請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54297完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張哲政 | |
| dc.contributor.author | Hsin-Yu Mao | en |
| dc.contributor.author | 毛欣瑜 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:49:08Z | - |
| dc.date.available | 2020-07-20 | |
| dc.date.copyright | 2015-07-20 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-15 | |
| dc.identifier.citation | 1. H. Y. Liao, 2010, Fabrication of Copper-containing Nanostructures and Their Application, National Taiwan University, Department of Chemistry, Doctoral Dissertation
2. H. Y. Liao, K. J. Lo, H. Y. Mao, H. W. Cheng, C. C. Chang, J. Nano sci Nano technol, 2012, 12, 8940 3. K. Lota, A. Sierczynska, I. Acznik, Chemik 2013, 67, 11, 1138 4. X. Wu, Y. Zeng, H. Gao, J. Su, J. Liu, Z. Zhu, J. Mater. Chem. A, 2013, 1, 469 5. M.L.-Tenes, J.M. Molina, A. Molina, Electroanal. 2004, 16, 11 6. Y.S. Fung, S.M. Chau, J. Appl. Electrochem., 1993, 23, 346 7. L. Xu, J. Xia, K. Wang, H. Li, L. Huang, Z. Luo, L. Wang, Eur. J. Inorg. Chem., 2013, 13, 2315 8. H. Wang, L Pilon, Electrochim. Acta, 2012, 76, 529 9. Y.Z. Zheng, H.Y. Ding, M.L. Zhang, Mater. Resear. Bull., 2009, 44, 403 10. X. Wu, Y. Zeng, H. Gao, J. Su, J. Liu, Z. Zhu, J. Mater. Chem. A, 2013, 1, 469 11. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Mater. Resear. Bull., 2013, 48, 923 12. L. Xu, J. Xia, K. Wang, H. Li, L. Huang, Z. Luo, L. Wang, Eur. J. Inorg. Chem., 2013, 13, 2315 13. Y. Suchorski, L. Rihko-Struckmann, F. Klose, Y. Ye, M. Alandjiyska, K. Sundmacher, H. Weiss, Appl. Surf. Sci., 2005, 249, 231 14. P. Selvam, B. Viswanathan, V. Srinivasan, J. Electron. Spectrosc. Relat. Phenom.,1989, 49, 203 15. L. Wang, P. Yu, L. Zhao, C. Tian, D. Zhao, W. Zhou, J. Yin, R. Wang, H. Fu, Sci. Rep., 2014, 4, 5184 16. S.M. Yun, J.W. Kim, M.J. Jung, Y.C. Nho, P.H. Kang, Y.S. Lee, Carbon Letter, 2007, 8, 292 17. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci.2010, 257, 887 18. J.C. Otamiri, S.L.T. Andersson, A. Andersson, Appl. Catal.1990, 65, 159 19. N.S. Mclntyre, S. Sunder, D.W. Shoesmith, F.W. Stanchell, J. Vac. Sci. technol., 1981, 18, 714 20. V. Hayez, A. Franquet, A. Hubin, H. Terryn, Surf. Interface Anal., 2004, 36, 876 21. S.K. Chawla, N. Sankarraman, J.H. Payer, J. Electron Spectrosc. Relat. Phenom., 1992, 61, 1 22. V. Barlier, V. Bounor-Legare, G. Boiteux. J. Davenas, D. Leonard, Appl. Surf. Sci., 2008, 254, 5408 23. C. Dicke, M. Morstein, G. Hahner, Langmuir, 2002, 18, 336 24. P. Harder, M. Grunze, R. Dahint, G.M. Whitesides, P.E. Laibinis, J. Phys. Chem. B, 1998, 102, 426 25. H. Matsuura, T. Miyazawa, K. Machida, Spectrochim. Acta.,1973, 29, 771 26. B. Winkler, K. Langer, P.G. Johannssen, Phys. Chem. Minerals, 1989, 16, 668 27. J. Dong, Y. Ozaki, K. Nakashima, Macromolecules, 1997, 30, 1111 28. H. Tadokora, Y. Chatani, T.Yoshihara, S. Tahara, S. Murahashi, Makromolekulare Chemie 1964, 73, 109 29. H. Takeuchi, M. Tasumi, Chem. Phys., 1983, 77, 21 30. K. Machida, T. Miyazawa, Electrochim. Acta, 1964, 20, 1865 31. Y. Li, S. Chang, X. Liu, J. Huang, J. Yin, G. Wang, D. Cao, Electrochim. Acta, 2012, 85, 393 32. Y.K. Hsu, Y.C. Chen, Y.G. Lin, J. Electroanal. Chem., 2012, 673, 43 33. P. Simon, Y. Gogotsi, Nat. Mater.,2008, 7, 845 34. S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, RSC Adv., 2015, 5, 4443 35. G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power Sources, 2011, 196, 5756 36. Y.K. Hsu, Y.C. Chen, Y.G. Lin, J. Electroanal. Chem., 2012, 673, 43 37. S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, J. Electroanal. Chem., 2014, 732, 80 38. D.P. Dubal, V.J. Fulari, C.D. Lokhande, Microporous Mesoporous Mater., 2012, 151, 511 39. C.L. Do, T.S. Pham, N.P. Nguyen, V.Q. Tran, Adv. Nat. Sci.: Nanosci. Nanotechnol.,2013, 4, 035011 40. M.M. Jaksic, B. Johansen, R. Tunold, Int. J. Hydrogen Energy, 1993, 18, 817 41. P. Daubinger, J. Kieninger, T. Unmussig, G.A. Urban, Phys. Chem. Chem. Phys., 2014, 16, 8392 42. Angerstein-Kozlowska, B.E. Conway, B. Barnett, J. Mozota, J. Electroanal. Chem., 1979, 100, 417 43. S.S.A.E. Rehim, H.H. Hassan, M.A.M. Ibrahim, M.A. Amin, MonatsheftefurChemie, 1998, 129, 1103 44. M. Hepel, M. Tomkiewicz, J. Electrochem. Soc., 1984, 131, 1288 45. M.M. Jaksic, B. Johansen, R. Tunold, Int. J. Hydrogen Energy, 1993, 18, 91 46. S.L. Kuo, J.F. Lee, N.L. Wu, J. Electrochem. Soc., 2007, 154, A34 47. B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources, 1997, 66, 1 48. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci., 2014, 7, 1597 49. John S. Wang, 2008, Pseudocapacitive Effects in Nanostructured Transition Metal Oxide Materials 50. H.Y.H. Chan, C.G. Takoudis, M.J. Weaver, J. Phys. Chem. B, 1999, 103, 357 51. S.T. Mayer, R.H. Muller, J. Electrochem. Soc., 1992, 139, 426 52. D.C. Olson, J. Vasilevskis, Inorg. Chem., 1971, 10, 463 53. G.T. Burstein, R.C. Newman, J. Electrochem. Soc., 1981, 128, 2270 54. M.R. Gennero de Chialvo, S.L. Marchiano, A.J. Arvia, J. Appl. Electrochem., 1984, 14, 165 55. S.M. Abd El Haleem, B.G. Ateya, J. Electroanal. Chem., 1981, 117, 309 56. G.M. Brisard, J.D. Rudnicki, F. McLarnon, E.J. Cairns, Electrochim. Acta, 1995, 40, 859 57. H. Heli, M. Jafarian, M.G. Mahjani, F. Gobal, Electrochim. Acta, 2004, 49, 4999 58. I.G. Casella, M. Gatta, J. Electroanal. Chem., 2000, 494, 12 59. M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc., Perkin Trans., 1972, 2, 1396 60. A. Alojz, O.Z. Crnjak, Z, Majda, J. Nanosci. Nanotech., 2008, 8, 3516 61. A.R. Pico, C.S. Houk, T.J.R. Weakley, C.J. Page, Inorg. Chim. Acta, 1997, 258, 155 62. Craig P. Love , Charlie C. Torardi , Catherine J. Page, Inorg. Chem., 1992, 31, 1784 63. G. Ricœur , S. Lenfant, D. Guerin, D. Vuillaume, J. Phys. Chem. C, 2012, 116, 20722 64. D. Tahir, S. Tougaard, J. Phys.: Condens. Matter, 2012, 24, 175002 65. S. Poulston, P.M. Parlett, P. Stone, M. Bowker, Surf. Interface Anal.,1996, 24, 811 66. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci., 2010, 257, 887 67. N.S. Mclntyre, S. Sunder, D.W. Shoesmith, F.W. Stanchell, J. Vac. Sci. Technol., 1981, 18, 714 68. L. Cao, F. Xu, Y.Y. Liang, H.L. Li, Adv. Mater.,2004, 16, 1853 69. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, J. Power Source, 2009, 190, 578 70. M.L.A.V. Heien, M.A. Johnson, R.M. Wightman, Anal. Chem., 2004, 76, 5697 71. M.M. Hasan, M.E. Hossain, M.A. Mamun, M.Q. Ehsan, J. Saudi Chem. Soc., 2012, 16, 145 72. D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, J. Power Sources, 2013, 242, 687 73. W.G. Pell, B.E. Conway, J. Electroanal. Chem., 2001, 500, 121 74. H. B. Li, M. H. Yu, F. X. Wang, P. Liu1, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nature Commun., 2013, 4, 1894 75. Y.X. Zhang, M. Huang, M. Kuang, C.P. Liu, J.L. Tan, M. Dong, Y. Yuan, X.L. Zhao, Z. Wen, Int. J. Electrochem. Sci., 2013, 8, 1366 76. J.B. He, D.Y. Lu, G.P. Jin, Appl. Surf. Science, 2006, 253, 689 77. J. Ambrose, R.G. Barradas, D.W. Shoesmith, J. Electroanal. Chem. Interfac.,1973, 47, 65 78. W.Z. Teo, A. Ambrosi, M. Pumera, Electrochem. Commun.,2013, 28, 51 79. B. Vidhyadharan, I.I. Misnon, R.A. Aziz, K.P. Padmasree, M.M. Yusoff, R. Jose, J. Mater. Chem. A, 2014, 2, 6578 80. S. K. Meher, P. Justin, G. R. Rao, Electrochim. Acta, 2010, 55, 8388 81. P. Khanra, C. N. Lee, T. Kuila, N.H. Kim, M.J. Park, J.H. Lee, Nanoscale, 2014, 6, 4864 82. Q.Lu, M.W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K.M. Unruh, J.G. Chen, J.Q. Xiao, Angew. Chem., 2011, 123, 6979 83. C.Y. Lee, Z. Su, K. Lee, H. Tsuchiya, P. Schmuki, Chem. Commun., 2014, 50, 7067 84. X. Jiang, T. Herricks, Y. Xia, Nano Lett.,2002, 2, 1333 85. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci., 2010, 257, 887 86. A. Galtayries, J.P. Bonnelle, Surf. Interface Anal.,1995, 23, 171 87. Z.H. Ibupoto, K. Khun, V. Beni, X. Liu, M. Willande, Sensor, 2013, 13, 7926 88. H. Zhang, J.L. Cao, G.S. Shao, Z.Y. Yuan, J. Mater. Chem., 2009, 19, 6097 89. S.K. Chawla, N. Sankarraman, J.H. Payer, J. Electron Spectrosc. Relat. Phenom.,1992, 61, 1 90. J.P. Tobin, W. Hirschwald, J. Cunningham, Appl. Surf. Sci., 1983, 16, 441 91. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, Phys. Rev. B, 1988, 38, 11322 92. Y. Liu, Y. Ying, Y. Mao, L. Gu, Y. Wang, X. Peng, Nanoscale, 2013,5, 9134 93. Y. Liu, H. Huang, X. Peng, Electrochim. Acta, 2013, 104, 289 94. G.M. Brisard, J.D. Rundnicki, F. McLarnon, E.J. Cairns, Electrochim. Acta, 1995, 40, 859 95. L.E.A. Berlouis, D.A. Mamman, I.G. Azpuru, Surf. Science, 1998, 408, 173 96. J. Ambrose, R.G. Barradas, D.W. Shoesmith, J. Electroanal. Chem. Interfac.,1973, 47, 47 97. S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, ACS Appl. Mater. Interfaces, 2015, 7, 4851 98. Z. Endut, M. Hamdi, W.J. Basirun, Thin Solid Film, 2013, 528, 213 99. C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem., 2009, 19, 5772 100. Physical Electronics, Inc., Handbook of X-ray Photoelectron Spectroscopy, 1995 101. S.L. Kuo, N.L. Wu, J. Electrochichem. Soc., 2006, 153, A1317 102. J.J. Yeh, Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters,1993,Gordon and Breach Science Publishers 103. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L. H. Gale, Surf. Interface Anal., 1981, 3, 211 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54297 | - |
| dc.description.abstract | 本論文研究含銅奈米結構的鑑定及其超級電容的行為表現,主要研究含銅結構的菱形奈米板片,其具有[Cu-O-CH2-CH2-O]的結構,並利用nafion將奈米板片固定於金箔上做為工作電極,另外與之比較的是在銅箔上生長的氧化銅奈米薄板。兩者同樣利用1 M KOH做為電解液時,利用循環伏安法(CV)探討的超級電容表現,可分別得到為87.5及53.6 F/g。且兩者在CV上的電化學行為可知其主要充放電行為是來自氧化還原造成的贋電容( pseudocapacitance)。
利用X-ray光電子能譜( XPS )發現在做完CV的菱形奈米板片的電極表面中有鉀離子的存在,但氧化銅奈米薄板中則沒有。且改為利用NaOH或LiOH做為電解液時,菱形奈米板片的電容值會分別增加為128.7及189.7 F/g。在進行完不同條件的CV後,會發現鹼金屬陽離子相對銅離子的訊號比例會有增長的趨勢,故推論出鹼金屬陽離子的嵌入( intercalation )行為會對菱形奈米板片的超級電容行為有所助益。 | zh_TW |
| dc.description.abstract | Supercapacitors include a family of electrochemical capacitors, which contain no solid dielectric. According to the charge storage mechanism, supercapacitors are divided into: electric double layer capacitors (EDLC) and pseudocapacitors. Among them, pseudocapacitors can have capacitance ten times as much as that of EDLC. Metal oxides and conducting polymers are the commonly used materials for pseudocapacitors. This thesis study was focused on fabricating and characterizing copper-containing pseudocapacitors. In particular, rhomboid-shaped, copper-containing nanoplates, which had a chemical formula of [Cu-O-CH2-CH2-O], were synthesized using a polyol-mediated method. Copper oxide nanosheets were also grown on copper foil. Using nafion to bind the synthesized rhomboid nanoplates to a gold foil as the working electrode, the electrochemical pseudocapacitance of the nanoplates was studied. With the scan rate of 10 mV/s, cyclic voltammetry (CV) showed the specific capacitances of the rhomboid nanoplates and copper oxide nanosheets in 1M KOH to be 87.5 F/g and 53.6 F/g, respectively. The specific capacitances decreased at increasing scan rates, indicating that the migration and diffusion of electrolyte ions into the nanostructure materials affected their supercapacitor performance. The electrochemical performance of both rhomboid nanoplate and CuO nanosheets examined by CV showed the redox reactions, which hydroxide ions involved in. It would be results from the redox pseudocapacitance from hydroxide ions.
X-ray photoelectron spectroscopy (XPS) showed the presence of potassium ions in the rhomboid nanoplate electrode after CV. It suggested the alkali metal ion participation in the pseudocapacitance, which also resulted in larger specific capacitance decreases at increasing scan rates for rhomboid nanoplates than copper oxide nanosheets. While changing the supporting electrolyte from KOH to NaOH and LiOH, the rhomboid nanoplate showed higher specific capacitance of 128.7F/g and 189.7 F/g calculated by CV at scan rate 10 mV/sec. The XPS signal ratio of cations to copper ions increases with CV cycle revealed that the cations intercalated into rhomboid nanoplates within charge- discharge process. In addition to the redox pseudocapacitance, the intercalation pseudocapacitance was involved proved by the XPS spectra | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:49:08Z (GMT). No. of bitstreams: 1 ntu-104-R01223166-1.pdf: 15532049 bytes, checksum: 05859b78d9ed0be7951984e18cbf32d2 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | Chapter I: Introduction 1
1.1 Supercapacitor 1 1.2 Copper oxide (CuO) Nanostructures8 2 1.2.1 Copper Oxide(CuO) as Supercapacitor Material 3 1.2.2 Nanoplate in Rhomboid Shape 5 1.3 Reference 6 Chapter II: Experimental Section 9 2.1 Synthesis of copper-containing nanostructures 9 2.1.1 Synthesis of copper-containing nanoplates 9 2.1.2 Synthesis of copper oxide on acopper foil 10 2.2 Characterization 10 2.2.1 Scanning electron microscopy (SEM) 10 2.2.2 Electron spectroscopy for chemical analysis (ESCA) 13 2.2.3 Fourier Transform Infrared spectroscopy(FTIR) 15 2.3 Electrochemical Experiment 17 2.3.1 Modification of working electrode 17 2.3.2 Electrochemical cells 19 2.3.3 Cyclic voltammetry (CV) 19 2.3.4 Cyclic chronopotentiometry 21 3.2.3 Supercapactior performance 58 Chapter IV: Conclusion 95 Reference 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超級電容 | zh_TW |
| dc.subject | 機制 | zh_TW |
| dc.subject | 機制 | zh_TW |
| dc.subject | 電化學 | zh_TW |
| dc.subject | 銅 | zh_TW |
| dc.subject | 超級電容 | zh_TW |
| dc.subject | 電化學 | zh_TW |
| dc.subject | 銅 | zh_TW |
| dc.subject | supercapacitor | en |
| dc.subject | electrochemistry | en |
| dc.subject | copper | en |
| dc.subject | mechanism | en |
| dc.subject | mechanism | en |
| dc.subject | electrochemistry | en |
| dc.subject | copper | en |
| dc.subject | supercapacitor | en |
| dc.title | 做為超級電容材料的含銅奈米結構的合成及鑑定 | zh_TW |
| dc.title | Synthesis and Characterization of Copper-containing Nanostructures as Supercapacitor Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林麗瓊,王忠茂 | |
| dc.subject.keyword | 超級電容,銅,電化學,機制, | zh_TW |
| dc.subject.keyword | supercapacitor,copper,electrochemistry,mechanism, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 15.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
