請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54279
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林新智 | |
dc.contributor.author | Ta-Chien Cheng | en |
dc.contributor.author | 鄭達謙 | zh_TW |
dc.date.accessioned | 2021-06-16T02:48:13Z | - |
dc.date.available | 2020-07-20 | |
dc.date.copyright | 2015-07-20 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-16 | |
dc.identifier.citation | [1] Ahss application guidelines 4.1, http://www.worldautosteel.org, 2009.
[2] Vehicle technologies program: Multi-year program plan. Report, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy., 2010. [3] Lightweighting technologies, www.a-sp.org. [4] Kiyosaburo Azuma, Tetsushi Chida, Toshimi Tarui, Nagayuki Matsuishi, and Tadayoshi Okada. Development of super high-strength bolts with tensile strengths of 1600 to 2000 n/mm2. International Journal of Steel Structures, 9(4):291–299, 2009. [5] Nakasato Fukukazu. Delayed fracture of bolts. Tetsu- to- Hagane, 88(10):606–611, 2002. [6] John P. Hirth. Effects of hydrogen on the properties of iron and steel. Metallurgical Transactions A, 11:861, 1980. [7] R K Dayal and N Parvathavarthini. Hydrogen embrittlement in power plant steels. Sa ̄dhana ̄, 28, 2003. [8] D. Hardie, E. A. Charles, and A. H. Lopez. Hydrogen embrittlement of high strength pipeline steels. Corrosion Science, 48(12):4378–4385, 2006. [9] Yuichi Namimura, Nobuhiko Ibaraki, Toyofumi Hasegawa, and Yasuhiro Oki. Steels for high strength bolts with high delayed fracture resistance. ઓ 㛍 製鋼 技ൔ, 20(1), 2000. [10] Ji Soo Kim, Kyung-Tae Park, Duklak Lee, and Chong Soo Lee. Effect of intergranular ferrite on hydrogen delayed fracture resistance of ultrahigh strength boron-added steel. ISIJ International, 47(6):913–919, 2007. [11] H. Mohrbacher. Delayed cracking in ultra-high strength automotive steels: Damage mechanisms and remedies by microstructural engineering. In Materials Science and Technology Conference and Exhibition, volume 3, pages 1744–55, 2008. [12] Handbook of Residual Stress and Deformation of Steel. ASM International, 2002. [13] Hitoshi Asahi, Daisuke Hirakami, and Shingo Yamasaki. Hydrogen trapping behavior in vanadium-added steel. ISIJ International, 43(4):527–533, 2003. [14] Fu-gao Wei, Toru Hara, Takehiro Tsuchida, and Kaneaki Tsuzaki. Hydrogen trapping in quenched and tempered 0.42c-0.30ti steel containing bimodally dispersed tic particles. ISIJ International, 43(4):539–547, 2003. [15] F.g. Wei and K. Tsuzaki. Quantitative analysis on hydrogen trapping of tic particles in steel. Metallurgical and Materials Transactions A, 37:331, 2006. [16] Seok-jae Lee, Joseph A. Ronevich, George Krauss, and David K. Matlock. Hydrogen embrittlement of hardened low-carbon sheet steel. ISIJ International, 50(2):294–301, 2010. [17] B. A. Szost, R. H. Vegter, and Pedro E. J. Rivera-Díaz-del Castillo. Hydrogentrapping mechanisms in nanostructured steels. Metallurgical and Materials Transactions A, 44(10):4542–4550, 2013. [18] Fu-Gao Wei, Toru Hara, and Kaneaki Tsuzaki. Nano-preciptates design with hydrogen trapping character in high strength steel. pages 87–92, 2011. [19] Terrence Gladman. The physical metallurgy of microalloyed steels, volume 615. Maney Pub, 1997. [20] AC Kneissl, CI Garcia, AJ DeArdo, G Tither, and Z Shouhua. HSLA Steels: Processing, Properties and Applications. Warrendale, PA: The Minerals, Metals and Materials Society, 1992. [21] Tze Ching Yang, Ching Yuan Huang, Ta Chien Cheng, Chieh Yu, and Ren Kae Shiue. Two high strength low alloy steels for offshore application. In Advanced Materials Research, volume 936, pages 1312–1316. Trans Tech Publ, 2014. [22] M Kapsali and JK Kaldellis. Offshore wind power basics. Comprehensive Renewable Energy, 2:431–468, 2012. [23] JV Sharp, J Billingham, and A Stacey. Performance of high strength steels used in jack-ups. Marine structures, 12(4):349–370, 1999. [24] Crude steel production, www.worldsteel.org. [25] Key facts about the world steel industry, www.worldsteel.org. [26] S. Vervynckt, K. Verbeken, B. Lopez, and J. J. Jonas. Modern HSLA steels and role of non-recrystallisation temperature. INTERNATIONAL MATERIALS REVIEWS, 57(4):187–207, JUL 2012. [27] Jean Van Rensselar. The riddle of steel: A-uhss. Tribology & Lubrication Technology, 2011. [28] Ferrous Metals and Their Alloys, book section 2, pages 59–157. Springer London, 2008. [29] J. Fernández, S. Illescas, and J.M. Guilemany. Effect of microalloying elements on the austenitic grain growth in a low carbon {HSLA} steel. Materials Letters, 61(11–12):2389 – 2392, 2007. [30] B.K. Show, R. Veerababu, R. Balamuralikrishnan, and G. Malakondaiah. Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed {HSLA} steel. Materials Science and Engineering: A, 527(6):1595 – 1604, 2010. [31] J.H. Li, R.K.L. Su, and A.M. Chandler. Assessment of low-rise building with transfer beam under seismic forces. Engineering Structures, 25(12):1537 – 1549, 2003. [32] Osman Hag-Elsafi, Sreenivas Alampalli, and Jonathan Kunin. Application of {FRP} laminates for strengthening of a reinforced-concrete t-beam bridge structure. Composite Structures, 52(3–4):453 – 466, 2001. Design and Manufacturing of Composite Structures. [33] Xiao WANG, Zuo cheng WANG, Xie bin WANG, Yi ran WANG, Jun qing GAO, and Xiu ling ZHAO. Effect of cooling rate and deformation on microstructures and critical phase-transformation temperature of boron-nickel added {HSLA} h-beams. Journal of Iron and Steel Research, International, 19(2):62 – 66, 2012. [34] K.A. Taylor and S.S. Hansen. Metall. Mater. Trans. A, 21:1697–1708, 1991. [35] H. R. Lin and G. H. Cheng. Analysis of hardenability effect of boron. Materials Science and Technology, 6(8):724–729, 1990. [36] D.H. Werner. Boron and Boron Containing Steels. Verlag Stahl Eisen, Dusseldorf, 1995. [37] J.E. Morral and T.B. Cameron. Boron in Steel. The Metallurgical Society of AIME, Milwaukee, 1980. [38] G.J. Sojka, M.R. Krishnadev, and S.K. Banerji. Boron in Steel. The Metallurgical Society of AIME, Milwaukee, 1980. [39] Jr. W. F. Jandeska and J. E. Morral. The distribution of boron in austenite. Metallurgical Transactions, 3:2933, 1972. [40] Zhongli Liu, Yanxiang Li, Xiang Chen, and Kaihua Hu. Microstructure and mechanical properties of high boron white cast iron. Materials Science and Engineering: A, 486(1-2):112–116, 2008. [41] Karlsson. Overview no. 63 non-equilibrium grain boundary segregation of boron in austenitic stainless steel-ii. fine scale segregation behaviour. Acta Materialia, 63(1):13–24, 1988. [42] R. Habu, M. Miyata, S. Sekino, and S. Goda. Trans. Iron Steel Inst. Jpn., 18:492– 500, 1987. [43] H. Niakan and A. Najafizadeh. Effect of niobium and rolling parameters on the mechanical properties and microstructure of dual phase steels. Materials Science and Engineering: A, 527(21-22):5410–5414, 2010. [44] Kyung Chul Cho, Dong Jun Mun, Yang Mo Koo, and Jae Sang Lee. Effect of niobium and titanium addition on the hot ductility of boron containing steel. Materials Science and Engineering: A, 528(10-11):3556–3561, 2011. [45] Daisuke Kondo, Kazutoshi Kunishige, Rintaro Ueji, and Shunichi Hashimoto. Effect of niobium or vanadium on mechanical properties of hot rolled high strength steel sheets for automotive use. Tetsu- to- Hagane, 93(6), 2007. [46] Aimin Guo, R. D. K. Misra, Jinqiao Xu, Bin Guo, and S. G. Jansto. Ultrahigh strength and low yield ratio of niobium-microalloyed 900mpa pipeline steel with nano/ultrafine bainitic lath. Materials Science and Engineering: A, 527(16-17): 3886–3892, 2010. [47] Won-beom Lee, Seung-gab Hong, Chan-gyung Park, and Sung-ho Park. Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing nb and mo. Metallurgical and Materials Transactions A, 33(6): 1689–1698, 2002. [48] N. Zhong, X. D. Wang, L. Wang, and Y. H. Rong. Enhancement of the mechanical properties of a nb-microalloyed advanced high-strength steel treated by quenchingpartitioning- tempering process. Materials Science & Engineering A, 506(1-2):111– 116, 2009. [49] S. N. Prasad and D. S. Sarma. Influence of thermomechanical treatment on microstructure and mechanical properties of a microalloyed (nb+v) weather-resistant steel. Materials Science and Engineering: A, 399(1-2):161–172, 2005. [50] M. Opiela. Thermo-mechanical treatment of the c-mn steel with nb ti v and b microadditions. Archives of Materials Science and Engineering, 28(6):377–380, 2007. [51] A. A. Barani, F. Li, P. Romano, D. Ponge, and D. Raabe. Design of high-strength steels by microalloying and thermomechanical treatment. Materials Science & Engineering A, 463(1-2):138–146, 2007. [52] S. Matsuyama. Delayed Fracture. Nikkan Kogyo Shinbunsya, Tokyo, 1989. [53] K. Azuma, Kanno R., Uno N., and K. Hirai. Performance of super high-strength bolts with an ultimate strength of 1400 n/ mm2 class. In Third International Symposium on Steel Structures ISSS’ 05, pages 449–457. Korean Society of Steel Construction, 2005. [54] A.I. Kovalev, D.L. Wainstein, V.P. Mishina, and V.V. Zabilsky. Effect of Residual Stress on Hydrogen Embrittlement and Stress Corrosion Cracking. ASM International, 2002. [55] V.I. Shapovalov. Hydrogen influence on the structure and properties of iron-carbon alloys. Metallurgia, page 232, 1982. [56] L.M. Bilyi and M.M. Shved. Fiz. Met. Metalloved., 6:106–107, 1978. [57] G.G. Irzhov, S.A. Golovanenko, and T.K. Sergeeva. Fiz. Khim. Mekh. Mater., 3:89– 93, 1982. [58] V.V. Zabilsky. Metal. Termoobrabotka, 1:24–32, 1987. [59] A.I. Kovalev and G.V. Tsherbedinsky. Modern methods of investigations of metal and alloy surface. Metallurgia, 1989. [60] L.M. Utevsky, Ye.E. Glikman, and G.S. Kark. Reversible temper brittleness of steel and iron alloys. Metallurgia, 1987. [61] L.I. Gladshtein and N.I. Kelberin. Zavodskaya Laboratoriya, 1:38–41, 1995. [62] M.A. Balter. Fractography as Tool for Diagnosis of Fracted Parts. Maschinostroenie, Moscow, 1987. [63] V. N. Zikeev. Alloying and the structure of constructional steels resistant to hydrogen embrittlement. Metal Science and Heat Treatment, 24(5):320–326, 1982. [64] V.V. Zabilsky et al. Fiz. Met. Metalloved., 83(2):160–175, 1997. [65] Y.M. Potak. Brittle Fractures of Steel and Steel Parts. Oborongiz, Moscow, 1955. [66] Hydrogen in metals. In Proc. 2nd International Congress. Pergamon Press, 1977. [67] M.M. Shved. Change of Operating Properties of Iron and Steel under Hydrogen Action. Naukova dumka, Kiev, 1985. [68] A.Ye. Andreykiv, V.V. Panacjuk, and V.S. Charin. Fiz. Met. Metalloved., 3:3–23, 1978. [69] K. Oniki. Kinzoku, 46(4):15–18, 1976. [70] H. Epstein, J. Chipman, and N.J. Grant. Met. Trans., 9(4):597, 1957. [71] B. Makenas and H. Birnbaum. Phase changes in the niobium-hydrogen system. i.-accommodation effects during hydride precipitation. Acta Materialia, 28:979– 988, 1980. [72] D. F. Teter, I. M. Robertson, and H. K. Birnbaum. The effects of hydro- gen on the deformation and fracture of β-titanium. Acta Materialia, 49:4313–4323, 2001. [73] I. M. Robertson and D. Teter. Controlled environment transmission electron microscopy. J. Microsc. Res. Tech., 42:260, 1998. [74] H. Vehoff. Hydrogen related material problem, book section Hydrogen related material problem, pages 215–274. Springer Berlin, Heidelberg, 1997. [75] Zapffe C. A. and Sims C. E. Trans. AIME, 145:225–261, 1947. [76] I. M. Robertson. The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech., 68:671–692, 2001. [77] P. J. Ferreira, I. M. Robertson, and H. K. Birnbaum. Hydrogen effects on the character of dislocations in high-purity aluminum. Acta Materialia, 47:2991, 1999. [78] P. J. Ferreira, I. M. Robertson, and H. K. Birnbaum. Hydrogen effects on the interaction between dislocations. Acta Materialia, 46(1749-1757), 1998. [79] H. K. Birnbaum and P. Sofronis. Hydrogen-enhanced localized plasticitya mechanism for hydrogen-related fracture. Materials Science & Engineering A, A176:191–202, 1994. [80] I. M. Robertson and H. K. Birnbaum. Hvem study of hydrogen effects on the deformation and fracture of nickel. Acta Materialia, 34:353–366, 1986. [81] T. Matsumoto, J. Eastman, and H. K. Birnbaum. Direct observations of enhanced dislocation mobility due to hydrogen. Scr. Metall., 15, 1981. [82] W. McInteer, A. W. Thompson, and I. M. Bernstein. The effect of hydrogen on the slip character of nickel. Acta Materialia, 28:887, 1980. [83] D. Abraham and C. Altstetter. Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metallurgical and Materials Transactions A, 26:2859– 2871, 1995. [84] P. Ferreira, I. Robertson, and H. Birnbaum. Influence of hydrogen on the stacking fault energy of an austenitic stainless steel. Materials Science Forum, 207:93–96, 1995. [85] X. Tang and A. W. Thompson. Hydrogen effects on slip character and ductility in ni-co alloys. Materials Science & Engineering A, 186:113–119, 1994. [86] A. Pundt and R. Kirchheim. Hydrogen in metals: Microstructural aspects. Annu. Rev. Mater. Res., 36(555-608), 2006. [87] W.Y. Choo and J.Y. Lee. J. Mater. Sci., 17:1930–1938, 1982. [88] T. Michler and M.P. Balogh. Int. J. Hydrogen Energy, 35:9746–9754, 2010. [89] W. Y. Choo and JaiYoung Lee. Thermal analysis of trapped hydrogen in pure iron. Metallurgical Transactions A, 13(1):135–140, 1982. [90] J.Y. Hong and G.W. Lee. J. Mater., 18:271–277, 1983. [91] B.A. Szost, R.H. Vegter, and P.E.J. Rivera-Dı´az-del Castillo. Mater. Des., 43:499– 506, 2013. [92] S. Yamasaki and H.K.D.H. Bhadeshia. Proc. R. Soc. A, 462:2315–2330, 2006. [93] S.M. Lee and J. Lee:. Surf. Coat. Technol., 28:301–314, 1986. [94] I. Maroef, D.L. Olson, M. Eberhart, and G.R. Edwards. Int. Mater. Rev., 47:191– 223, 2002. [95] A. Park, Y.D. Maroef, and A. Landau. Weld. J, 27:27–35, 2002. [96] Sack B. P. Gudas J. P. Vassilaros M. G. Montemarano, T. W. and H. H. Vanderveldt. High strength low alloy steels in naval construction. 2:145–162, 1986. [97] Ernest J. Czyryca, Richard E. Link, Richard J. Wong, Denise A. Aylor, Thomas W. Montemarano, and John P. Gudas. Development and certification of hsla -100 steel for naval ship construction. Naval Engineers Journal, 102(3):63–82, 1990. [98] S. Fiore J. J. DeLoach, C. Null and P. Konkol. The right welding wire could help the u.s. navy save millions. 78(6):55–58, 1999. [99] Young M Kim, Sung K Kim, Yeo Jong Lim, and Nack J Kim. Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels. ISIJ international, 42(12):1571–1577, 2002. [100] J Billingham, JV Sharp, J Spurrier, and PJ Kilgallon. Review of the performance of high strength steels used offshore. Health Saf. Exec, 111, 2003. [101] H. Lachmund and R. Bruckhaus. In Proc. Int. Seminar on Modern Steels for Gas and Oil Transmission Pipelines, page 151, 2006. [102] W. Steven and A.G. Haynes. J. Iron Steel Inst., 183:349, 1956. [103] R. C. Sharma, V. K. Lakshmanan, and J. S. Kirkaldy. Solubility of niobium carbide and niobium carbonitride in alloyed austenite and ferrite. Metallurgical Transactions A, 15(3):545–553, 1984. [104] Samuel Murphy and John Anthony Whiteman. The precipitation of epsilon-carbide in twinned martensite. Metallurgical Transactions, 1:843, 1970. [105] Bhadeshia. Carbide Precipitation, book section 3, pages 61–89. University of Cambridge. IOM communications, 2001. [106] D.P. Koistinen and R.E. Marburger. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica, 7(1):59 – 60, 1959. [107] Xiaodan Wu, Hakcheol Lee, Young Min Kim, and Nack J Kim. Effects of processing parameters on microstructure and properties of ultra high strength linepipe steel. Journal of Materials Science & Technology, 28(10):889–894, 2012. [108] Naoki Takayama, Goro Miyamoto, Naoya Kamikawa, Hidenori Nako, Tadashi Maki, and Tadashi Furuhara. Formation of martensite austenite constituent in continuously cooled nb-bearing low carbon steels. In Materials Science Forum, volume 638, pages 3080–3085. Trans Tech Publ, 2010. [109] OM Akselsen, Ø Grong, and JK Solberg. Structure–property relationships in intercritical heat affected zone of low-carbon microalloyed steels. Materials science and technology, 3(8):649–655, 1987. [110] Sunghak Lee, Byung Chun Kim, and Dongil Kwon. Correlation of microstructure and fracture properties in weld heat-affected zones of thermomechanically controlled processed steels. Metallurgical Transactions A, 23(10):2803– 2816, 1992. 135 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54279 | - |
dc.description.abstract | 從工業革命至今,鋼鐵一直是最廣泛使用的合金。
其發展甚至可以追溯到1850年代。 近幾十年,在商用非鐵合金的競爭、全球氣候變遷、生產成本提高、先進研究技術的引入等等…綜合因素下, 鋼鐵發展開始有革命性的突破。 這些新開發的鋼材被稱作先進高強度鋼(AHSS)。 至今,已成功開發兩個世代的先進高強度鋼。 同時,次世代的先進高強度鋼概念也已被提出,並同時逐漸投入實際應用。 然而,在已開發的先進高強度中,仍然有些問題值得討論。 第一部份係針對超高強度麻田散鐵係鋼材之延遲破壞進行研究。 本研究主要目的係希望建立用以評估延遲破壞之方法。 同時透過此檢測方式,探討能否利用添加微合金鈮、釩元素、熱處理、碳化物控制,達到抑制硼添加麻田散鐵係鋼材(B-MART)之延遲破壞行為。 第一部份研究結果指出,B-MART鋼材具有優異的機械性質。 淬火狀態下,母材15B30的抗拉強度達到1900MPa。 添加釩元素的15B30V鋼材的抗拉強度,則提升到了2100MPa。 鈮元素添加的效益,主要反映在降伏強度及延展性上。 延遲破壞之檢測結果顯示,利用氫脆方法可以評估熱處理製程對硼系麻田散鐵鋼延遲破壞現象之影響,另一方面定應變測試法則可評估微合金添加對淬火之硼系麻田散鐵鋼延遲破壞之影響。 在氫脆測試結果中顯示,於低溫回火後之15B30/M鋼鐵有著最佳的抗氫脆能力。 進一步分析可知此性能的提升,係由於$epsilon$碳化物的析出。 而定應變測試法結果顯示,微合金元素Nb或V添加皆能提昇15B30超高強度鋼鐵之抗延遲破壞能力,同時也顯示B元素添加則對此鋼材之抗延遲破壞能力有負面的影響。 第二部分的重點為開發符合Norsok MDS-Y70標準之次世代海洋用鋼材。 主要針對顯微結構對於海洋用鋼低溫衝擊韌性的影響進行探討, 研究結果發現,淬火鋼板的表面區域主要為麻田散鐵所組成; 而淬火鋼板心部,則是由變韌鐵、麻田散鐵以及少量的肥粒鐵所組成。 回火麻田散鐵的延脆轉換溫度(DBTT),明顯的較變韌鐵組織來的低。 變韌鐵的出現會導致鋼材低溫衝擊韌性大幅降低。其原因在於變韌鐵單胞內的介面角度為低角度介面, 由於高角度介面在變韌鐵單胞內的消失,造成海洋用鋼板的低溫韌性不佳,而利用沃斯回火製程生成之變韌鐵試片,亦呈現相同結果。 | zh_TW |
dc.description.abstract | From industrial revolution to the present, steel is the most popular applying alloy in the world.
It has been developed for centuries, which could trace back to 1850s. However, the break-through development of steel just occurred in recent decades. In these decades, the newly developed steels are called advance high strength steels (AHSS). Many causes were involved in the linebreak development of AHSS such as the competition of non-ferrous commercial alloys, global climate, raising cost of production, advanced research technique, etc. Until now, two generation of AHSSs have already been developed. linebreak Furthermore, the scheme of the next generation steel was proposed, and was also placed into practice. However, there are still several issues in the develop-ed AHSSs, which are worth discussing. The first part of this research aims at investigating the delayed fracture(DF) of ultrahigh-strength martensitic steels. The main purposes of this study are to building up the evaluation methods of DF and searching for the effective ways to suppress the DF on 15B30 boron added martenstic (B-MART) steels, including slight addition of niobium and vanadium, heat treatments and precise control of carbides. The results of the first part show that these B-MART steels exhibit the most excellent properties. The tensile strength (TS) of as-quenched 15B30 reaches 1900MPa. With addition of vanadium, the TS of 15B30V reaches about 2100MPa. The effect of niobium addition contributes to the yield strength and ductility. In the meantime, the DF of tempered B-MART steels was examined by hydrogen embrittlement test, which showed that, comparing to high temperature, the low temperature tempered 15B30/M steel exhibits a better hydrogen resistance. Further analysis inferred that, this improvement was contributed by the precipitating of epsilon-carbide. On the other hand, the DF of quenched B-MART steels was evaluated through constrain loading technique, that indicated boron had the negative effect on DF. On the contrary, niobium and vanadium had the positive effect on DF. The purpose of second part is to develop the next generation offshore steel, which meets the Norsok MDS-Y70 standard. This investigation is mainly concentrated on the effect of microstructure on low-temperature impact linebreak toughness of the direct water quenched offshore steel. Martensite dominates the microstructure of quenched surface. In contrast, major bainite, martensite and a few ferrite are observed from the central region of quenched specimen. Ductile to brittle transition temperature of tempered martensite is significantly lower than that of bainite dominated microstructure. The presence of bainite greatly impairs low-temperature impact toughness of the steel due to linebreak the presence of low angle interfaces within the bainite packet. The disappearance of high angle interfaces in the bainite packet results in significantly deteriorated low-temperature impact energy of the offshore steel. Similar results are con-firmed in austempered specimens, which are dominated by bainite. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:48:13Z (GMT). No. of bitstreams: 1 ntu-104-D99527018-1.pdf: 148272856 bytes, checksum: 34e05290f80cc03f679e143372917314 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | α試ہ會ቩ定ਜ i
中文ᄔ要iii Abstract v Contents vii List of Figures xi List of Tables xviii Chapter 1 Introduction 1 Chapter 2 Background 5 2.1 Global Challenge of Steels . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Introduction of Advanced High-Strength Steels . . . . . . . . . . . . . 5 2.2.1 Thermomechanical controlled processing . . . . . . . . . . . . 7 2.2.2 Ultra high-strength steel (UHSS) . . . . . . . . . . . . . . . . . 7 2.2.3 High strength low alloy steel (HSLA) . . . . . . . . . . . . . . 9 2.3 The effect of micro-alloyed elements . . . . . . . . . . . . . . . . . . 10 2.3.1 Effect of boron in AHSS . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Effect of niobium in AHSS . . . . . . . . . . . . . . . . . . . . 11 2.3.3 Effect of vanadium in AHSS . . . . . . . . . . . . . . . . . . . 11 2.4 Delayed fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Hydrogen environment . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Hydrogen effect in steel . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.1 Hydride-induce embrittlement . . . . . . . . . . . . . . . . . . 20 2.5.2 Hydrogen enhanced decohesion (HEDE) . . . . . . . . . . . . . 20 2.5.3 Hydrogen enhanced localized plasticity (HELP) . . . . . . . . . 21 2.5.4 State of hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5.5 Reversible and irreversible of hydrogen traps . . . . . . . . . . 22 2.6 Novel offshore steel . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6.1 Low temperature impact toughness . . . . . . . . . . . . . . . 25 2.6.1.1 Crystal structure . . . . . . . . . . . . . . . . . . . . . 26 2.6.1.2 Interstitial atom . . . . . . . . . . . . . . . . . . . . . . 26 2.6.1.3 Grain size . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.1.4 TMCP . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Chapter 3 Delayed Fracture on Ultra High Strength Steel 31 3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1.1 Hydrogen environment . . . . . . . . . . . . . . . . . . 31 3.1.1.2 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.1.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . 32 3.1.3 Specimen preparation and heat treatment . . . . . . . . . . . . . 32 3.1.4 Microstructure observation . . . . . . . . . . . . . . . . . . . . 33 3.1.5 Mechanical properties test . . . . . . . . . . . . . . . . . . . . 34 3.1.5.1 Tensile test . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.5.2 Hardness test . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.6 Electrochemical hydrogen charging . . . . . . . . . . . . . . . 35 3.1.7 Hydrogen embrittlement test . . . . . . . . . . . . . . . . . . . 35 3.1.8 Delayed fracture test . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.9 Accelerated delayed fracture tests . . . . . . . . . . . . . . . . 35 3.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.1 Optimize the process . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 Microstructure observation . . . . . . . . . . . . . . . . . . . . 37 3.2.2.1 Effect of micro alloy elements on martensite packets . . 39 3.2.2.2 Effect of micro alloy elements on prior austenite grains . 46 3.2.3 Mechanical properties . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.4 Hydrogen embrittlement test . . . . . . . . . . . . . . . . . . . 51 3.2.4.1 Hydrogen assisted tempered martensite embrittlement . 52 3.2.5 Delayed fracture test . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.6 Accelerate delayed fracture test . . . . . . . . . . . . . . . . . . 56 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 4 Low Temperature Toughness on Novel Offshore Steel 67 4.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.1.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . 68 4.1.3 Computer aid simulation . . . . . . . . . . . . . . . . . . . . . 68 4.1.4 Specimen preparation and heat treatment . . . . . . . . . . . . . 70 4.1.5 Microstructural observation . . . . . . . . . . . . . . . . . . . . 71 4.1.6 Mechanical tests . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.6.1 Tensile test . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.6.2 Hardness test . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.6.3 Charpy V impact test . . . . . . . . . . . . . . . . . . . 73 4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.1 Effect of alloy design in phase transformation . . . . . . . . . . 73 4.2.2 Direct quenched steel plates . . . . . . . . . . . . . . . . . . . . 76 4.2.2.1 Phase observations . . . . . . . . . . . . . . . . . . . . 76 4.2.2.2 Prior austenite grain observation . . . . . . . . . . . . . 84 4.2.2.3 Hardness depth profile . . . . . . . . . . . . . . . . . . 89 4.2.2.4 Phase constitution simulation . . . . . . . . . . . . . . 89 4.2.3 Direct quenched and tempered steel plates . . . . . . . . . . . . 95 4.2.3.1 Hardness depth profiles . . . . . . . . . . . . . . . . . 95 4.2.3.2 Tensile tests . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.3.3 Charpy impact tests . . . . . . . . . . . . . . . . . . . 100 4.2.4 Low temperature toughness of DQT steel . . . . . . . . . . . . 103 4.2.4.1 Ductile to brittle transition temperature of DQT steel . . 103 4.2.4.2 Toughness of austempered steel . . . . . . . . . . . . . 112 4.2.4.3 Electron backscattered diffraction (EBSD) analyses . . . 116 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Chapter 5 Conclusion 123 Bibliography 125 | |
dc.language.iso | en | |
dc.title | 先進高強度鋼之延遲破壞暨低溫脆性研究 | zh_TW |
dc.title | Study of Delayed Fracture and Low Temperature Toughness on Advanced High Strength Steel | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 薛人愷,楊哲人,蔡履文,黃慶淵 | |
dc.subject.keyword | 先進高強度鋼,延遲破壞,海洋用鋼,衝擊韌性,背向散射電子繞射, | zh_TW |
dc.subject.keyword | AHSS,delayed fracture,offshore steel,impact toughness,EBSD, | en |
dc.relation.page | 135 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 144.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。