破裂難以透過CAE模擬進行預測,且目前預測沖壓板材破裂最準確之成形極限曲線(FLC曲線)也無法有效預測邊緣破裂發生,因此為了解決邊緣破裂現象,本論文將建立一些準則與方法預測及避免此現象。
本論文首先針對邊緣破裂之成因進行文獻收集與歸納,進而了解先進高強度鋼相較於一般傳統鋼容易產生邊緣破裂之原因,其中影響邊緣破裂時機之原因非常複雜,除了先進高強度鋼在微觀結構上容易產生微孔破壞之外,板材邊緣在不同沖切製程及不同軋延方向下,將有不同的邊緣破裂時機,因此為了有效預測板材在不同邊緣條件下邊緣破裂之時機,本論文將針對如何定義邊緣條件之方法進行深入探討,並以簡易之邊緣破裂實驗建立破壞準則,包括擴孔實驗、圓孔拉伸實驗、HSDT實驗。
在簡易之邊緣破裂實驗中,本論文完成了不同材料以及不同邊緣條件之實驗,而透過研究結果發現,當兩個不同邊緣破裂實驗之邊緣條件相同時,邊緣破裂時機將會非常接近,因此本論文將透過此實驗特性,建立預測邊緣破裂之破壞準則,進而預測實際載具邊緣破裂之時機。
為了建立預測實際載具邊緣破裂之CAE模擬,本論文透過PAM-STAMP軟體建立基礎載具之CAE模擬模型,並架設基礎載具之實驗平台,而將建立完成之破壞準則預測基礎載具之邊緣破裂,並比較實驗與模擬之結果後,發現預測之結果具有良好的準確性,模擬除了可以區分不同材料之邊緣成形性外,也可以區分相同材料在不同邊緣條件下之破壞時機,因此已成功建立預測邊緣破裂之方法。未來將可透過本論文建立之方法避免邊緣破裂,並提供模具設計之參考。
zh_TW
dc.description.abstractAdvanced high-strength steel (AHSS) has been widely used in automobile structural parts due to its high strength and good plasticity. However, AHSS is prone to edge cracking during stamping process. Edge cracking is difficult to predict by CAE simulation, Even the most accurate method for predicting fracture, Forming Limit Curve (FLC curve), cannot predict edge cracking. Therefore, in order to solve the edge cracking phenomenon, this paper will establish criterion and methods to predict and avoid edge cracking.
This paper first collects the causes of edge cracking, and then summarizes why AHSS is more prone to edge cracking than conventional steel. The reasons that affect the timing of edge cracking are very complicated. In addition to the micro-structures that are prone to generate micro-void in AHSS, the edge of the sheet will have different timings of edge cracking under different punching processes and different rolling directions. Therefore, in order to predict the timing of edge cracking under different edge conditions, this paper will discuss how to define edge conditions and establish failure criterion with simple edge cracking experiments, including hole expansion test, hole tensile test, Half Specimen Dome Test (HSDT).
In the simple edge cracking experiment, this paper has completed experiments with different materials and different edge conditions. Through the research results, it is found that when the edge conditions of two different edge cracking experiments are the same, the timing of edge cracking will be very close. Therefore, this paper will establish the damage criterion through this experimental feature, and then predict the edge cracking timing of the actual stamped part.
In order to establish a CAE simulation for predicting the edge cracking of actual stamped part, this paper uses the PAM-STAMP software to create CAE simulation model and set up simple stamping experiment. After predicting the edge cracking of the simple stamping experiment through the failure criterion, and comparing the results of the experiment and the simulation, it is found that the predicted results have good accuracy. In addition to distinguishing the edge formability of different materials, the simulation can also distinguish the edge formability of the same material under different edge conditions. Therefore, methods for predicting edge cracking have been successfully established. In the future, the method established in this paper can avoid edge cracking and provide a reference for mold design.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:50:09Z (GMT). No. of bitstreams: 1
U0001-0308202016414300.pdf: 14015135 bytes, checksum: 6d7162d5c0f987d43d674fabedc836fd (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄 I
圖目錄 IV
表目錄 XI
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 4
1.3 文獻回顧 5
1.4 研究方法與步驟 14
1.5 論文總覽 18
第二章 整理影響邊緣破裂時機之原因 20
2.1 影響邊緣破裂之製程參數種類 21
2.2 定義邊緣條件並整合CAE預測邊緣破裂 28
2.3 小結 33
第三章 建立預測邊緣破裂之破壞準則 34
3.1 延性破壞準則之基本介紹 35
3.2 擴孔實驗之應力應變分析 41
3.3 透過單軸拉伸實驗預測擴孔實驗破壞之缺點 48
3.4 透過圓孔拉伸實驗預測擴孔實驗之破壞 52
3.5 小結 58
第四章 邊緣破裂之實驗規劃與結果分析 59
4.1 實驗規劃之材料選用 60
4.2 擴孔實驗建立及實驗結果分析 61
4.3 圓孔拉伸實驗建立及實驗結果分析 68
4.4 HSDT實驗建立及實驗結果分析 75
4.5 小結 79
第五章 基礎載具之實驗與模擬驗證 80
5.1 含沖孔條件下擴孔實驗之模擬模型驗證 80
5.1.1 建立單軸拉伸與圓孔拉伸實驗模擬 82
5.1.2建立擴孔實驗模擬 93
5.2 含沖切條件下HSDT實驗之模擬模型驗證 110
5.2.1 預測HSDT實驗邊緣破裂之流程 111
5.2.2 建立HSDT實驗模擬 114
5.2.3 比較不同破壞準則預測邊緣破裂之結果 119
5.3 小結 128
第六章 結論 129
參考文獻 131
dc.language.isozh-TW
dc.subject圓孔拉伸實驗zh_TW
dc.subject先進高強度鋼板zh_TW
dc.subject邊緣破裂zh_TW
dc.subject微孔破壞zh_TW
dc.subject擴孔實驗zh_TW
dc.subjectHSDT實驗zh_TW
dc.subject破壞準則zh_TW
dc.subject先進高強度鋼板zh_TW
dc.subject邊緣破裂zh_TW
dc.subject微孔破壞zh_TW
dc.subject擴孔實驗zh_TW
dc.subject圓孔拉伸實驗zh_TW
dc.subjectHSDT實驗zh_TW
dc.subject破壞準則zh_TW
dc.subjecthalf specimen dome testen
dc.subjectedge crackingen
dc.subjectmicro voiden
dc.subjecthole expansion testen
dc.subjecthole tension testen
dc.subjectadvanced high strength steelen
dc.subjectfailure criterionen
dc.subjectadvanced high strength steelen
dc.subjectedge crackingen
dc.subjectmicro voiden
dc.subjecthole expansion testen
dc.subjecthole tension testen
dc.subjecthalf specimen dome testen
dc.subjectfailure criterionen
dc.title先進高強度鋼沖壓成形邊緣破裂現象之研究zh_TW
dc.titleA Study on Edge Cracking Phenomenon in the Stamping Process of Advanced High Strength Steel Sheetsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee洪景華(Ching-hua Hung),劉宏義(Horng-Yih Liou),李炳坤(Bing-Kun Li),黃庭彬(Ting-Bin Huang)
dc.subject.keyword先進高強度鋼板,邊緣破裂,微孔破壞,擴孔實驗,圓孔拉伸實驗,HSDT實驗,破壞準則,zh_TW
dc.subject.keywordadvanced high strength steel,edge cracking,micro void,hole expansion test,hole tension test,half specimen dome test,failure criterion,en
dc.relation.page133
dc.identifier.doi10.6342/NTU202002291
dc.rights.note有償授權
dc.date.accepted2020-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-0308202016414300.pdf
  未授權公開取用
13.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved