Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54220
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭大維(Tei-Wei Kuo)
dc.contributor.authorWei-Che Changen
dc.contributor.author張偉哲zh_TW
dc.date.accessioned2021-06-16T02:45:19Z-
dc.date.available2016-07-21
dc.date.copyright2015-07-21
dc.date.issued2015
dc.date.submitted2015-07-20
dc.identifier.citation[1] ITRS 2010: Taking on the energy challenge.
[2] Introduction to Finite Element Analysis, 2015.
[3] B. Amelifard, F. Fallah, and M. Pedram. Reducing the sub-threshold and gate-tunneling leakage of sram cells using dual-vt and dual-tox assignment. In Design,Automation and Test in Europe, 2006. DATE ’06. Proceedings, volume 1, pages 1–6,March 2006.
[4] D. Brooks and M. Martonosi. Dynamic thermal management for high-performance microprocessors. In High-Performance Computer Architecture, 2001. HPCA. The Seventh International Symposium on, pages 171–182, 2001.
[5] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An evaluation of high-level mechanistic core models. ACM Transactions on Architecture and Code Optimization (TACO), 2014.
[6] A. Florea, C. Buduleci, R. Chis, A. Gellert, and L. Vintan. Enhancing the sniper simulator with thermal measurement. In System Theory, Control and Computing (ICSTCC), 2014 18th International Conference, pages 31–36, Oct 2014.
[7] Y. Han, I. Koren, and C. M. Krishna. TILTS: A fast architectural-level transient
thermal simulation method. J. Low Power Electronics, 3(1):13–21, 2007.
[8] T. Hauck and T. Bohm. Thermal rc-network approach to analyze multichip power packages. In Semiconductor Thermal Measurement and Management Symposium,2000. Sixteenth Annual IEEE, pages 227–234, 2000.
[9] M.-y. Hsieh, A. Rodrigues, R. Riesen, K. Thompson, and W. Song. A framework for architecture-level power, area, and thermal simulation and its application to network-on-chip design exploration. SIGMETRICS Perform. Eval. Rev., 38(4):63–68, Mar.2011.
[10] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and M. Stan. Hotspot: a compact thermal modeling methodology for early-stage vlsi design. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 14(5):501–513, May 2006.
[11] B. Kuo and F. Golnaraghi. Automatic control systems, 8th ed. 2002.
[12] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. Mcpat: An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings of the 42Nd Annual IEEE/ACM Inter-national Symposium on Microarchitecture, MICRO 42, pages 469–480, New York,NY, USA, 2009. ACM.
[13] W. Liao, L. He, and K. Lepak. Temperature and supply voltage aware performance and power modeling at microarchitecture level. Computer-Aided Design of Inte-grated Circuits and Systems, IEEE Transactions on, 24(7):1042–1053, July 2005.
[14] Y. Liu, R. Dick, L. Shang, and H. Yang. Accurate temperature-dependent integrated circuit leakage power estimation is easy. In Design, Automation Test in Europe Conference Exhibition, 2007. DATE ’07, pages 1–6, April 2007.
[15] H. M. Moya-Cessa and F. Soto-Eguibar. Differential Equations: An Operational Approach chapter3. Rinton Press, 3 edition, 2011.
[16] S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, and J. Henkel. Tsp: Thermal safe power - efficient power budgeting for many-core systems in dark silicon. In Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2014 International Conference on, pages 1–10, Oct 2014.
[17] M. S. Santiago Pagani, Jian-Jia Chen and J. Henkel. Matex: Efficient transient and peak temperature computation for compact thermal models. 18th IEEE/ACM Design,Automation and Test in Europe (DATE), 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54220-
dc.description.abstract隨著現代多核技術在晶片上尋求更多的計算能力, 過熱問題在智慧手機、個人電腦和高端伺服器的晶片設計上是一個關鍵。因此,發展出各式各樣的能源管理演算法在不維背熱能的限制下來達成計算的要求,所有的能源管理機制不僅僅依賴對現下溫度測量,也需考量後面時間點上的溫度預測。然而,多數既存溫度預測演算法假設晶片上的漏電流功率消耗為常數,即並沒有意識在進階多核晶片中越來越重要的漏電流功率對溫度的影響。這篇論文探討溫度和漏電流功率消耗之間在電路上的回饋迴圈機制,並在多核平台上發展出對溫度敏銳的功率模型並提供精確快速的溫度預測。論文所提設的預測策略的好壞將從預測誤差和計算時間等方面來看,由基準測試 (benchmark)
來評估。實驗結果表示出我們的策略比相競爭的類似解法更加精準,能擁有更短的計算時間使得我們的策略適合即時的能源管理演算法。
zh_TW
dc.description.abstractWith the modern multi-core technology to explore more computing power in a chip, overheating is now a critical problem of chip designs for smart phones, personal computers, and high-end servers. Therefore, various power management algorithms are developed to meet the computing requirements without violating the thermal constraints, and all of the power management algorithms rely on not only the measurement of the current temperature but also the temperature estimation for the following time points. However, most of the existing temperature estimation algorithms assume that the leakage power consumption of a chip is a constant and are not aware of the impact of temperature on the leakage power consumption which is more and more significant in the advanced multi-core chips. This paper explores the feedback loop between the temperature and the leakage power consumption of a circuit and develops a temperature-aware power model to provide the accurate temperature estimation for multi-core platforms. The performance of the proposed estimation scheme is then evaluated with benchmark suites in terms of the estimation error and the computing time. The experimental results show that our scheme is more accurate than all of the competing solutions, and the short computing time also makes our scheme suitable for real-time power management algorithms.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:45:19Z (GMT). No. of bitstreams: 1
ntu-104-R02922031-1.pdf: 400776 bytes, checksum: c65fc9061bd41096143bdfa7603a28eb (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.1 Power Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 RC Thermal Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Temperature in Transient State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3.1 Leakage Power Linearization . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Matrix Exponential Computation . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Acceleration in Root Finding . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
dc.language.isoen
dc.subject分析方法zh_TW
dc.subject漏電功率zh_TW
dc.subject矩陣指數zh_TW
dc.subject能源效率zh_TW
dc.subject多核裝置zh_TW
dc.subject漏電功率zh_TW
dc.subject矩陣指數zh_TW
dc.subject分析方法zh_TW
dc.subject能源效率zh_TW
dc.subject多核裝置zh_TW
dc.subjectMulti-core devicesen
dc.subjectLeakage poweren
dc.subjectMatrix Exponentialen
dc.subjectAnalytical methoden
dc.subjectEnergy efficiencyen
dc.subjectMulti-core devicesen
dc.subjectMatrix Exponentialen
dc.subjectAnalytical methoden
dc.subjectEnergy efficiencyen
dc.subjectLeakage poweren
dc.title具漏電功率考量之快速最高溫度計算zh_TW
dc.titleEfficient Peak Temperature Computation with Leakage Power Considerationen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張哲維(Che-Wei Chang),黃柏鈞(Po-Chun Huang),劉邦鋒(Pang-Feng Liu),張原豪(Yuan-Hao Chang)
dc.subject.keyword漏電功率,矩陣指數,分析方法,能源效率,多核裝置,zh_TW
dc.subject.keywordLeakage power,Matrix Exponential,Analytical method,Energy efficiency,Multi-core devices,en
dc.relation.page25
dc.rights.note有償授權
dc.date.accepted2015-07-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
391.38 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved