請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54259完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅俊雄(Chin-Hsiung Loh) | |
| dc.contributor.author | Tzu-Yun Hung | en |
| dc.contributor.author | 洪慈韻 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:47:11Z | - |
| dc.date.available | 2018-08-05 | |
| dc.date.copyright | 2015-08-05 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-16 | |
| dc.identifier.citation | Reference
[1] S. P. Timoshenko. (1922) .On the forced vibrations of bridges. Philosophical Magazine, Ser. 6, 43:1018-1019. [2] L. Fryba. (1972) .Vibration of Solids and Structures under Moving Loads. Noordhoff International Publishing, Groningen, The Netherlands. [3] Y. B. Yang and J. D. Yau. (1997) .Vehicle-bridge interaction element for dynamic analysis. Journal of Structural Engineering, ASCE, 123(11):1512-1518. [4] J.M. Biggs. (1964) .Introduction to Structural Dynamics. McGraw-Hill Co., Inc., New York, N Y: 315-328. [5] Y.B. Yang and Y.S.Wu. (2001) .A versatile element for analyzing vehicle-bridge interaction response. Engineering Structure, 23: 452-469. [6] G. H. GOLUB and C. REINSCH. (1970) .Singular Value Decomposition and Least Squares Solutions. Handbook Series Linear Algebra. Numer. Math. 14: 403-420. [7] P Van Overschee, BL De Moor. (1996) .Subspace identification for linear systems: Theory-Implementation-Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands [8] Soderstrom, Torsten and Stoica, Petre. (1989) .System identification. Prentice Hall International. [9] V. Boonyapinyo, T. Janesupasaeree. (2010) .Data-driven stochastic subspace identification of flutter derivatives of bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 98:784–799. [10] B. Peeters, G. De Roeck. (1999) .Reference-based stochastic subspace identification for output-only modal analysis. Mechanical Systems and Signal Processing. 13(6):855–878. [11] T. K. Moon. (1996) .The expectation-maximization algorithm. Signal Process Magazine, vol. 13:47 -60. [12] C.H. Loh, C.H. Mao, J.R. Huang, T.C. Pan. (2010) .System identification and damage evaluation of degrading hysteresis of reinforced concrete frames. Earthquake Engineering and Structure of Dynamic. 40:623–640. [13] W.T. Hsu, C.H Loh, S.H Chao. (2015) .Uncertainty calculation for modal parameters used with stochastic subspace identification: an application to a bridge structure. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Proc. SPIE, vol.9435. [14] R.S. Pappa, K.B Elliott, and A Schenk. (1993) .Consistent-Mode Indicator for the Eigensystem Realization Algorithm. Journal of Guidance, Control and Dynamics, Vol.16, No. 5:852-858. [15] P. Vacher, B. Jacquier, A. Bucharles.ONERA. (2010) .Extensions of the MAC criterion to complex modes. International Conference on Noise and Vibration Engineering, Leuven, Belgium. [16] D. Welch Peter. (1967) .The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Trans. Audio Electroacoustics, vol.15:70 -73 [17] T.L. Daniel, Akio yananoto. (1994) .Wavelet Analysis: Theory and Applications. Hewlett-packard Journal:44 -54 [18] C.C Chang, and Z. Sun. (2004) .Structure damage location using spatial wavelet packet signature. Smart Structures and System, 1(1): 29-46. [19] Y.B. Yang, Y.C. Li, and K.C. Chang. (2012) .Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies. Interaction and Multiscale Mechanics.5:347-68. [20] Y.B. Yang, J.D. Yau. (1997) .Vehicle-bridge interaction element for dynamic analysis. Journal of Structural Engineering American Society of Civil Engineers, 123 (11):1512–1518. [21] Y.B. Yang, C.H. Chang, J.D. Yau. (1991) .An element for analyzing vehicle bridge systems considering vehicle's pitching effect. Int. J. Number. Methods Engineering, 46: 1031–1047. [22] A.K. Chopra. (2012) .Dynamic of Structure Theory and Applications To Earthquake Engineering. (4th ed.). prentice Hall, Upper Saddle River, New Jersey. [23] M.W. Sayers and S.M. Karamihas. (1998) .The little book of profiling, basic information about measuring and interpreting road profiles. The Regent of the University of Michigan, Transportation Research Institute (UMTRI), Ann Arbor, Mich. [24] Y.H. Wu. (2014) .Application of the Vehicle-Bridge Interaction Theory to Indirect Approach for Measuring Bridge Frequencies. Master Thesis, National Taiwan University [25] M.A. Mannan and M.H. Richardson. (1990) .Detection and location for structural crack using FRF measurements. Proceedings of the 8th International Modal Analysis Conference, Vol.1:652-657. [26] Y.S. Park, H.S. Park and S.S. Lee. (1988) .Weighted-error-matrix application to detect stiffness damage by dynamic-characteristic measurement. The International Journal of Analytical and Experimental Modal Analysis 3(3):101-107. [27] C.S. Lin. (1990) .Location of modeling errors using modal test data. American Institute of Aeronautics and Astronautics Journal 28:1650-1654. [28] A. K. Pandey and M. Biswas. (1994) .Damage detection in structures using changes in flexibility. Journal of Sound and Vibration 169:3-17. [29] W.Y. Hsiung. (2014) .Vibration Analysis and Damage Detection of a Research-scale Wind Turbine Blade. Master Thesis, National Taiwan University. [30] A.M. Yan and J.C Golinval. (2006) .Null subspace-based damage detection of structures using vibration measurements. Mechanical Systems and Signal Processing, Vol,20: 611–626. [31] E Zugasti1, A G´omez Gonz´alez2, J Anduaga1, M A Arregui1 and F Mart´ınez1. (2012) .Null-Space and Auto Regressive damage detection: a comparative study. Smart Materials and Structures, 21:1–9 [32] S.F Chen, T.Y Hung, C.H Loh. (2015) .Analysis of traffic-induced vibration and damage detection by blind source separation with application to bridge monitoring. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Proc. SPIE, vol.9435. [33] C.H Loh and S.H Chao. (2014) .Centralized vs. Pattern-Level Feature Extraction. Procedia Engineering 79:479 – 489 [34] A. K. Pandey, M. Biswas. (1994) .Damage Detection in Structures Using Change in Flexibility. Journal of Sound and Vibration, 169(1):3-17. [35] A. Berman and W.G. Flannely. (1971) .Theory of incomplete models of dynamic structures. AIAA Journal, 9:1481–1487 (Section 3.7). [36] A. K. Pandey, M. Biswas. (1995) .Experimental verification of flexibility difference method for locating damage in structures. Journal of Sound and Vibration, 184(2):311-328. [37] 孫恭先,劉炳勳. (1984)。關渡大橋工程專輯,台灣省公路局出版。 [38] C.H Loh, M.C Chen, S.H Chaoa. (2012) .Stochastic subspace identification for operational modal analysis of an arch bridge. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Proc. SPIE, vol.8345. [39] M.C Chen. (2012) .Application of Stochastic Subspace Identification in Bridge Structural Health Monitoring. Master Thesis, National Taiwan University. [40] F. Tyan, Y.F Hong, S.H Tu, WS. Jeng. (2009) .Generation of Random Road Profiles. Journal of Advanced Engineering Vol. 4, No. 2:151-156. [41] J.H. Weng, C.H. Loh, J.P Lynch, K.C Lu, P.Y Linn, Y. Wang. (2008) .Output-Only Modal Identification of a Cable-Stayed Bridge Using Wireless Monitoring Systems. Journal of Engineering Structure, 30 (2):1802-1830. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54259 | - |
| dc.description.abstract | 本研究的目的在於利系統識別方法:協方差隨機子空間識別法(Covariance-driven stochastic subspace identification, SSI-COV)與小波包轉換法(Wavelet packet transform)識別橋梁受車橋互制系統並考慮隨機路面粗糙度之影響。本研究第一部分利用有限元素數值模擬方法(Finite element method),模擬兩跨連續橋梁受到移動車載引致互制外力影響並考慮路面粗糙度。從不同量測點的訊號反應,利用SSI-COV識別橋梁的頻率。為了排除互制效果(tuned effect)在穩態圖(Stability diagram)上出現的僞系統極點(spurious pole)的現象,採用小波包轉換法重建可能為僞系統極點的訊號並觀察不同量測點訊號的相位差。第二部分是將上述SSI-COV方法應用於關渡大橋(Guan-Du bridge)的參數識別,並探討不同量測時間所繪製的穩態圖分析。此外,損傷分析方法應用於樑型結構上包括: (1) Subspace、Null-space damage index (DIn,DIs,DI) (2) Hilbert Amplitude Assurance Correlation (3) Change in flexibility。 透過模擬兩種破壞形式包括: (1) 橋梁元素(element)勁度折減(2) 橋梁支承勁度折減。上述之損傷分析均應用於橋梁的損害評估上。 | zh_TW |
| dc.description.abstract | Application of system identification technique, known as Covariance-driven stochastic subspace identification (SSI-COV), cooperated with Wavelet packet transform (WPT), to identify the dynamic characteristics of bridge under bridge-vehicle interaction with considering random road surface roughness. In the first portion of this study, numerical simulation of a two-span continuous bridge using finite element model is presented with the consideration of bridge-vehicle interaction and road roughness. From the response signal collected in different locations, SSI-COV was applied to identify the bridge vibration frequencies. In order to eliminate spurious poles due to the tuned effect of bridge and vehicle vibration phenomenon, wavelet packet transform was used to reconstruct signals of possible spurious modes and observed the phase difference among the measurements. The second part of this study is using the proposed SSI-COV method to identify the dynamic characteristics of a bridge in its operating condition: Guan-du Bridge. Discussion on the stability diagram from different measurement time is discussed. In addition, damage detection of bridge-like structure are also proposed: (1) Subspace-Null space damage indices (DIn、DIs、DI), (2) Hilbert Amplitude Assurance Correlation, and (3) Change in system flexibility. Through numerical simulation of damage scenarios: (1) Stiffness reduction in one of the bridge element, (2) Stiffness reduction on the bridge bearing system, the proposed damage indices were applied for damage assessment of the bridge. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:47:11Z (GMT). No. of bitstreams: 1 ntu-104-R02521219-1.pdf: 27001132 bytes, checksum: f60402f859347637a57e684898c74e70 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書
ACKNOWLEDGMENT I ABSTRACT (IN CHINESE) II ABSTRACT (IN ENGLISH) III CONTENTS V TABLE LIST VIII FIGURE LIST IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Research Objective 2 1.3 Literature Reviews 2 1.3.1 Bridge-Vehicle Interaction 3 1.3.2 Stochatic Subspace Identification 3 Chapter 2 System Identification Method 5 2.1 Covariance-Driven Stochastic Subspace Identification 5 2.1.1 Output Modal Amplitude Correlation 9 2.1.2 Mode Phase Collinearity 10 2.2 Remove tune effects :Wavelet Packet Transform 11 2.3 Damage Detection Algorithm 13 2.3.1 Nullspace-based and Subspace-based Damage Indices 14 2.3.2 Damage Detection Using Hilbert Amplitude Assurance Correlatiom 16 2.3.3 Change in Flexibility 17 Chapter 3 Bridge-Vehicle Interaction System 19 3.1 Bridge-Vehicle Interaction Subject to Random Travelling Vehicles 19 3.1.1 Relationship Between Beam-like Structure and Vehicle 19 3.1.2 Finite Element Method of Bridge-Vehicle Interaction System 20 3.1.3 Numerical Evaluation of Dynamic Response 21 3.2 Bridge–Vehicle Interaction System Considering Surface Roughness 24 3.2.1 Simulation of Surface Roughness 25 3.2.2 Finite Element Method of Interaction System Considing Roughness 26 3.3 Case Studies 27 3.3.1 Application of SSI and WPT for Bridge System ID 27 3.3.2 Analysis Result of Damage Detection 31 Chapter 4 System Identification of Guan-Du Bridge 35 4.1 Set-up of Monitoring System and Data Pre-Processing Procedure 35 4.2 Applicaation of Guan-Du Bridge 37 4.2.1 Application of SSI and WPT for Guan-Du Bridge ID 40 4.2.2 Analysis Result of Damage Detection 40 Chapter 5 Conclusions 42 5.1 Research Conclusion 42 5.2 Recommendation for Future Work 44 References 45 Appendix A1 82 Appendix A2 130 | |
| dc.language.iso | en | |
| dc.subject | 關渡大橋 | zh_TW |
| dc.subject | 協方差隨機子空間 | zh_TW |
| dc.subject | 小波包轉換 | zh_TW |
| dc.subject | 車橋互制 | zh_TW |
| dc.subject | 路面粗糙度 | zh_TW |
| dc.subject | 系統識別 | zh_TW |
| dc.subject | 損傷識別 | zh_TW |
| dc.subject | 協方差隨機子空間 | zh_TW |
| dc.subject | 小波包轉換 | zh_TW |
| dc.subject | 車橋互制 | zh_TW |
| dc.subject | 路面粗糙度 | zh_TW |
| dc.subject | 系統識別 | zh_TW |
| dc.subject | 損傷識別 | zh_TW |
| dc.subject | 關渡大橋 | zh_TW |
| dc.subject | system identification | en |
| dc.subject | roughness | en |
| dc.subject | damage detection | en |
| dc.subject | covariance-driven stochastic subspace identification | en |
| dc.subject | guan-du bridge | en |
| dc.subject | covariance-driven stochastic subspace identification | en |
| dc.subject | wavelet pecket transform | en |
| dc.subject | bridge-vehicle interaction | en |
| dc.subject | roughness | en |
| dc.subject | system identification | en |
| dc.subject | damage detection | en |
| dc.subject | guan-du bridge | en |
| dc.subject | wavelet pecket transform | en |
| dc.subject | bridge-vehicle interaction | en |
| dc.title | 受車載影響樑型結構之系統識別及損傷偵測:利用隨機子空間與小波包轉換法 | zh_TW |
| dc.title | System Identification and Damage Detection of Beam-like Structure Under Moving Vehicles Using SSI-WPT Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張國鎮(Kuo-Chun Chang),田堯彰(Yaun-Chan Tan) | |
| dc.subject.keyword | 協方差隨機子空間,小波包轉換,車橋互制,路面粗糙度,系統識別,損傷識別,關渡大橋, | zh_TW |
| dc.subject.keyword | covariance-driven stochastic subspace identification,wavelet pecket transform,bridge-vehicle interaction,roughness,system identification,damage detection,guan-du bridge, | en |
| dc.relation.page | 140 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 26.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
