Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54258
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉小蓁
dc.contributor.authorYi-Wei Yaoen
dc.contributor.author姚伊蔚zh_TW
dc.date.accessioned2021-06-16T02:47:07Z-
dc.date.available2015-07-23
dc.date.copyright2015-07-23
dc.date.issued2015
dc.date.submitted2015-07-16
dc.identifier.citation1. 程言信、呂惠琪 (2009),波動性預測與台指選擇權隱含波動性的資訊內容(Volatility Forecasting and the Information Content of TXO Implied Volatility ),台灣期貨與衍生性商品學刊,第九期,36-75。
2. 葉小蓁 (2006),時間序列分析與應用。
3. 莊益源、張鐘霖、王祝三 (2003),波動率模型預測能力的比較-以台指選擇權
為例,台灣金融季刊,第四輯第二期,41-63。
4. Beckers, S. (1981), “Standard Deviations Implied in Option Prices as Predictors of Future Stock Price Variability,” Journal of Banking and Finance, 5, 363-381.
5. Canina, L. and Figlewski, S. (1993),”The Informational Content of Implied Volatility,” Review of Financial Studies, 6, 659-681.
6. Chiras, D.P. and Manaster (1978).”The Information Content of Option Prices and a Test of Market Efficiency,” Journal of Financial Economics, 6, 213-234.
7. Christensen, B.J. and Prabhala, N.R. (1998),”The Relation between Implied and Realizedized Volatility,” Journal of Financial Economics, 50, 125-150.
8. Chu, S.H. and Freund, S. (1996),”Volatility Estimation for Stock Index Option: A GARCH Approach”, Quarterly Review of Economics and Finance, 36, 431-450.
9. Cornell, B. (1981),”The Relationship between Volume and Price Variability in Futures Markets,” Journal of Futures Markets, 1, 303-316.
10. Day, T.E. and Lewis, C.M. (1992),”Stock Market Volatility and the Information Content of Stock Index Options,” Journal of Econometrics, 52, 267-287.
11. Fleming, J. (1998),”The Quality of Market Volatility Forecasts Implied by S&P 100Index Option Prices,” Journal of Empirical Finance, 5, 317-345.
12. Gwilym, O.A. and Buckle, M. (1999),”Volatility Forecasting in the Framework of the Option Expiry Circle,” European Journal of Finance, 5, 73-94.
13. Lamoureux, C.G. and Lastrapes, W.D. (1993), “Forecasting Stock Return Variance: Toward an Understanding of Stochastic Implied Volatilities,” Review of Financial Studies, 6, 293-326.
14. Ni, S.X., J.Pan, and Poteshman, A.M. (2008),”Volatility Information Trading in the
Option Market,” Journal of Finance, LXIII, 1059-1091.
15. Poon S.H. and Clive W.J. Granger (2003),”Forecasting Volatility in FinancialMarket: A Review,” Journal of Economic Literature, 41, 478-539.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54258-
dc.description.abstract一般傳統都以歷史資料為基礎的歷史波動率模型和時間序列模型來估計股
價波動率,本文進一步將選擇權所隱含的資訊形成轉換函數模型納入考量並進行比較分析,檢測各波動率模型的內含資訊及對未來股價真實波動的預測能力。實證顯示,時間序列模型相較於隱含波動率模型提供較多的資訊,然而在不同的誤差衡量指標結果發現,隱含波動率模型中又以價平賣權隱含波動率為最佳波動預測模型。此外,除了歷史波動率模型之外,其他波動率模型在加入成交量資訊後,皆無法提升其模型的預測能力。最後,本文以歷史波動率、時間序列模型波動率和價平買權和賣權隱含波動率等模型評價樣本外價平選擇權。在買權與賣權的評價結果中,買權以時間序列模型計算的波動率評價能力較佳,賣權則是以價平賣權隱含波動率模型表現較佳;然而,整體來看,時間序列模型所隱含的資訊不僅對未來股價波動有較好的預測能力,用以評價未來選擇權的價格也會得到較小的誤差,而除了時間序列模型以外的其他波動率模型,內含資訊較豐富的模型其評價績效也相對較好。
zh_TW
dc.description.abstractIn the past, there were many literatures using the historical model and time series model which are based on historical information or implied volatility model to estimate the volatility of stock price. In this thesis, we use the historical model, time series model, and the transfer function model of implied volatility to forecast the volatility and compare the information content and forecasting ability of these models. From the empirical results, time series model performs better than the transfer function model of implied volatility. Besides, from the results of error analysis, among the transfer function models of implied volatility, the at-the-price put option implied volatility model performs better. Moreover, except for the historical volatility model, all models don’t improve their forecasting ability after adding the trading volume in. At the end, we use these models to price the out-of-sample at-the-price TXO. We find that time series model performs the best in pricing call options, and the transfer function model on implied volatility of at-the-price put option performs the best in pricing put options. However, overall, time series model have better forecasting ability towards the volatility of future stock price and also has smaller error in pricing options.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:47:07Z (GMT). No. of bitstreams: 1
ntu-104-R02723028-1.pdf: 8065747 bytes, checksum: f2ff202f028881abaf80e18411898c68 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsChapter 1: Introduction and Literature Review……………………..7
Chapter 2: Research Method
2.1 Volatility Models…….15
2.2 The forecasting ability of volatility
models………………………………………..22
2.3 The transfer function models of the
volatility models(added with trading
information) ………………………………….………….….……23
2.4 The pricing of out-of-sample
options……………………………………………….26
Chapter 3: The empirical results and analysis
3.1 The source of the information……………………29
3.2 The results of volatility models……………30
3.3 The basic description statistics of
volatility models and the trending
chart………………………………………………………………….……..64
3.4 The comparison of the forecasting ability
of volatility Models….…..….65
3.5 The pricing of out-of-sample options………68
Chapter 4:
Conclusion……………………………………………..……………………………………………....72
References………………………………………………………...................74
Appendix……………………………………............................75
dc.language.isoen
dc.subject轉換函數模型zh_TW
dc.subject時間序列模型zh_TW
dc.subject台指選擇權zh_TW
dc.subject隱含波動率zh_TW
dc.subject交易量zh_TW
dc.subject轉換函數模型zh_TW
dc.subject波動率預測zh_TW
dc.subject時間序列模型zh_TW
dc.subject台指選擇權zh_TW
dc.subject交易量zh_TW
dc.subject波動率預測zh_TW
dc.subject隱含波動率zh_TW
dc.subjecttransfer function modelen
dc.subjectTXOen
dc.subjecttime series modelen
dc.subjectimplied volatilityen
dc.subjectvolatilityforecastingen
dc.subjecttrading volumeen
dc.subjectTXOen
dc.subjecttime series modelen
dc.subjecttransfer function modelen
dc.subjectimplied volatilityen
dc.subjectvolatilityforecastingen
dc.subjecttrading volumeen
dc.title波動性預測與未來股價預測比較-以臺指選擇權為例zh_TW
dc.titleThe empirical study of the comparisons of the
volatility
prediction and the stock price prediction-TXO
en
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許耀文,蘇永成
dc.subject.keyword台指選擇權,時間序列模型,轉換函數模型,隱含波動率,波動率預測,交易量,zh_TW
dc.subject.keywordTXO,time series model,transfer function model,implied volatility,volatilityforecasting,trading volume,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2015-07-17
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
7.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved