Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54297
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張哲政
dc.contributor.authorHsin-Yu Maoen
dc.contributor.author毛欣瑜zh_TW
dc.date.accessioned2021-06-16T02:49:08Z-
dc.date.available2020-07-20
dc.date.copyright2015-07-20
dc.date.issued2015
dc.date.submitted2015-07-15
dc.identifier.citation1. H. Y. Liao, 2010, Fabrication of Copper-containing Nanostructures and Their Application, National Taiwan University, Department of Chemistry, Doctoral Dissertation
2. H. Y. Liao, K. J. Lo, H. Y. Mao, H. W. Cheng, C. C. Chang, J. Nano sci Nano technol, 2012, 12, 8940
3. K. Lota, A. Sierczynska, I. Acznik, Chemik 2013, 67, 11, 1138
4. X. Wu, Y. Zeng, H. Gao, J. Su, J. Liu, Z. Zhu, J. Mater. Chem. A, 2013, 1, 469
5. M.L.-Tenes, J.M. Molina, A. Molina, Electroanal. 2004, 16, 11
6. Y.S. Fung, S.M. Chau, J. Appl. Electrochem., 1993, 23, 346
7. L. Xu, J. Xia, K. Wang, H. Li, L. Huang, Z. Luo, L. Wang, Eur. J. Inorg. Chem., 2013, 13, 2315
8. H. Wang, L Pilon, Electrochim. Acta, 2012, 76, 529
9. Y.Z. Zheng, H.Y. Ding, M.L. Zhang, Mater. Resear. Bull., 2009, 44, 403
10. X. Wu, Y. Zeng, H. Gao, J. Su, J. Liu, Z. Zhu, J. Mater. Chem. A, 2013, 1, 469
11. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, Mater. Resear. Bull., 2013, 48, 923
12. L. Xu, J. Xia, K. Wang, H. Li, L. Huang, Z. Luo, L. Wang, Eur. J. Inorg. Chem., 2013, 13, 2315
13. Y. Suchorski, L. Rihko-Struckmann, F. Klose, Y. Ye, M. Alandjiyska, K. Sundmacher, H. Weiss, Appl. Surf. Sci., 2005, 249, 231
14. P. Selvam, B. Viswanathan, V. Srinivasan, J. Electron. Spectrosc. Relat. Phenom.,1989, 49, 203
15. L. Wang, P. Yu, L. Zhao, C. Tian, D. Zhao, W. Zhou, J. Yin, R. Wang, H. Fu, Sci. Rep., 2014, 4, 5184
16. S.M. Yun, J.W. Kim, M.J. Jung, Y.C. Nho, P.H. Kang, Y.S. Lee, Carbon Letter, 2007, 8, 292
17. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci.2010, 257, 887
18. J.C. Otamiri, S.L.T. Andersson, A. Andersson, Appl. Catal.1990, 65, 159
19. N.S. Mclntyre, S. Sunder, D.W. Shoesmith, F.W. Stanchell, J. Vac. Sci. technol., 1981, 18, 714
20. V. Hayez, A. Franquet, A. Hubin, H. Terryn, Surf. Interface Anal., 2004, 36, 876
21. S.K. Chawla, N. Sankarraman, J.H. Payer, J. Electron Spectrosc. Relat. Phenom., 1992, 61, 1
22. V. Barlier, V. Bounor-Legare, G. Boiteux. J. Davenas, D. Leonard, Appl. Surf. Sci., 2008, 254, 5408
23. C. Dicke, M. Morstein, G. Hahner, Langmuir, 2002, 18, 336
24. P. Harder, M. Grunze, R. Dahint, G.M. Whitesides, P.E. Laibinis, J. Phys. Chem. B, 1998, 102, 426
25. H. Matsuura, T. Miyazawa, K. Machida, Spectrochim. Acta.,1973, 29, 771
26. B. Winkler, K. Langer, P.G. Johannssen, Phys. Chem. Minerals, 1989, 16, 668
27. J. Dong, Y. Ozaki, K. Nakashima, Macromolecules, 1997, 30, 1111
28. H. Tadokora, Y. Chatani, T.Yoshihara, S. Tahara, S. Murahashi, Makromolekulare Chemie 1964, 73, 109
29. H. Takeuchi, M. Tasumi, Chem. Phys., 1983, 77, 21
30. K. Machida, T. Miyazawa, Electrochim. Acta, 1964, 20, 1865
31. Y. Li, S. Chang, X. Liu, J. Huang, J. Yin, G. Wang, D. Cao, Electrochim. Acta, 2012, 85, 393
32. Y.K. Hsu, Y.C. Chen, Y.G. Lin, J. Electroanal. Chem., 2012, 673, 43
33. P. Simon, Y. Gogotsi, Nat. Mater.,2008, 7, 845
34. S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, RSC Adv., 2015, 5, 4443
35. G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power Sources, 2011, 196, 5756
36. Y.K. Hsu, Y.C. Chen, Y.G. Lin, J. Electroanal. Chem., 2012, 673, 43
37. S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, J. Electroanal. Chem., 2014, 732, 80
38. D.P. Dubal, V.J. Fulari, C.D. Lokhande, Microporous Mesoporous Mater., 2012, 151, 511
39. C.L. Do, T.S. Pham, N.P. Nguyen, V.Q. Tran, Adv. Nat. Sci.: Nanosci. Nanotechnol.,2013, 4, 035011
40. M.M. Jaksic, B. Johansen, R. Tunold, Int. J. Hydrogen Energy, 1993, 18, 817
41. P. Daubinger, J. Kieninger, T. Unmussig, G.A. Urban, Phys. Chem. Chem. Phys., 2014, 16, 8392
42. Angerstein-Kozlowska, B.E. Conway, B. Barnett, J. Mozota, J. Electroanal. Chem., 1979, 100, 417
43. S.S.A.E. Rehim, H.H. Hassan, M.A.M. Ibrahim, M.A. Amin, MonatsheftefurChemie, 1998, 129, 1103
44. M. Hepel, M. Tomkiewicz, J. Electrochem. Soc., 1984, 131, 1288
45. M.M. Jaksic, B. Johansen, R. Tunold, Int. J. Hydrogen Energy, 1993, 18, 91
46. S.L. Kuo, J.F. Lee, N.L. Wu, J. Electrochem. Soc., 2007, 154, A34
47. B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources, 1997, 66, 1
48. V. Augustyn, P. Simon, B. Dunn, Energy Environ. Sci., 2014, 7, 1597
49. John S. Wang, 2008, Pseudocapacitive Effects in Nanostructured Transition Metal Oxide Materials
50. H.Y.H. Chan, C.G. Takoudis, M.J. Weaver, J. Phys. Chem. B, 1999, 103, 357
51. S.T. Mayer, R.H. Muller, J. Electrochem. Soc., 1992, 139, 426
52. D.C. Olson, J. Vasilevskis, Inorg. Chem., 1971, 10, 463
53. G.T. Burstein, R.C. Newman, J. Electrochem. Soc., 1981, 128, 2270
54. M.R. Gennero de Chialvo, S.L. Marchiano, A.J. Arvia, J. Appl. Electrochem., 1984, 14, 165
55. S.M. Abd El Haleem, B.G. Ateya, J. Electroanal. Chem., 1981, 117, 309
56. G.M. Brisard, J.D. Rudnicki, F. McLarnon, E.J. Cairns, Electrochim. Acta, 1995, 40, 859
57. H. Heli, M. Jafarian, M.G. Mahjani, F. Gobal, Electrochim. Acta, 2004, 49, 4999
58. I.G. Casella, M. Gatta, J. Electroanal. Chem., 2000, 494, 12
59. M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc., Perkin Trans., 1972, 2, 1396
60. A. Alojz, O.Z. Crnjak, Z, Majda, J. Nanosci. Nanotech., 2008, 8, 3516
61. A.R. Pico, C.S. Houk, T.J.R. Weakley, C.J. Page, Inorg. Chim. Acta, 1997, 258, 155
62. Craig P. Love , Charlie C. Torardi , Catherine J. Page, Inorg. Chem., 1992, 31, 1784
63. G. Ricœur , S. Lenfant, D. Guerin, D. Vuillaume, J. Phys. Chem. C, 2012, 116, 20722
64. D. Tahir, S. Tougaard, J. Phys.: Condens. Matter, 2012, 24, 175002
65. S. Poulston, P.M. Parlett, P. Stone, M. Bowker, Surf. Interface Anal.,1996, 24, 811
66. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci., 2010, 257, 887
67. N.S. Mclntyre, S. Sunder, D.W. Shoesmith, F.W. Stanchell, J. Vac. Sci. Technol., 1981, 18, 714
68. L. Cao, F. Xu, Y.Y. Liang, H.L. Li, Adv. Mater.,2004, 16, 1853
69. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, J. Power Source, 2009, 190, 578
70. M.L.A.V. Heien, M.A. Johnson, R.M. Wightman, Anal. Chem., 2004, 76, 5697
71. M.M. Hasan, M.E. Hossain, M.A. Mamun, M.Q. Ehsan, J. Saudi Chem. Soc., 2012, 16, 145
72. D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, J. Power Sources, 2013, 242, 687
73. W.G. Pell, B.E. Conway, J. Electroanal. Chem., 2001, 500, 121
74. H. B. Li, M. H. Yu, F. X. Wang, P. Liu1, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, G. W. Yang, Nature Commun., 2013, 4, 1894
75. Y.X. Zhang, M. Huang, M. Kuang, C.P. Liu, J.L. Tan, M. Dong, Y. Yuan, X.L. Zhao, Z. Wen, Int. J. Electrochem. Sci., 2013, 8, 1366
76. J.B. He, D.Y. Lu, G.P. Jin, Appl. Surf. Science, 2006, 253, 689
77. J. Ambrose, R.G. Barradas, D.W. Shoesmith, J. Electroanal. Chem. Interfac.,1973, 47, 65
78. W.Z. Teo, A. Ambrosi, M. Pumera, Electrochem. Commun.,2013, 28, 51
79. B. Vidhyadharan, I.I. Misnon, R.A. Aziz, K.P. Padmasree, M.M. Yusoff, R. Jose, J. Mater. Chem. A, 2014, 2, 6578
80. S. K. Meher, P. Justin, G. R. Rao, Electrochim. Acta, 2010, 55, 8388
81. P. Khanra, C. N. Lee, T. Kuila, N.H. Kim, M.J. Park, J.H. Lee, Nanoscale, 2014, 6, 4864
82. Q.Lu, M.W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K.M. Unruh, J.G. Chen, J.Q. Xiao, Angew. Chem., 2011, 123, 6979
83. C.Y. Lee, Z. Su, K. Lee, H. Tsuchiya, P. Schmuki, Chem. Commun., 2014, 50, 7067
84. X. Jiang, T. Herricks, Y. Xia, Nano Lett.,2002, 2, 1333
85. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.St.C. Smart, Appl. Surf. Sci., 2010, 257, 887
86. A. Galtayries, J.P. Bonnelle, Surf. Interface Anal.,1995, 23, 171
87. Z.H. Ibupoto, K. Khun, V. Beni, X. Liu, M. Willande, Sensor, 2013, 13, 7926
88. H. Zhang, J.L. Cao, G.S. Shao, Z.Y. Yuan, J. Mater. Chem., 2009, 19, 6097
89. S.K. Chawla, N. Sankarraman, J.H. Payer, J. Electron Spectrosc. Relat. Phenom.,1992, 61, 1
90. J.P. Tobin, W. Hirschwald, J. Cunningham, Appl. Surf. Sci., 1983, 16, 441
91. J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, Phys. Rev. B, 1988, 38, 11322
92. Y. Liu, Y. Ying, Y. Mao, L. Gu, Y. Wang, X. Peng, Nanoscale, 2013,5, 9134
93. Y. Liu, H. Huang, X. Peng, Electrochim. Acta, 2013, 104, 289
94. G.M. Brisard, J.D. Rundnicki, F. McLarnon, E.J. Cairns, Electrochim. Acta, 1995, 40, 859
95. L.E.A. Berlouis, D.A. Mamman, I.G. Azpuru, Surf. Science, 1998, 408, 173
96. J. Ambrose, R.G. Barradas, D.W. Shoesmith, J. Electroanal. Chem. Interfac.,1973, 47, 47
97. S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, ACS Appl. Mater. Interfaces, 2015, 7, 4851
98. Z. Endut, M. Hamdi, W.J. Basirun, Thin Solid Film, 2013, 528, 213
99. C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem., 2009, 19, 5772
100. Physical Electronics, Inc., Handbook of X-ray Photoelectron Spectroscopy, 1995
101. S.L. Kuo, N.L. Wu, J. Electrochichem. Soc., 2006, 153, A1317
102. J.J. Yeh, Atomic Calculation of Photoionization Cross-Sections and Asymmetry Parameters,1993,Gordon and Breach Science Publishers
103. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L. H. Gale, Surf. Interface Anal., 1981, 3, 211
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54297-
dc.description.abstract本論文研究含銅奈米結構的鑑定及其超級電容的行為表現,主要研究含銅結構的菱形奈米板片,其具有[Cu-O-CH2-CH2-O]的結構,並利用nafion將奈米板片固定於金箔上做為工作電極,另外與之比較的是在銅箔上生長的氧化銅奈米薄板。兩者同樣利用1 M KOH做為電解液時,利用循環伏安法(CV)探討的超級電容表現,可分別得到為87.5及53.6 F/g。且兩者在CV上的電化學行為可知其主要充放電行為是來自氧化還原造成的贋電容( pseudocapacitance)。
利用X-ray光電子能譜( XPS )發現在做完CV的菱形奈米板片的電極表面中有鉀離子的存在,但氧化銅奈米薄板中則沒有。且改為利用NaOH或LiOH做為電解液時,菱形奈米板片的電容值會分別增加為128.7及189.7 F/g。在進行完不同條件的CV後,會發現鹼金屬陽離子相對銅離子的訊號比例會有增長的趨勢,故推論出鹼金屬陽離子的嵌入( intercalation )行為會對菱形奈米板片的超級電容行為有所助益。
zh_TW
dc.description.abstractSupercapacitors include a family of electrochemical capacitors, which contain no solid dielectric. According to the charge storage mechanism, supercapacitors are divided into: electric double layer capacitors (EDLC) and pseudocapacitors. Among them, pseudocapacitors can have capacitance ten times as much as that of EDLC. Metal oxides and conducting polymers are the commonly used materials for pseudocapacitors. This thesis study was focused on fabricating and characterizing copper-containing pseudocapacitors. In particular, rhomboid-shaped, copper-containing nanoplates, which had a chemical formula of [Cu-O-CH2-CH2-O], were synthesized using a polyol-mediated method. Copper oxide nanosheets were also grown on copper foil. Using nafion to bind the synthesized rhomboid nanoplates to a gold foil as the working electrode, the electrochemical pseudocapacitance of the nanoplates was studied. With the scan rate of 10 mV/s, cyclic voltammetry (CV) showed the specific capacitances of the rhomboid nanoplates and copper oxide nanosheets in 1M KOH to be 87.5 F/g and 53.6 F/g, respectively. The specific capacitances decreased at increasing scan rates, indicating that the migration and diffusion of electrolyte ions into the nanostructure materials affected their supercapacitor performance. The electrochemical performance of both rhomboid nanoplate and CuO nanosheets examined by CV showed the redox reactions, which hydroxide ions involved in. It would be results from the redox pseudocapacitance from hydroxide ions.
X-ray photoelectron spectroscopy (XPS) showed the presence of potassium ions in the rhomboid nanoplate electrode after CV. It suggested the alkali metal ion participation in the pseudocapacitance, which also resulted in larger specific capacitance decreases at increasing scan rates for rhomboid nanoplates than copper oxide nanosheets. While changing the supporting electrolyte from KOH to NaOH and LiOH, the rhomboid nanoplate showed higher specific capacitance of 128.7F/g and 189.7 F/g calculated by CV at scan rate 10 mV/sec. The XPS signal ratio of cations to copper ions increases with CV cycle revealed that the cations intercalated into rhomboid nanoplates within charge- discharge process. In addition to the redox pseudocapacitance, the intercalation pseudocapacitance was involved proved by the XPS spectra
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:49:08Z (GMT). No. of bitstreams: 1
ntu-104-R01223166-1.pdf: 15532049 bytes, checksum: 05859b78d9ed0be7951984e18cbf32d2 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsChapter I: Introduction 1
1.1 Supercapacitor 1
1.2 Copper oxide (CuO) Nanostructures8 2
1.2.1 Copper Oxide(CuO) as Supercapacitor Material 3
1.2.2 Nanoplate in Rhomboid Shape 5
1.3 Reference 6
Chapter II: Experimental Section 9
2.1 Synthesis of copper-containing nanostructures 9
2.1.1 Synthesis of copper-containing nanoplates 9
2.1.2 Synthesis of copper oxide on acopper foil 10
2.2 Characterization 10
2.2.1 Scanning electron microscopy (SEM) 10
2.2.2 Electron spectroscopy for chemical analysis (ESCA) 13
2.2.3 Fourier Transform Infrared spectroscopy(FTIR) 15
2.3 Electrochemical Experiment 17
2.3.1 Modification of working electrode 17
2.3.2 Electrochemical cells 19
2.3.3 Cyclic voltammetry (CV) 19
2.3.4 Cyclic chronopotentiometry 21
3.2.3 Supercapactior performance 58
Chapter IV: Conclusion 95
Reference 98
dc.language.isozh-TW
dc.subject超級電容zh_TW
dc.subject機制zh_TW
dc.subject機制zh_TW
dc.subject電化學zh_TW
dc.subject銅zh_TW
dc.subject超級電容zh_TW
dc.subject電化學zh_TW
dc.subject銅zh_TW
dc.subjectsupercapacitoren
dc.subjectelectrochemistryen
dc.subjectcopperen
dc.subjectmechanismen
dc.subjectmechanismen
dc.subjectelectrochemistryen
dc.subjectcopperen
dc.subjectsupercapacitoren
dc.title做為超級電容材料的含銅奈米結構的合成及鑑定zh_TW
dc.titleSynthesis and Characterization of Copper-containing Nanostructures as Supercapacitor Materialsen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林麗瓊,王忠茂
dc.subject.keyword超級電容,銅,電化學,機制,zh_TW
dc.subject.keywordsupercapacitor,copper,electrochemistry,mechanism,en
dc.relation.page106
dc.rights.note有償授權
dc.date.accepted2015-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
15.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved