Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54294
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林峯輝(Feng-Huei Lin)
dc.contributor.authorShih-Heng Chenen
dc.contributor.author陳思恒zh_TW
dc.date.accessioned2021-06-16T02:48:59Z-
dc.date.available2021-02-20
dc.date.copyright2021-02-20
dc.date.issued2021
dc.date.submitted2021-02-05
dc.identifier.citation1. James, R., Kesturu, G., Balian, G. Chhabra, A. B. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. Journal of Hand Surgery 33, 102–112 (2008).
2. de Jong, J. P. et al. The Incidence of Acute Traumatic Tendon Injuries in the Hand and Wrist: A 10-Year Population-based Study. Clin Orthop Surg 6, 196–7 (2014).
3. Howell, J. W. Peck, F. Rehabilitation of flexor and extensor tendon injuries in the hand: Current updates. Injury 44, 397–402 (2013).
4. Dy, C. J., Hernandez-Soria, A., Ma, Y., Roberts, T. R. Daluiski, A. Complications After Flexor Tendon Repair: A Systematic Review and Meta-Analysis. Journal of Hand Surgery 37, 543–551.e1 (2012).
5. Hellebrekers, B., Trimbos-Kemper, T., Trimbos, J., Emeis, J. J. Kooistra, T. Use of fibrinolytic agents in the prevention of postoperative adhesion formation. Fertil. Steril. 74, 203–212 (2000).
6. diZerega, G. S. Campeau, J. D. Peritoneal repair and post-surgical adhesion formation. Hum. Reprod. Update 7, 547–555 (2001).
7. Taras, J. S. Lamb, M. J. Treatment of flexor tendon injuries: surgeons' perspective. J Hand Ther 12, 141–148 (1999).
8. Lilly, S. I. Messer, T. M. Complications after treatment of flexor tendon injuries. The Journal of the American Academy of Orthopaedic Surgeons 14, 387–396 (2006).
9. Boyer, M. I. Flexor Tendon Biology. Hand Clinics 21, 159–166 (2005).
10. Menorca, R. M. G., Fussell, T. S. Elfar, J. C. Nerve physiology: mechanisms of injury and recovery. Hand Clinics 29, 317–330 (2013).
11. Kouyoumdjian, J. O. A. Peripheral nerve injuries: A retrospective survey of 456 cases. Muscle Nerve 34, 785–788 (2006).
12. Robinson, L. R. Traumatic injury to peripheral nerves. Muscle Nerve 23, 863–873 (2000).
13. Flores, A. J., Lavernia, C. J. Owens, P. W. Anatomy and physiology of peripheral nerve injury and repair. Am J Orthop (Belle Mead NJ) 29, 167–173 (2000).
14. HAGBERG, L., HEINEGARD, D. OHLSSON, K. The contents of macromolecule solutes in flexor tendon sheath fluid and their relation to synovial fluid. A quantitative analysis. J Hand Surg (Eur Vol) 17, 167–171 (1992).
15. Peterson, W. W., MANSKE, P. R., Dunlap, J., Horwitz, D. S. Kahn, B. Effect of various methods of restoring flexor sheath integrity on the formation of adhesions after tendon injury. Journal of Hand Surgery 15, 48–56 (1990).
16. Yuan, B. et al. 5-Fluorouracil loaded thermosensitive PLGA–PEG–PLGA hydrogels for the prevention of postoperative tendon adhesion. RSC Advances 5, 25295–25303 (2015).
17. Na, S. Y., Oh, S. H., Song, K. S. Lee, J. H. Hyaluronic acid/mildly crosslinked alginate hydrogel as an injectable tissue adhesion barrier. J Mater Sci: Mater Med 23, 2303–2313 (2012).
18. Wu, Q. et al. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model. Sci. Rep. 5, 1–11 (2015).
19. Shi, K. et al. Synthesis, characterization, and application of reversible PDLLA-PEG-PDLLA copolymer thermogels in vitro and in vivo. Sci. Rep. 6, 1–15 (2015).
20. Yeo, Y. Kohane, D. S. Polymers in the prevention of peritoneal adhesions. European Journal of Pharmaceutics and Biopharmaceutics 68, 57–66 (2008).
21. Choung, H.-K. Hwang, J.-M. The Use of Surgi Wrap in Delayed Adjustable Strabismus Surgery. American Journal of Ophthalmology 140, 433–436 (2005).
22. Li, D. Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 16, 1151–1170 (2004).
23. Yang, D.-J., Chen, F., Xiong, Z.-C., Xiong, C.-D. Wang, Y.-Z. Tissue anti-adhesion potential of biodegradable PELA electrospun membranes. Acta Biomaterialia 5, 2467–2474 (2009).
24. Chang, J.-J., Lee, Y.-H., Wu, M.-H., Yang, M.-C. Chien, C.-T. Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohydrate Polymers 88, 1304–1312 (2012).
25. Dinarvand, P. et al. Function of poly (lactic-co-glycolic acid) nanofiber in reduction of adhesion bands. J. Surg. Res. 172, e1–9 (2012).
26. Liu, S. et al. Biomimetic Sheath Membrane via Electrospinning for Antiadhesion of Repaired Tendon. Biomacromolecules 13, 3611–3619 (2012).
27. Chen, C.-H., Chen, S.-H., Shalumon, K. T. Chen, J.-P. Dual functional core–sheath electrospun hyaluronic acid/polycaprolactone nanofibrous membranes embedded with silver nanoparticles for prevention of peritendinous adhesion. Acta Biomaterialia 26, 225–235 (2015).
28. Liu, S. et al. Prevention of Peritendinous Adhesions with Electrospun Ibuprofen-Loaded Poly( l-Lactic Acid)-Polyethylene Glycol Fibrous Membranes. Tissue Engineering Part A 19, 529–537 (2013).
29. Park, H. B. Lee, Y. M. Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments. Journal of Membrane Science 197, 283–296 (2002).
30. Isfahani, A. P. et al. Polyurethane gas separation membranes with ethereal bonds in the hard segments. Journal of Membrane Science 513, 58–66 (2016).
31. Abraham, G. A., de Queiroz, A. A. A. Román, J. S. Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22, 1971–1985 (2001).
32. Fu, H., Wang, Y., Li, X. Chen, W. Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Composites Science and Technology 126, 86–93 (2016).
33. Sun, W., Jia, L., Wang, Z., Jia, Z. Technology, O. S. A. Optical fiber sensor encapsulated by polyurethane. Optik - International Journal for Light and Electron Optics 165, 124–131 (2018).
34. Santamaria-Echart, A. et al. The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats. Carbohydrate Polymers 1–24 (2017). doi:10.1016/j.carbpol.2017.02.073
35. Lin, H.-H., Hsieh, F.-Y., Tseng, C.-S. Hsu, S.-H. Preparation and characterization of a biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprinting. J. Mater. Chem. B 4, 6694–6705 (2016).
36. Valério, A., Conti, D. S., Araújo, P. H. H., Sayer, C. da Rocha, S. R. P. Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids and Surfaces B: Biointerfaces 135, 35–41 (2015).
37. Shah, P. N., Manthe, R. L., Lopina, S. T. Yun, Y. H. Electrospinning of l-tyrosine polyurethanes for potential biomedical applications. Polymer 50, 2281–2289 (2009).
38. Rockwood, D. N., Akins, R. E., Jr, Parrag, I. C., Woodhouse, K. A. Rabolt, J. F. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 29, 4783–4791 (2008).
39. Kuo, Y.-C., Hung, S.-C. Hsu, S.-H. The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces 122, 414–422 (2014).
40. Kucinska-Lipka, J., Gubanska, I., Janik, H. Sienkiewicz, M. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science Engineering C 46, 166–176 (2015).
41. Khil, M. S., Cha, D. I., Kim, H. Y., Kim, I. S. Bhattarai, N. Electrospun nanofibrous polyurethane membrane as wound dressing. J. Biomed. Mater. Res. 67B, 675–679 (2003).
42. Torres-Giner, S., Pérez-Masiá, R. Lagaron, J. M. A review on electrospun polymer nanostructures as advanced bioactive platforms. Polym Eng Sci 56, 500–527 (2016).
43. Singh, B. N., Panda, N. N. Pramanik, K. A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers. International Journal of Biological Macromolecules 87, 201–207 (2016).
44. Coutinho, F., Delpech, M. C. Alves, L. S. Anionic waterborne polyurethane dispersions based on hydroxyl-terminated polybutadiene and poly(propylene glycol): Synthesis and characterization. J. Appl. Polym. Sci. 80, 566–572 (2001).
45. Yang, C. H., Yang, H. J., Wen, T. C., Wu, M. S. Chang, J. S. Mixture design approaches to IPDI-H6XDI-XDI ternary diisocyanate-based waterborne polyurethanes. Polymer 40, 871–885 (1999).
46. Fang, C. et al. Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Progress in Organic Coatings 77, 61–71 (2014).
47. Dai, L. et al. Electrospun polyvinyl alcohol/waterborne polyurethane composite nanofibers involving cellulose nanofibers. J. Appl. Polym. Sci. 131, n/a–n/a (2014).
48. Buruaga, L. et al. Electrospinning of waterborne polyurethanes. J. Appl. Polym. Sci. 115, 1176–1179 (2010).
49. Griffin, J. W., Hogan, M. V., Chhabra, A. B. Deal, D. N. Peripheral Nerve Repair and Reconstruction. J Bone Joint Surg Am 95, 2144–2151 (2013).
50. SUNDERLAND, S. The intraneural topography of the radial, median and ulnar nerves. Brain 68, 243–299 (1945).
51. SUNDERLAND, S. RAY, L. J. The intraneural topography of the sciatic nerve and its popliteal divisions in man. Brain 71, 242–273 (1948).
52. Kurze, T. Microtechniques in neurological surgery. Clin Neurosurg 11, 128–137 (1964).
53. Seddon, H. J. Nerve grafting. J Bone Joint Surg Br 45B, 447–461 (1963).
54. Walton, R. Finseth, F. Nerve grafting in the repair of complicated peripheral nerve trauma. The Journal of Trauma 17, 793–796 (1977).
55. Colen, K. L., Choi, M. Chiu, D. T. W. Nerve Grafts and Conduits. Plast Reconst Surg 124, e386–e394 (2009).
56. Ruijs, A. C. J., Jaquet, J.-B., Kalmijn, S., Giele, H. Hovius, S. E. R. Median and Ulnar Nerve Injuries: A Meta-Analysis of Predictors of Motor and Sensory Recovery after Modern Microsurgical Nerve Repair. Plast Reconst Surg 116, 484–494 (2005).
57. Navarro, X., Vivó, M. Valero-Cabré, A. Neural plasticity after peripheral nerve injury and regeneration. Progress in Neurobiology 82, 163–201 (2007).
58. Torigoe, K., Tanaka, H. F., Takahashi, A., Awaya, A. Hashimoto, K. Basic behavior of migratory Schwann cells in peripheral nerve regeneration. Experimental Neurology 137, 301–308 (1996).
59. Evans, G. R. D. et al. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 23, 841–848 (2002).
60. Mosahebi, A., Fuller, P., Wiberg, M. Terenghi, G. Effect of Allogeneic Schwann Cell Transplantation on Peripheral Nerve Regeneration. Experimental Neurology 173, 213–223 (2002).
61. Gao, Q.-H., Fu, X., Zhang, R., Wang, Z. Guo, M. Neuroprotective effects of plant polysaccharides: A review of the mechanisms. International Journal of Biological Macromolecules 1–28 (2017). doi:10.1016/j.ijbiomac.2017.08.075
62. Jang, H.-J. et al. The Neuroprotective Effect of Hericium erinaceus Extracts in Mouse Hippocampus after Pilocarpine-Induced Status Epilepticus. IJMS 20, 859–13 (2019).
63. WONG, K.-H., KANAGASABAPATHY, G., BAKAR, R., PHAN, C.-W. SABARATNAM, V. Restoration of sensory dysfunction following peripheral nerve injury by the polysaccharide from culinary and medicinal mushroom, Hericium erinaceus (Bull.: Fr.) Pers. through its neuroregenerative action. Food Sci. Technol 35, 712–721 (2015).
64. Wang, C. et al. A Polysaccharide Isolated from the Medicinal Herb Bletilla striata Induces Endothelial Cells Proliferation and Vascular Endothelial Growth Factor Expression in vitro. Biotechnol Lett 28, 539–543 (2006).
65. Wu, X.-G., Xin, M., Chen, H., Yang, L.-N. Jiang, H.-R. Novel mucoadhesive polysaccharide isolated from Bletilla striataimproves the intraocular penetration and efficacy of levofloxacin in the topical treatment of experimental bacterial keratitis. J Pharm Pharmacol 62, 1152–1157 (2010).
66. Luo, Y. et al. A physiologically active polysaccharide hydrogel promotes wound healing. J. Biomed. Mater. Res. 94A, 193–204 (2010).
67. Peng, Q., Li, M., Xue, F. Liu, H. Structure and immunobiological activity of a new polysaccharide from Bletilla striata. Carbohydrate Polymers 107, 119–123 (2014).
68. Jiang, F. et al. Antioxidant, Antityrosinase and Antitumor Activity Comparison: The Potential Utilization of Fibrous Root Part of Bletilla striata (Thunb.) Reichb.f. PLoS ONE 8, e58004–11 (2013).
69. Zuidema, J. M., Pap, M. M., Jaroch, D. B., Morrison, F. A. Gilbert, R. J. Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomaterialia 7, 1634–1643 (2011).
70. Huang, Y.-J., Hung, K.-C., Hung, H.-S. Hsu, S.-H. Modulation of Macrophage Phenotype by Biodegradable Polyurethane Nanoparticles: Possible Relation between Macrophage Polarization and Immune Response of Nanoparticles. ACS Appl. Mater. Interfaces 10, 19436–19448 (2018).
71. Lai, Y.-L. et al. Efficacy of Bletilla striata polysaccharide on hydrogen peroxide-induced apoptosis of osteoarthritic chondrocytes. J Polym Res 25, 1–10 (2018).
72. Yen, K.-C., Chen, C.-Y., Huang, J.-Y., Kuo, W.-T. Lin, F.-H. Fabrication of keratin/fibroin membranes by electrospinning for vascular tissue engineering. J. Mater. Chem. B 4, 237–244 (2016).
73. Kaewkhaw, R., Scutt, A. M. Haycock, J. W. Integrated culture and purification of rat Schwann cells from freshly isolated adult tissue. Nat Protoc 7, 1996–2004 (2012).
74. Burkey, T. H., Hingtgen, C. M. Vasko, M. R. Isolation and culture of sensory neurons from the dorsal-root ganglia of embryonic or adult rats. Methods Mol Med 99, 189–202 (2004).
75. Lodge, A. J. et al. A Novel Bioresorbable Film Reduces Postoperative Adhesions After Infant Cardiac Surgery. The Annals of Thoracic Surgery 86, 614–621 (2008).
76. Giusti, G. et al. Description and validation of isometric tetanic muscle force test in rabbits. Microsurgery 32, 35–42 (2011).
77. Nepomuceno, A. C. et al. Tibial and fibular nerves evaluation using intraoperative electromyography in rats. Acta Cir. Bras. 31, 542–548 (2016).
78. Shenoy, S. L., Bates, W. D., Frisch, H. L. Wnek, G. E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46, 3372–3384 (2005).
79. Gumbiner, B. M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).
80. Lih, E., Oh, S. H., Joung, Y. K., Lee, J. H. Han, D. K. Polymers for cell/tissue anti-adhesion. Progress in Polymer Science 44, 28–61 (2015).
81. Fairhurst, D. et al. Microbicides for HIV/AIDS. 2. Electrophoretic Fingerprinting of CD4+ T-Cell Model Systems. Langmuir 23, 2680–2687 (2007).
82. Wu, Y. F. Tang, J. B. Tendon healing, edema, and resistance to flexor tendon gliding: clinical implications. Hand Clinics 29, 167–178 (2013).
83. Myer, C. Fowler, J. R. Flexor Tendon Repair: Healing, Biomechanics, and Suture Configurations. Orthop. Clin. North Am. 47, 219–226 (2016).
84. Bowman, P. D., Meek, R. L. Daniel, C. W. Aging of human fibroblasts in vitro. Correlations between DNA synthetic ability and cell size. Experimental Cell Research 93, 184–190 (1975).
85. Chen, S.-H., Chou, P.-Y., Chen, Z.-Y. Lin, F.-H. Electrospun Water-Borne Polyurethane Nanofibrous Membrane as a Barrier for Preventing Postoperative Peritendinous Adhesion. IJMS 20, 1625–17 (2019).
86. Li, Z. et al. Development and Characterization of PCL Electrospun Membrane-Coated Bletilla striata Polysaccharide-Based Gastroretentive Drug Delivery System. AAPS PharmSciTech 21, 66 (2020).
87. Zeng, J., Haoqing, H., Schaper, A., Wendorff, J. H. Greiner, A. Poly-L-lactide nanofibers by electrospinning–Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers …. e-Polymers 3, 009 (2003).
88. Drew, C., Wang, X., Samuelson, L. A. Kumar, J. The Effect of Viscosity and Filler on Electrospun Fiber Morphology. Journal of Macromolecular Science, Part A 40, 1415–1422 (2006).
89. Triolo, D. et al. Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage. Journal of Cell Science 119, 3981–3993 (2006).
90. Gumy, L. F., Bampton, E. T. W. Tolkovsky, A. M. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Molecular and Cellular Neuroscience 37, 298–311 (2008).
91. Ehrenfreund-Kleinman, T., bioactive, A. D. J. O.2003. Polysaccharide scaffolds prepared by crosslinking of polysaccharides with chitosan or proteins for cell growth. Journal of Bioactive and Compatible Polymers 18, 323–338
92. Hu, M., Sabelman, E. E., Tsai, C., Tan, J. Hentz, V. R. Improvement of Schwann cell attachment and proliferation on modified hyaluronic acid strands by polylysine. Tissue Eng. 6, 585–593 (2000).
93. Hashimoto, T. et al. Peripheral nerve regeneration through alginate gel: analysis of early outgrowth and late increase in diameter of regenerating axons. Exp Brain Res 146, 356–368 (2002).
94. Rajaram, A., Schreyer, D. Chen, D. Bioplotting Alginate/Hyaluronic Acid Hydrogel Scaffolds with Structural Integrity and Preserved Schwann Cell Viability. 3D Printing and Additive Manufacturing 1, 194–203 (2014).
95. Ghatak, S., Misra, S. Toole, B. P. Hyaluronan Constitutively Regulates ErbB2 Phosphorylation and Signaling Complex Formation in Carcinoma Cells. J. Biol. Chem. 280, 8875–8883 (2005).
96. Sherman, L. S., Rizvi, T. A., Karyala, S. Ratner, N. CD44 enhances neuregulin signaling by Schwann cells. J. Cell Biol. 150, 1071–1084 (2000).
97. Wang, Y. et al. Chitosan Degradation Products Promote Nerve Regeneration by Stimulating Schwann Cell Proliferation via miR-27a/FOXO1 Axis. Mol Neurobiol 53, 28–39 (2014).
98. Baetas-da-Cruz, W. et al. Schwann cells express the macrophage mannose receptor and MHC class II. Do they have a role in antigen presentation? J. Peripher. Nerv. Syst. 14, 84–92 (2009).
99. Baetas-da-Cruz, W. et al. Efficient uptake of mannosylated proteins by a human Schwann cell line. Histol. Histopathol. 24, 1029–1034 (2009).
100. Zimmer, H., Riese, S. Régnier-Vigouroux, A. Functional characterization of mannose receptor expressed by immunocompetent mouse microglia. Glia 42, 89–100 (2003).
101. Han, I. S. et al. Cdc2-mediated Schwann cell migration during peripheral nerve regeneration. Journal of Cell Science 120, 246–255 (2007).
102. Jessen, K. R., Mirsky, R. Lloyd, A. C. Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harb Perspect Biol 7, a020487–16 (2015).
103. Band, H., Bhattacharya, A. Talwar, G. P. Mechanism of phagocytosis by Schwann cells. Journal of the Neurological Sciences 75, 113–119 (1986).
104. Tzekova, N., Heinen, A. Küry, P. Molecules Involved in the Crosstalk Between Immune- and Peripheral Nerve Schwann Cells. J Clin Immunol 34, 86–104 (2014).
105. Jansen, K. M. Pavlath, G. K. Mannose receptor regulates myoblast motility and muscle growth. J. Cell Biol. 174, 403–413 (2006).
106. Sturge, J., Todd, S. K., Kogianni, G., McCarthy, A. Isacke, C. M. Mannose receptor regulation of macrophage cell migration. Journal of Leukocyte Biology 82, 585–593 (2007).
107. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14, 571–578 (2014).
108. Geijtenbeek, T. B. H. et al. DC-SIGN–ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 1, 353–357 (2000).
109. Geijtenbeek, T. B. et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100, 575–585 (2000).
110. Zhou, T., Chen, Y., Hao, L. Zhang, Y. DC-SIGN and immunoregulation. Cell. Mol. Immunol. 3, 279–283 (2006).
111. Dadsetan, M., Knight, A. M., Lu, L., Windebank, A. J. Yaszemski, M. J. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials 30, 3874–3881 (2009).
112. Dong, L. et al. Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-α. Journal of Controlled Release 134, 214–220 (2009).
113. Wang, W. et al. Synthesis, self-assembly, and in vitrotoxicity of fatty acids-modified Bletilla striatapolysaccharide. Artificial Cells, Nanomedicine, and Biotechnology 45, 69–75 (2016).
114. Gao, Q.-H., Fu, X., Zhang, R., Wang, Z. Guo, M. Neuroprotective effects of plant polysaccharides: A review of the mechanisms. International Journal of Biological Macromolecules 106, 749–754 (2018).
115. Deng, J. et al. Structural Characterization and Neurotrophic Activity Study of a Polysaccharide Isolated from Campanumoea javanica. Journal of Carbohydrate Chemistry 34, 183–195 (2015).
116. Liu, Y. et al. Isolation, structural characterization and neurotrophic activity of a polysaccharide from Phellinus ribis. Carbohydrate Polymers 127, 145–151 (2015).
117. Wang, F., Liu, Q., Wang, W., Li, X. Zhang, J. A polysaccharide isolated from Cynomorium songaricum Rupr. protects PC12 cells against H2O2-induced injury. International Journal of Biological Macromolecules 87, 222–228 (2016).
118. Ngeow, W. C. Scar less: a review of methods of scar reduction at sites of peripheral nerve repair. YMOE 109, 357–366 (2010).
119. Liuzzi, F. J. Tedeschi, B. Peripheral nerve regeneration. Neurosurgery Clinics of NA 2, 31–42 (1991).
120. Sanders, F. K. Whitteridge, D. Conduction velocity and myelin thickness in regenerating nerve fibres. J Physiol 105, 152–174 (1946).
121. Waxman, S. G. Conduction in myelinated, unmyelinated, and demyelinated fibers. Arch. Neurol. 34, 585–589 (1977).
122. Kong, L. et al. Physicochemical characterization of the polysaccharide from Bletilla striata: Effect of drying method. Carbohydrate Polymers 125, 1–8 (2015).
123. He, X. et al. Bletilla striata_ Medicinal uses, phytochemistry and pharmacological activities. Journal of Ethnopharmacology 195, 20–38 (2017).
124. Kihara, M. et al. A small dose of the immunosuppressive agent FK506 (tacrolimus) protects peripheral nerve from ischemic fiber degeneration. Muscle Nerve 24, 1601–1606 (2001).
125. Chang, C.-J. The effect of pulse-released nerve growth factor from genipin-crosslinked gelatin in schwann cell-seeded polycaprolactone conduits on large-gap peripheral nerve regeneration. Tissue Engineering Part A 15, 547–557 (2009).
126. Personius, K. E. Arbas, E. A. Muscle degeneration following remote nerve injury. J. Neurobiol. 36, 497–508 (1998).
127. Bain, J. R., Veltri, K. L., Chamberlain, D. Fahnestock, M. Improved functional recovery of denervated skeletal muscle after temporary sensory nerve innervation. Neuroscience 103, 503–510 (2001).
128. Lopez, J. et al. Poly(ε-Caprolactone) Nanofiber Wrap Improves Nerve Regeneration and Functional Outcomes after Delayed Nerve Repair. Plast Reconst Surg 144, 48e–57e (2019).
129. Lee, J.-Y., Parisi, T. J., Friedrich, P. F., Bishop, A. T. Shin, A. Y. Does the addition of a nerve wrap to a motor nerve repair affect motor outcomes? Microsurgery 34, 562–567 (2014).
130. Brill, N. A. Tyler, D. J. Quantification of human upper extremity nerves and fascicular anatomy. Muscle Nerve 56, 463–471 (2017).
131. Adanali, G., Verdi, M., Tuncel, A., Erdogan, B. Kargi, E. Effects of hyaluronic acid-carboxymethylcellulose membrane on extraneural adhesion formation and peripheral nerve regeneration. J reconstr Microsurg 19, 29–36 (2003).
132. Kato, K. et al. Identification of neurite outgrowth promoting sites on the laminin alpha 3 chain G domain. Biochemistry 41, 10747–10753 (2002).
133. Kehoe, S., Zhang, X. F. Boyd, D. FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury 43, 553–572 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54294-
dc.description.abstract肢體損傷常合併肌腱與周邊神經的斷裂,然而肌腱與神經手術後,經常遭遇沾粘及功能恢復不佳等問題。故本研究之目的有二:1. 利用生醫材料,減少肌腱與神經手術後之沾粘;2. 促進周邊神經軸突生長。因此研究將涵蓋肌腱與神經之細胞實驗與動物實驗,並分述如下。
在美國,有三分之一的創傷是跟上肢有關,其中多合併肌腱與血管神經損傷。由於肌腱癒合緩慢,故術後配戴副木固定時間往往長達四周,也因而帶來沾粘等問題,延遲了患者恢復手部活動度之時間,更引起工時的損失,實帶來顯著之社會經濟負擔。故如何減少肌腱損傷後、手術重建後之沾粘,實是重要之課題。
而周邊神經損傷的問題在於,其軸突再生速度每日小於1 mm,即便手術接合後,其功能需極長時間回復。因軸突生長緩慢,該神經支配之肌肉多因長時間的神經失養而萎縮,即便軸突最後成功再生,肌肉運動功能仍無法完整復原。又四肢神經損傷多伴隨周圍軟組織傷害,導致後續疤痕增生嚴重,令神經被壓迫、沾粘;即便顯微手術及器械的進步,神經接合後之功能回復仍難預料。故減低神經沾粘與加速軸突再生有其必要性。周邊神經損傷相當常見,多因車禍與工傷;其中上肢神經損傷佔75%,所致手部失能及復健、醫療費用極為可觀。據美、歐統計上肢神經損傷,僅尺神經損傷,每位患者醫療費用及工傷損失達42,000美金。若涵蓋所有上肢神經損傷,美國一年損失一千萬日的工時。將上下肢神經損傷合併計算,美國2008年耗費其保險系統約1500億美元,故知其市場之大。此外神經損傷導致患者難以拿筆、使用筷子等,亦影響其生活品質。
目前市售產品較多針對腹腔抗沾粘,如Seprafilm、Surgiwrap,然這些產品接觸體液極易黏著或破裂,因此肢體手術時,欲包裹肌腱或神經等長柱狀組織並不易施展。且這些產品降解速率快,肌腱、神經尚未恢復前即已消失。最後,這些產品並非針對周邊神經所設計,無法促進神經軸突再生。
因此本研究利用電紡製備奈米纖維薄膜,材質方便手術施展不易破裂,容易包覆於長柱狀結構的組織(例如肌腱、神經)。此電紡膜以水性PU(water-borne Polyurethane, WPU)為基材,以電紡混紡織成,孔徑為0.95~1.29 µm之間,可有效避免fibroblast浸潤,故可減少肌腱或神經受疤痕沾粘、壓迫。本研究第一階段將此材料應用於兔子肌腱再接模型,成功減少了肌腱沾粘,提昇關節活動度,且不影響肌腱癒合的強度。
本研究第二階段則將WPU與白芨多醣體 (Bletilla Striata polysaccharide, BSP)結合並進行電紡以製備薄膜(WPU/BSP薄膜)。第二階段的研究,我們將觀察以下重點:1.嘗試以水為溶劑將WPU混合BSP做為神經薄膜的內膜基材,不使用有機溶劑,以降低BSP被破壞及有機溶劑之毒性疑慮; 2. WPU/BSP薄膜於許旺氏細胞遷移試驗、增生試驗,及神經元軸突外長試驗是否顯示正向促進神經修復的效果;3. 純WPU薄膜於動物實驗及動物神經傳導實驗是否能顯示其抗沾粘之效果,包括肌肉電位、神經傳導速率、肌肉收縮力量是否有較對照組為佳; 4. WPU/BSP薄膜於動物實驗中,效果是否比純WPU薄膜好; 5. WPU膜於兔子神經再接模型中,是否可維持數個月才被生物體完全降解。
zh_TW
dc.description.abstractTrauma of extremities are commonly associated with tendon and nerve injuries, and reconstruction of tendons or nerves are commonly followed by scarring and adhesion with unsatisfactory outcome. The purpose of this study is to design a biomaterial to: 1. apply around tendons and nerves after repair or reconstruction to reduce adhesion; 2. promote axon outgrowth of peripheral nerves. Therefore, in the thesis, there will be in vitro and in vivo studies related to tendons and peripheral nerves.
In the US, about one third of trauma affect upper extremities and commonly cause tendon, muscle, and neurovascular damage. Because tendons heal slowly, thus postoperative splinting often lasts for more than 4 weeks, which also brings complications such as tendon adhesion and limited range of motion, which further compensates the working ability of patients and causes socioeconomic problems.
Peripheral nerve injury (PNI) is often encountered because of the relatively superficial location of the nerves in the upper extremity, even a minor injury can cause impairment of sensory and motor functions, resulting in a nonfunctional hand. Because axons of peripheral nerves regenerate slowly (< 1 mm/day) even after meticulous repair, PNI especially in upper extremity trauma have been an important cause of morbidity and disability in both the working and nonworking population, with its true impact greatly underestimated. In the United States, 18 million acute upper extremity injuries resulted in 32 million days of restricted activity and 10 million lost working days over a period of 1 year, and the medical expanse and work loss related to just ulnar nerve injury reached 42000 USD per patient. In 2008, all PNIs resulted in approximately $150 billion spent in annual health-care dollars in the US.
While the axons of peripheral nervous system have some capacity for regeneration after repair, the results are often unsatisfactory and only partially complete despite of advancement of microsurgery. In addition, the reconstruction options for those with poor functional return remain limited and prognosis remains disappointing. If axonal regeneration could be promoted, the consequences of sensory loss and weakness could be ameliorated in cases of severe PNI. However, current products on the market (eg. Seprafilm, Surgiwrap etc.) focus mainly on antiadhesion and are not designed for tendons or peripheral nerves. Those products do not promote axon regeneration and are relatively difficult to wrap around tendons or nerves during the surgery because they either breakdown or get attached to surrounding tissue easily. In addition, those products degrades within one to two weeks in vivo and could not offer long-term antiadhesion effect before the tendons and nerves heal.
The present study is divided into two parts. Firstly, electrospun water-borne polyurethane (WPU) nanofibrous membranes (NFMs) were created for use after the repair or reconstruction of tendons to reduce adhesion. In the electrospinning process, water was employed as the solvent for WPU, and this solvent was ecofriendly and nontoxic. The nanofibrous architecture and pore size of the WPU NFMs were analyzed. Their microporosity (0.78–1.05 µm) blocked the penetration of fibroblasts, and therefore reduced the scarring and adhesion around the tendon during healing. The release of WPU mimicked the lubrication effect of the synovial fluid produced by the synovium around the tendon. In vitro cell studies revealed that the WPU NFMs effectively reduced the number of fibroblasts that became attached and that there was no significant cytotoxicity. In vivo studies with the rabbit flexor tendon repair model revealed that WPU NFMs reduced the degree of peritendinous adhesion, as determined using a gross examination; a histological cross section evaluation; and measurements of the range of motion of interphalangeal joints (97.1 ± 14.7 and 79.0 ± 12.4 degrees in proximal and distal interphalangeal joints respectively), of the length of tendon excursion (11.6 ± 1.9 cm), and of the biomechanical properties. In the first part of the study, WPU NFM was confirmed as a good carrier and offers antiadhesion effect.
In the second part of the study, we integrated the Bletilla Striata polysaccharide (BSP) with the WPU to create NFMs (BSP/WPU NFM). This part of study would focus on: (1) the use of water instead of organic solvent as the major solvent for the process of electrospinning of WPU and BSP, in order to avoid the toxicity from organic solvent and to prevent destruction of BSP; (2) the observation of the BSP released from the BSP/WPU NFM and its effect on Schwann cell migration, Schwann cell proliferation, and in neurite outgrowth assays; (3) the effect of pure WPU NFM membrane in anti-adhesion and in functional outcome in animal studies, including compound motor action potential, nerve conduction velocity, and muscle contraction force; (4) comparison between BSP/WPU NFM and pure WPU NFM in cell and animal studies; (5) the duration before the BSP/WPU NFM is degraded in animal study.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:48:59Z (GMT). No. of bitstreams: 1
U0001-0502202103473200.pdf: 5819395 bytes, checksum: c35e7b1509d8f8b45118d1a204610e82 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents論文口試委員審定書 i
序言 ii
中文摘要 iii
ABSTRACT v
CONTENTS viii
LIST OF FIGURES x
LIST OF TABLES xii
LIST OF ABBREVIATION xiii
Chapter 1 INTRODUCTION 1
1.1 Extremity Trauma and Associate Injuries to Tendons and Nerves and Subsequent Adhesions 1
1.2 What is an Adhesion Barrier? 3
1.3 Electrospinning 5
1.4 Why Water-borne Polyurethane? 6
1.5 Peripheral Nerve Injuries in Extremities 7
1.6 The Role of Schwann Cells in Peripheral Nerve Injuries 9
1.7 Neuroprotective Effects of Polysaccharides 10
1.8 Purpose of Study 10
Chapter 2 Materials and Methods 13
2.1 Materials and Reagents 13
2.2 Methods 14
2.2.3 Preparation of electrospun WPU NFMs 15
2.2.4 Removal of PEO 16
2.2.6.2 Confirmation of WPU NFM 17
2.2.6.3 Degradation rate of WPU NFM 18
2.2.7.1 Cytotoxicity and cell attachment test and in vitro cell culture 19
2.2.8.1 Rabbit toe flexor tendon repair model 23
2.2.8.1.1 Flexor tendon repair in rabbit toes 23
2.2.8.1.2 Evaluation of tendon function 23
2.3 Statistical Analysis 27
Chapter 3 Results and Discussion 28
3.1 Electrospun Water-Borne Polyurethane Nanofibrous Membrane as a Barrier for Preventing Postoperative Peritendinous Adhesion 28
3.1.1 Preparation and characterization of electrospun NFM 28
3.1.2 Mechanical properties 32
3.1.4 Cytotoxicity and cell attachment test 35
Chapter 4 Conclusion 62
REFERENCES 64
dc.language.isoen
dc.title利用水性聚胺酯與白芨多醣體製成奈米纖維薄膜以減少創傷後之神經肌腱沾粘並促進神經修復zh_TW
dc.titleNanofibrous Membrane Based on Water-Borne Polyurethane and Bletilla Striata Polysaccharide to Reduce Adhesion and to Improve Functional Outcome in Traumatic Tendon and Nerve Injuriesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.oralexamcommittee劉華昌(Hwa-Chang Liu),黃義侑(Yi-You Huang),郭士民(Shyh-Ming Kuo),陳博洲(Po-Chou Chen),黃漢翔(Han Hsiang Huang)
dc.subject.keyword肌腱接合及抗沾粘,周邊神經重建,神經接合及抗沾粘,周邊神經軸突再生,白芨多醣體,靜電紡絲,許旺氏細胞,zh_TW
dc.subject.keywordperi-tendinous adhesion,adhesion barrier,tendon repair,water-borne polyurethane,axon regeneration,antiadhesion,peripheral nerve regeneration,Bletilla Striata polysaccharide,electrospun,Schwann cell.,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202100558
dc.rights.note有償授權
dc.date.accepted2021-02-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-0502202103473200.pdf
  目前未授權公開取用
5.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved