請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54282
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁建均 | |
dc.contributor.author | Chen-Wei Huang | en |
dc.contributor.author | 黃振維 | zh_TW |
dc.date.accessioned | 2021-06-16T02:48:22Z | - |
dc.date.available | 2016-07-29 | |
dc.date.copyright | 2015-07-29 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-16 | |
dc.identifier.citation | [1] F. A. Afsar, M. S. Riaz, and M. Arif, 'A comparison of baseline removal algorithms for electrocardiogram (ECG) based automated diagnosis of coronory heart disease,' 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. 1-4, 2009.
[2] H. Weituo, C. Yu, and X. Yi, 'ECG baseline wander correction by mean-median filter and discrete wavelet transform,' Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2712-2715, 2011. [3] M. Kaur, B. Singh, and Seema, 'Comparison of different approaches for removal of baseline wander from ECG signal,' Proceedings of the International Conference and Workshop on Emerging Trends in Technology, pp. 1290-1294, 2011. [4] S. J. Orfanidis, “Introduction to Signal Processing,” Prentice Hall, 1996. [5] R. W. Schafer, 'What is a Savitzky-Golay filter?,' IEEE Signal Processing Magazine, vol. 28, issue 4, pp. 111-117, 2011. [6] V. S. Chouhan and S. S. Mehta, 'Total removal of baseline drift from ECG signal,' International Conference on Computing Theory and Applications, pp. 512-515, 2007. [7] G. B. MOODY AND R. G. MARK, “THE IMPACT OF THE MIT-BIH ARRHYTHMIA DATABASE,” IEEE ENG. MED. BIOL. MAG., VOL. 20, NO. 3, PP. 45-50, 2001 [DATA IS AVAILABLE ONLINE: HTTP://WWW.PHYSIONET.ORG/ PHYSIOBANK/DATABASE/MITDB/]. [8] Y. Wang, C. J. Deepu, and Y. Lian, “A computationally efficient QRS detection algorithm for wearable ECG sensors,” Annual International Conference IEEE EMBC, pp. 5641-5644, 2011. [9] P. S. Hamilton and W. J. Tompkins, “Quantitative investigation of QRS detection rules using the MIT-BIH arrhythmia database,” IEEE Transaction Biomedical Engineering, vol 33, pp. 1157-1165, 1986. [10] J. Lee, K. Jeong, J. Yoon, M. Lee, “A simple real-time QRS detection algorithm, Engineering in Medicine and Biology Society, Bridging Disciplines for Biomedicine,” Proceedings of the 18th Annual International Conference of the IEEE, vol. 4, pp. 1396-1398, 1996. [11] C. F. Zhang and T. W. Bae, “VLSI friendly ECG QRS complex detector for body sensor networks,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol 2, pp. 52-59, 2012. [12] F. Zhang and Y. Lian “QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks,” IEEE Transaction Biomedical Circuits System, vol. 3, pp. 220-228, 2009. [13] K. V. Suarez, J. C. Silva, Y. Berthoumieu, P. Gomis, and M. Najim, “ECG beat detection using a geometrical matching approach,” IEEE Trans Biomedical Enginerring, vol. 54, pp. 641-650, 2007. [14] J. Pan, W. J. Tompkins “A real-time QRS detection algorithm. IEEE Transaction Biomedical Engineering, vol 32, pp. 230-236, 1985. [15] B. U. Kohler, C. Henning, and R. Orglmeister, “QRS detection using zero crossing counts,” Progress in Biomedical Research, vol. 8, pp. 138-154, 2003. [16] X. Cui, “A new real-time ECG R-wave detection algorithm,” IFOST, pp. 1252-1255, 2011. [17] N. M. Arzeno, Z. D. Deng, and C. S. Poon, “Analysis of first-derivative based QRS detection algorithms,” IEEE Transaction Biomedical Engineering, vol. 55, pp. 478-484, 2008. [18] S. W. Chen, H. C. Chen, and H. L. Chan, “A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising,” Computer Methods and Programs in Biomedicine, vol. 82, pp. 187-195, 2006. [19] H. Zheng and J. Wu, “Real-time QRS detection method,” International Conference on e-health Networking, Applications and Services, pp. 169-170, July 2008. [20] X. Liu, Y. Zheng, M. W. Phyu, F. N. Endru, V. Navaneethan, and B. Zhao, “An ultra-low power ECG acquisition and monitoring ASIC system for WBAN applications,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, pp. 60-70, 2012. [21] A. J. Schuck and J. Q. Wisbeck, “QRS detector pre-processing using the complex wavelet transform,” IEEE EMBC Annual International Conference, vol. 3, pp. 2590-2593, 2003. [22] T. Pan, L. Zhang, and S. Zhou, “Detection of ECG characteristic points using biorthogonal spline wavelet,” BMEI International Conference, vol. 2, pp. 858-863, 2010. [23] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia database,” IEEE Engineering Medical Biology Magazine, vol. 20, pp. 45-50, 2001 [Data is at http:// www.physionet.org/physiobank/database/mitdb/]. [24] A. L. Goldberger, L. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation, vol. 101, pp. 215-220, 2000. [25] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, “ECG beat detection using filter banks,” IEEE Transaction Biomedical Engineering, vol. 46, pp. 192-202, 1999. [26] R. Poli, S. Cagnoni, and G. Valli, “Genetic design of optimum linear and nonlinear QRS detectors,” IEEE Transaction Biomedical Engineering, vol. 42, pp. 1137-1141, 1995. [27] J. Lewandowski, H. E. Arochena, R. N. G. Naguib, and K. Chao, “A simple real-time QRS detection algorithm utilizing curve-length concept with combined adaptive threshold for electrocardiogram signal classification,” TENCON IEEE Region 10 Conference, pp. 1-6, 2012. [28] T. Jagrič, M. Marhl, D. Štajer, S. T. Kocjančič, T. Jagrič, M. Podbregar, and M. Perc, “Irregularity test for very short electrocardiogram (ECG) signals as a method for predicting a successful defibrillation in patients with ventricular fibrillation,” Translational Research, vol. 149, pp. 145-151, 2007. [29] N. Kannathal, U. R. Acharya, C. M. Lim, P. K. Sadasivan, and S. M. Krishnan, “Classification of cardiac patient states using artificial neural networks,” Experimental & Clinical Cardiology, vol. 8, pp. 206-211, 2003. [30] N. Acir, “A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems Expert Systems with Applications,” vol. 31, pp. 150-158, 2006. [31] A. Amann, R. Tratnig, and K. Unterkofler, “A new ventricular fibrillation detection algorithm for automated external defibrillators,” Computers in Cardiology, pp. 559-562, 2005. [32] R. V. Andreao, B. Dorizzi, and J. Boudy, “ECG signal analysis through hidden Markov models,” IEEE Transaction Biomedical Engineering, vol. 53, pp. 1541-1549, 2006. [33] ” Association for the Advancement of Medical Instrumentation (AAMI): Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms,” American National Standards Institute, Inc. (ANSI), ANSI/AAMI/ISO EC57, 2008 [34] Y. Bazi, H. Hichri, N. Alajlan, and N. Ammour, “Premature ventricular contraction arrhythmia detection and classification with Gaussian process and S transform,” Computational Intelligence, Communication Systems and Networks, pp. 36-41, 2013. [35] R. Besrour, Z. Lachiri, and N. Ellouze, “ECG beat classifier using support vector machine,” Information and Communication Technologies: From Theory to Applications, pp. 1-5, 2008. [36] Z. Bohui, D. Yongsheng, and H. Kuangrong, “Maximum margin clustering method based on immune evolution for electrocardiogram arrhythmias diagnosis,” International Symposium on Computational Intelligence and Design, vol. 2, pp. 78-82, 2011. [37] C. C. Chang and C. J. Lin, “LIBSVM -- A library for SVM ACM,” Transactions on Intelligent Systems and Technology, vol. 2, 2011. [38] P. D. Chazal, M. O'Dwyer, and R. B. Reilly, “Automatic classification of heartbeats using ECG morphology and heartbeat interval features,” IEEE Transaction Biomedical Engineering, vol. 51, pp. 1196-1206, 2004. [39] I. Christov, I. Jekova, and G. Bortolan, “Premature ventricular contraction classification by the Kth nearest-neighbours rule,” Physiological Measurements, vol. 26 pp. 123-130, 2005. [40] V. Chudacek, G. Georgoulas, L. Lhotska, C. Stylios, M. Petrik, and M. Cepek M, “Examining cross-database global training to evaluate five different methods for ventricular beat classification,” Physiological Measurement, vol. 30, pp. 661–677, 2009. [41] V. Chudacek, M. Petrik, G. Georgoulas, M. Cepek, L. Lhotska, and C. Stylios, “Comparison of seven approaches for holter ECG clustering and classification,” Engineering in Medicine and Biology Society, pp. 3844-3847, 2007. [42] J. J. Ding, C. W. Huang, Y. L. Ho, C. S. Hung, Y. H. Lin, and Y. H. Chen, “An efficient selection, scoring, and variation ratio test algorithm for ECG R-wave peak detection,” Experimental & Clinical Cardiology Journal, vol. 20, pp. 4256-4263, 2014. [43] “American Heart Association ECG Database, Plymouth Meeting, PA, USA,” Emergency Care Research Institute (ECRI), 1997. [Data is available online: https://www.ecri.org/]. [44] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. R. Mark, J. E. Mietus, G. B. Moody, C. K. Peng and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals,” Circulation, vol. 101, pp. 215-220, 2000. [45] S. Gradl, P. Kugler, C. Lohmuller, and B. Eskofier, “Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices,” Engineering in Medicine and Biology Society, pp. 2452-2455, 2012. [46] J. Henriques, P. Carvalho, P. Gil, A. Marques, B. Ribeiro, T. Rocha, M. Antunes, R. Schmidt, and J. Habetha, “Ventricular arrhythmias assessment” Engineering in Medicine and Biology Society, pp. 3852- 3855, 2007. [47] O. T. Inan, L. Giovangrandi, and G. T. A. Kovacs, “Robust neural-network-based classification of premature ventricular contraction using wavelet transform and timing interval features,” IEEE Transaction Biomedical Engineering, vol. 53, pp. 2507-2515, 2006. [48] C. Ivaylo, G. H. German, K. Vessela, J. Irena, G. Atanas, and E. Karen, “Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification,” Medical Engineering and Physics, vol. 28, pp. 876-887, 2006. [49] I. Jekova, G. Bortolan, and I. Christov, “Pattern recognition and optimal parameter selection in premature ventricular contraction classification,” Computers in Cardiology, pp. 357-360, 2004. [50] S. Jokic, S. Krco, V. Delic, D. Sakac, Z. Lukic, and T. L. Turukalo, “An efficient approach for heartbeat classification,” Computing in Cardiology, pp. 991-994, 2010. [51] S. Jokic, S. Krco, V. Delic, D. Sakac, and Z. Lukic, “An efficient ECG modeling for heartbeat classification,” Neural Network Applications in Electrical Engineering, pp. 73-76, 2010. [52] G. Karraz and G. Magenes, “Automatic classification of heartbeats using neural network classifier based on a Bayesian framework,” Engineering in Medicine and Biology Society, pp. 4016-4019, 2006. [53] P. Laguna, R. G. Mark, A. L. Goldberger, and G. B. Moody “A Database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG,” Computers in Cardiology, vol. 24, pp. 673-676, 1997. [54] R. S. Mane, A. N. Cheeran, V. D. Awandekar, and P. Rani, “Cardiac arrhythmia detection by ECG feature extraction,” International Journal of Engineering Research and Applications, vol. 3, pp. 327-332, 2013. [55] J. Millet, M. A. Perez, G. Joseph, A. Mocholi, and J. Chorro, “revious identification of QRS onset and offset is not essential for classifying QRS complexes in a single lead,” Computers in Cardiology, pp. 299-302, 1997. [56] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia database,” IEEE Engineering Medical Biology Magazine, vol. 20, pp. 45-50, 2001. [Data is available online: http://www.physionet.org/ physiobank/database/mitdb/] [57] J. C. T. B. Moraes, M. O. Seixas, F. N. Vilani, and E. V. Costa, “A real-time QRS complex classification method using Mahalanobis distance,” Computers in Cardiology, pp. 201-204, 2002. [58] J. S. Nah, A. Y. Jeon, J. H. Ro, and G. R. Jeo, “ROC analysis of PVC detection algorithm using ECG and vector-ECG characteristics,” International Journal of Medical and Biological Sciences, vol. 6, pp. 205-207, 2012. [59] T. Ota and H. Morita, “On real-time arrhythmia detection in ECG monitors using antidictionary coding,” Information Theory and its Applications, pp. 194-198, 2012. [60] T. Rocha, S. Paredes, P. Carvalho, J. Henriques, and M. Antunes, “Phase space reconstruction approach for ventricular arrhythmias characterization,” Engineering in Medicine and Biology Society, pp. 5470-5473, 2008. [61] O. Sayadi, M. B. Shamsollahi, and G. D. Clifford, “Robust detection of premature ventricular contractions using a wave-based Bayesian framework,” IEEE Transaction Biomedical Engineering, vol. 57, pp. 353-362, 2010. [62] M. Sekkal, M. A. Chikh, and N. Settouti “Evolving neural networks using a genetic algorithm for heartbeat classification,” Journal of Medical Engineering and Technology, vol. 35, pp. 215-223, 2011. [63] L. Y. Shyu, Y. H. Wu, and W. Hu “Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG,” IEEE Transaction Biomedical Engineering, vol. 51, pp. 1269-1273, 2004. [64] M. H. Song, J. Lee, H. D. Park, and K. J. Lee, “Classification of heartbeats based on linear discriminant analysis and artificial neural network,” Engineering in Medicine and Biology Society, pp. 1151-1153, 2005. [65] Z. Sun, J. Su, C. Xie, J. Yu, W. Ye, and S. Luo “Reducing ECG alarm fatigue based on SQI analysis,” Computing in Cardiology, pp. 191-194, 2014. [66] M. Tang, C. Q. Chang, P. C. W. Fung, K. T. Chau, and F. H. Y. Chan, “An improved method for discriminating ECG signals using typical nonlinear dynamic parameters and recurrence quantification analysis in cardiac disease therapy,” Engineering in Medicine and Biology Society, pp. 2459-2462, 2005. [67] G. Valenza, A. Lanata, M. Ferro, and E. P. Scilingo, “Real-time discrimination of multiple cardiac arrhythmias for wearable systems based on neural networks,” Computers in Cardiology, pp. 1053-1056, 2008. [68] J. Wang, C. L. Yeo, and A. Aguirre, “The design and evaluation of a new multi-lead arrhythmia monitoring algorithm,” Computers in Cardiology, pp. 675-678, 1999. [69] O. Wieben, V. X. Afonso, and W. J. Tompkinks, “Classification of premature ventricular complexes using filter bank features, induction of decision trees and a fuzzy rule-based system,” Medical Biology Engineering Computer, vol. 37, pp. 560-565, 1999. [70] Y. C. Yeh, “An analysis of ECG for determining heartbeat case by using the principal component analysis and fuzzy logic,” International Journal of Fuzzy Systems, vol. 14, pp. 233-241, 2012. [71] F. Zhang and Y. Lian, “QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks,” IEEE Transaction Biomedical Circuits System, vol. 3, pp. 220-228, 2009. [72] Physionet website, “MIT-BIH arrhythmia database directory. http://www.physionet.org/physiobank/database/,” 1997. [the latest update date of database was on 17 Jan. 2012]. [73] Y. J. Chen, J. J. Ding, C. W. Huang, Y. L. Ho, and C. S. Hung, “ECG baseline extraction by gradient varying weighting functions,” IEEE APSIPA ASC, pp. 1-4, 2013. [74] W. Zong, R. Mukkamala, and R. G. Mark, “A methodology for predicting paroxysmal atrial fibrillation based on ECG arrhythmia feature analysis,” Computers in Cardiology, pp. 125-128, 2001. [75] D. Ge, N. Srinivasan, and S. M. Krishnan, “Cardiac arrhythmia classification using autoregressive modeling,” BioMedical Engineering Journal, pp. 1-12, 2002. [76] B. Hickey, and C. Heneghan, “Screening for paroxysmal atrial fibrillation using atrial premature contractions and spectral measures,” Computers in Cardiology, pp. 217-220, 2002. [77] A. Ebrahimzadeh and A. Khazaee, “An efficient technique for classfication of electrocardiogram signals,” Advances in Electrical and Computer Engineering, vol. 9, pp. 89-92, 2009. [78] Y. C. Yeh, W. J. Wang, and C. W. Chiou, “Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals,” Journal of the International Measurement Confederation Journal, vol. 42, iss. 5, pp. 778-789, 2009. [79] H. J. Lin and Y. C. Yeh, “Cardiac arrhythmia diagnosis method using fuzzy c-means algorithm on ECG signals,” International Symposium on Computer Communication Control and Automation, vol. 1, pp. 272-275, 2010. [80] R. J. Martis, U. R. Acharya, A. K. Ray, and C. Chakraborty, “Application of higher order cumulants to ECG signals for the cardiac health diagnosis,” Engineering in Medicine and Biology Society, pp. 1697-1700, 2011. [81] J. J. Ding, C. W. Huang, Y. L. Ho, C. S. Hung, Y. H. Lin, and Y. H. Chen, “An efficient selection, scoring, and variability ratio test algorithm for ECG R-wave peak detection,” Experimental and Clinical Cardiology Journal, accepted, 2014. [82] Z. Dokur and T. Olmez, “ECG beat classification by a novel hybrid neural network,” Computer Methods and Programs in Biomedicine Journal, pp. 167-181, 2001. [83] T. Thong, J. Mcnames, M. Aboy, and B. Goldstein, “Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes,” IEEE Transactions on Biomedical Engineering Journal, vol. 51, no. 4, pp. 561-569, 2004. [84] B Hickey, C. Heneghan, and P. D. Chazal, “Non-episode-dependent assessment of paroxysmal atrial fibrillation through measurement of RR interval dynamics and atrial premature contractions,” Annuals of Biomedical Engineering Journal, vol. 32, no. 5, pp. 677-687, 2004. [85] S. N. Yu and K. T. Chou, “A switchable scheme for ECG beat classification based on independent component analysis,” Expert Systems with Applications Journal, vol. 33, iss. 4, pp. 824-829, 2007. [86] Y. C. Yeh, W. J. Wang, and C. W. Chiou, “Feature selection algorithm for ECG signals using range-overlaps method,” Expert Systems with Applications Journal, vol. 37, iss. 4, pp. 3499-3512, 2009. [87] Y. C. Yeh, W. J. Wang, and C. W. Chiou, “Heartbeat case determination using fuzzy logic method on ECG signals,” International Journal of Fuzzy Systems Journal, vol. 11, no. 4, pp. 250-261, 2009. [88] Y. C. Yeh, W. J. Wang, and C. W. Chiou, “A novel fuzzy c-means method for classifying heartbeat cases from ECG signals,” International Measurement Confederation Journal, vol. 43, iss. 10, pp. 1542-1555, 2010. [89] A. Khazaee and A. Ebrahimzadeh, “Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features,” Biomedical Signal Processing and Control Journal, vol. 5, iss. 5, pp. 252-263, 2010. [90] M. R. Homaeinezhada, S. A. Atyabib, E. Tavakkolia, H. N. Toosia, A. Ghaffaria, and R. Ebrahimpour, “ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features,” Expert Systems with Applications Journal, vol. 39, iss. 2, pp. 2047-2058, 2011. [91] B. Zhua, Y. Dinga, and K. Haoa, “Multiclass maximum margin clustering via immune evolutionary algorithm for automatic diagnosis of electrocardiogram arrhythmias,” Applied Mathematics and Computation Journal, vol. 227, pp. 428-436, 2014. [92] A. L. Goldberger, L. Amaral, L. Glass, J. M. Hausdorff, P. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, “Components of a New Research Resource for Complex Physiologic Signals MIT-BIH atrial fibrillation database (MIT-BIH AFDB) at Internet website http://www.physionet.org/physiobank/database/afdb/,” PhysioBank, PhysioToolkit, and PhysioNet, 2000. [93] G. B. Moody and R. G. Mark, “A new method for detecting atrial fibrillation using RR intervals,” IEEE Computers in Cardiology, pp. 227-230, 1983. [94] K Tateno and L Glass, “A method for detecting atrial fibrillation using RR intervals,” IEEE Computers in Cardiology, pp. 391-394, 2000. [95] B. Logan and J. Healey, “Robust detection of atrial fibrillation for a long term telemonitoring system,” IEEE Computers in Cardiology, pp. 619-622, 2005. [96] N. Kikillus, G. Hammer, S. Wieland, “Algorithm for identifying patients with paroxysmal atrial fibrillation without appearance on the ECG,” IEEE Engineering in Medicine and Biology Society, pp. 275-278 2007. [97] Y. V. Chesnokov, A. V. Holden, and H. Zhang, “Screening patients with paroxysmal atrial fibrillation (PAF) from Non-PAF heart rhythm using HRV data analysis,” IEEE Computers in Cardiology, pp. 459-462, 2007. [98] N. Kikillus, G. Hammer, N. Lentz, F. Stockwald, and A. Bolz, “Three different algorithms for identifying patients suffering from atrial fibrillation during atrial fibrillation free phases of the ECG,” IEEE Computers in Cardiology, pp. 801-804, 2007. [99] R. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris, and J. Habetha, “Detection of atrial fibrillation using model-based ECG analysis,” IEEE Pattern Recognition, pp. 1-5, 2008. [100] A. Ghodrati, B. Murray, S. Marinello, “RR interval analysis for detection of atrial fibrillation in ECG monitors,” IEEE Engineering in Medicine and Biology Society, pp. 601-604, 2008. [101] S. Dash, E. Raeder, S. Merchant, and K. Chon, “A statistical approach for accurate detection of atrial fibrillation and flutter,” IEEE Computers in Cardiology, pp. 137-140, 2009. [102] P. S. Kostka, and E. J. Tkacz, “Rules extraction in SVM and neural network classifiers of atrial fibrillation patients with matched wavelets as a feature generator,” IEEE Engineering in Medicine and Biology Society, pp. 4691-4694, 2009. [103] C. Huang, S. Ye, H. Chen, D. Li, F. He, and Y. Tu, “A novel method for detection of the transition between atrial fibrillation and sinus rhythm,” IEEE Transations on Biomedical Engineering, vol. 58, no. 4, pp. 1113-1119, 2011. [104] K. J. Jang, G. Balakrishnan, Z. Syed, and N. Verma, “Scalable customization of atrial fibrillation detection in cardiac monitoring devices: Increasing detection accuracy through personalized monitoring in large patient populations,” IEEE Engineering in Medicine and Biology Society, pp. 2184-2187, 2011. [105] J. Lee, D. McManus, and K. Chon, “Atrial fibrillation detection using time-varying coherence function and Shannon entropy,” IEEE Engineering in Medicine and Biology Society, pp. 4685-4688, 2011. [106] J. Lee, Y. Nam, D. D. McManus, and K. H. Chon, “Time-varying coherence Function for atrial fibrillation detection,” IEEE Transactions on Biomedical Engineering, vol. 60, issue 10, pp. 2783-2793, 2013. [107] X. Du, N. Rao, M. Qian, D. Liu, J. Li, W. Feng, L. Yin, and X. Chen, “A novel method for real-time atrial fibrillation detection in electrocardiograms using multiple parameters,” Wiley Online Library, vol. 19, issue 3, pp. 217-225, 2014. [108] X. Zhou, H. Ding, B. Ung, E. P. MacPherson, and Y. Zhang, “Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy,” Biomedical Engineering Online, pp. 1-18, 2014. [109] N. A. A. Kadir, N. M. Safri, and M. A. Othman, “Classification of paroxysmal atrial fibrillation using second order system,” Journal of Teknologi, vol. 67, no. 3, pp. 57-64, 2014. [110] Y. J. Chen, J. J. Ding, C. W. Huang, Y. L. Ho, and C. S. Hung, “ECG baseline extraction by gradient varying weighting functions,” IEEE APSIPA ASC, pp. 1-4, 2013. [111] J. J. Ding, C. W. Huang, Y. L. Ho, C. S. Hung, Y. H. Lin, and Y. H. Chen, “An efficient selection, scoring, and variation ratio test algorithm for ECG R-wave peak detection,” Experimental and Clinical Cardiology Journal, vol. 20, issue 8, pp. 4256-4263, Aug. 2014. [112] Laguna P, Mark R G, Goldberger A L, and Moody G B 1997 A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG, Computers in Cardiology, vol. 24, pp. 673-676 [ http://physionet.org/physiobank/database/qtdb/ ]. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54282 | - |
dc.description.abstract | 關於人類心臟狀態,心電圖訊號提供重要資訊。心臟的資訊,像是正常或不規則的心律,心跳率及心臟運作方式,都可以用來解釋心臟健康或不健康的情況。一個高精準度和運算效率的自動化心電圖波形分析演算法對於心臟疾病診斷和心臟健康持續監護是有助益的。
一個典型的心電圖波形包含P、Q、R、S、T點,最重要的一個為R點。當找到R點位置,就可以參考相對於R點的位置來決定出P、Q、S、T點。在找到P、Q、R、S、T點後,這些點與點之間的位置、高度、寬度及距離都可以被擷取出來成為基本特徵供分類病徵用途。精準的心臟疾病問題分析,例如心室早期收縮、心房早期收縮和心房顫動等疾病相當依賴精準分析心電圖訊號的方法。 在這篇論文中,我們提出以時域分析為基礎、精準且有效率的演算法來分析心電圖訊號,供診斷心臟疾病及心臟健康持續監護使用。藉由使用很多訊號處理技巧,例如時變式梯度權重函數來移除造成心電圖飄移的訊號,相似哈爾的匹配濾波器、比例變化測試的方法來移除心電圖中類似雜訊的波峰、可調變式門檻技巧來偵測找尋R點,墨西哥帽匹配濾波器來偵測找尋P、Q、S、T點,從心電圖訊號中擷取出高識別度的基本式特徵點、組合式特徵點以利於心臟疾病的分析,規則式分類器採用乘法形式權重函式、比例變化假設性測試法、及基尼系數雙類別群聚分類法,來對心室早期收縮、心房早期收縮和心房顫動心臟等疾病做偵測。 我們所提出的即時偵測演算法可分析雙頻道心電圖訊號,並測試於MIT-BIH ARR、AF、QT與AHA等資料庫中,得到相較於其它已發表方法更好的準確率及更低的錯誤率。藉由我們所提出的訊號處理技巧來分析心電圖訊號,對於心室早期收縮、心房早期收縮和心房顫動心臟等疾病的偵測能得到精準的分析。 | zh_TW |
dc.description.abstract | The electrocardiogram (ECG) signals provide important information about human heart status. The information of the human heart, such as the normal or irregular heartbeat rhythm, the heartbeat rate, and the working behaviors of heart, can be used to interpret healthy or unhealthy states of heart. An automatic ECG waveform analysis algorithm with high accuracy and efficiency is helpful for cardiac disease diagnosis and health monitoring.
A typical heartbeat consists of the dominant points of P, Q, R, S, and T peaks. The most important one is the R-wave peak. When the position of the R-wave peak is found, P, Q, S, and T peaks can be determined according to the relative positions to the R-wave peak. After detecting P, Q, R, S, and T peaks, their locations, heights, widths, and distances are extracted as the basic features for heartbeat classification. The accuracy of cardiac disease problem analysis, such as premature ventricular contraction (VPC), atrial premature contraction (APC), and atrial fibrillation (AF) analysis, significantly depends on whether the features of an ECG signal can be extracted accurately. In the dissertation, we propose a time-domain-based algorithm, which is very effective and efficient, to analyze an ECG signal for heart disease diagnosis and health monitoring. Based on the signal processing techniques of the gradient varying weighting function for baseline subtraction of an ECG signal, the Haar-like matched filter, noise-like peaks removal by the variation ratio test, adaptive thresholds for R-wave peak sifting, and the Mexican-hat matched filter for detection P, Q, S, and T peaks, the intra-heartbeat and inter-heartbeat features can be extracted precisely. Moreover, a rule based weighted classifier with product-form score functions, a ratio variation hypothesis test method, and a two-class cluster splitting method by the Gini index are also applied for VPC heartbeat, APC heartbeat, and AF episode classification. The proposed real-time detection algorithm is tested in the MIT-BIH arrhythmia database, the atrial fibrillation database, the QT database, and the AHA database, which consist of two-lead ECG signals. Simulations show that the proposed algorithm achieves higher sensitivity value (SE), positive prediction rate (+P), detection error rate (DER), and specificity value (SP) than those of other existing algorithms. With the proposed signal processing techniques for ECG signal analysis, the PVC heartbeats, APC heartbeats, and AF episodes can be determined in an accurate way. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:48:22Z (GMT). No. of bitstreams: 1 ntu-104-D00942010-1.pdf: 2217197 bytes, checksum: b8d3555bccb6376db07b84f9e8b64c6c (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 摘要 iii
ABSTRACT v CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BASELINE SUBTRACTION ALGORITHM 6 2.1 GOAL 6 2.2 PROPOSED METHOD 7 2.3 TEST RESULT 10 2.4 DISCUSSION 12 2.5 SUMMARY 16 CHAPTER 3 PQRST PEAKS DETECTION ALGORITHM 17 3.1 GOAL 17 3.2 OTHER RELATED WORKS 18 3.3 PROPOSED METHOD 21 3.4 TEST RESULT 29 3.5 DISCUSSION 32 3.6 SUMMARY 33 CHAPTER 4 PVC DETECTION ALGORITHM 35 4.1 GOAL 35 4.2 OTHER RELATED WORKS 36 4.3 PROPOSED METHOD 38 4.4 TEST RESULT 47 4.5 DISCUSSION 51 4.6 SUMMARY 57 CHAPTER 5 APC DETECTION ALGORITHM 59 5.1 GOAL 59 5.2 OTHER RELATED WORKS 60 5.3 PROPOSED METHOD 62 5.4 TEST RESULT 74 5.5 DISCUSSION 77 5.6 SUMMARY 80 CHAPTER 6 AF EPISODE DETECTION ALGORITHM 82 6.1 GOAL 82 6.2 OTHER RELATED WORKS 83 6.3 PROPOSED METHOD 85 6.4 TEST RESULT 98 6.5 DISCUSSION 101 6.6 SUMMARY 105 CHAPTER 7 CONCLUSIONS 106 REFERENCE 110 | |
dc.language.iso | en | |
dc.title | 適用於心電圖分析之訊號處理技術 | zh_TW |
dc.title | Signal Processing Techniques for ECG analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 張榮吉,郭景明,賴飛羆,簡鳳村 | |
dc.subject.keyword | 心電圖,基底移除,濾波器應用,多層次特徵點選擇,規則式分類器,基尼系數最佳化分類法, | zh_TW |
dc.subject.keyword | Electrocardiogram,Baseline subtraction,Filter Techniques,Multi-Layer Feature Selection, Rule Based Classifier,Gini Index Splitting Optimization, | en |
dc.relation.page | 120 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。