Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54199
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林江珍
dc.contributor.authorHsiao-Chu Linen
dc.contributor.author林筱筑zh_TW
dc.date.accessioned2021-06-16T02:44:21Z-
dc.date.available2020-07-22
dc.date.copyright2015-07-22
dc.date.issued2015
dc.date.submitted2015-07-20
dc.identifier.citation1.7 Reference
[1] Nel, A.; Xia, T.; Madler, L.; Li, N. Science 2006, 311,622.
[2] Yi, Y.; Wang, Y.; Liu, H. Carbohyd. Polym. 2003, 53, 425.
[3] Fu, G.; Vry, P. S.; Lin, C. T. J. Phys. Chem. B 2005, 109, 8889.
[4] Nqvqrro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, A. Environ. Sci. Technol. 2008, 42, 8959.
[5] Thostenson, E. T.; Ren, Z.; Chou, T. W. Composites Science and Technology 2001, 61, 1899.
[6] Yang, H.; Liu, C.; Yang, D.; Zhang, H., Xi, Z. J. Appl. Toxicol. 2009, 29, 69.
[7] Sanchez, C; Julian, B.; Belleville, P.; Popall, M. J. Mater. Chem. 2005, 15, 3559.
[8] Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C. J. Phys. Chem. B 2006, 110, 18115.
[9] Xiao, Y.; Li, C. M. Electroanalysis 2008, 20, 648.
[10] Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
[11] Aeschlimann, M.; Brixner, T.; Fischer, A.; Kramer, C.; Melchior, P.; Pfeiffer, W.; Schneider, C.; Struber, C.; Tuchscherer, P.; Voronine, D. V. Science 2010, 333, 1723.
[12] Alivisatos, A. P. Science 1996, 271, 933.
[13] Kang, M. S.; Sahu, A.; Norris, D. J.; Frisbie, C. D. Nano Letters 2010, 10, 3727.
[14] Yen, H. J.; Hsu, S. H.; Tsai, C. L. Small 2009, 5, 1553.
[15] Martinez-Castanon, G. A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J. R.; Ruiz, F. J. Nanopart. Res. 2008, 10, 1343.
[16] Giannelis, E. P. Adv. Mater. 1996, 8, 29.
[17] Utracki, L. A.; Sepehr, M.; Boccaleri, E. Polym. Adv. Technol. 2007, 18, 1.
[18] Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1.
[19] Van Olphen, H. An Introducetion to Clay Colloid Chemistry, 2nd ed., John Wiley & Sons, New York, 1977.
[20] Yan, H. G.; Li, X. S.; Chandra, B. Tulevski G.; Wu, Y. Q.; Freitag, M.; Zhu, W. J.; Avouris, P.; Xia, F. N. Nat. Nanotechnol 2012, 7, 330.
[21] Liang, J. J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y. F.; Guo, T. Y.; Chen, Y. S. Adv. Funct. Mater. 2009, 19, 2297.
[22] Miller, D. L.; Kubista, K. D.; Rutter, G. M.; Ruan, M.; de Heer, W. A.; First, P. N.; Stroscio, J. A. Science 2009, 324, 924.
[23] Zeng, C.; Lee, L. J. Macromolecules 2001, 34, 4098.
[24] Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807.
[25] Fu, X.; Qutubuddin, S. Mater. Lett. 2000, 42, 12.
[26] Imai, Y.; Nishmura, S.; Abe, E.; Tateyama, H.; Abiko, A.; Yamaguchi, A.; Aoyama, T.; Taguchi, H. Chem, Mater. 2002, 14, 477.
[27] Chang, J. H.; Jang, T. G.; Ihn, K. J.; Lee, W. K.; Sur, G. S. J. Appl. Polym. Sci. 2003, 90, 3208.
[28] Kim, M. H.; Park, C. I.; Choi, W. M.; Lee, J. W.; Lim, J. G.; Park, O. O.; Kim, J. M. J. Appl. Polym. Sci. 2004, 92, 2144.
[29] Ijdo, W. L.; Pinnavaia, T. J. Chem. Mater. 1999, 11, 3227.
[30] Maiti, P.; Yamada, K.; Okamoto, M.; Ueda, K.; Okamoto, K. Chem. Mater. 2002, 14, 4654.
[31] Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539.
[32] Pavlidou, S.; Papaspyrides, C. D. Prog. Polym. Sci. 2008, 33, 1119.
[33] Kumar, A. P.; Depam, D.; Tomer, N. S., Singh, R. P. Prog. Polym. Sci. 2009, 34, 479.
[34] Bordes, P.; Poller, E.; Averous, L. Prog. Polym. Sci. 2009, 34, 125.
[35] Killaris, P.; Papaspyrdies, C. D. Prog. Polym. Sci 2010, 35, 902.
[36] Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1.
[37] Utracki, L. A.; Sepehr, M.; Boccaleri, E. Polym. Adv. Technol. 2007, 18, 1.
[38] Giannelis, E. P. Adv. Mater. 1996, 8, 29.
[39] Lin, J. J.; Chan Y. N.; Chang, W. H. In: Geckeler, K. E., Nishide, H., editors. Advanced nano-materials. New York: John Wiley & Sons Inc; 2010, 459.
[40] Lin, J. J.; Chan, Y. N.; Lan, Y. F. Materials 2010, 3, 2588.
[41] Theng, B. K. G. in Formation and Properties of Clay-Polymer Complexes, 2nd ed., Elsevier Science, Oxford, 2012.
[42] Sorina-Alexandra, G.; Horina, J. & Ancuta, B. New organophilicagents of montmorillonite used as reinforcing agent in epoxynanocompostes. Polym. Test 2008, 27, 100–13.
[43] Sparks, D. L. Environmental Soli Chemistry, John Wiley & Sons, Ltd., 2003.
[44] Wang, H.; Zhao, T.; Zhi, L.; Yan, Y.; Yu, Y. Macromol. Rapid Commun. 2002, 23, 44.
[45] Bohning, M.; Goering, H.; Fritz, A.; Brzezinka, K. W.; Turky, G.; Schonhals, A.; Schartel, B. Macromolecules 2005, 38, 2764.
[46] Robello, D. R.; Yamaguchi, N.; Blanton, T.; Barnes, C. J. Am. Chem. Soc. 2004, 126, 8118.
[47] Tien, Y. I.; Wei, K. H. J. Appl. Polym. Sci. 2002, 86, 1741.
[48] Lepoittevin, B.; Pantoustier, N.; Alexandre, M.; Calberg, C.; Jerome, R.; Dubois, P, J. Mater. Chem. 2002, 12, 3528.
[49] Myskova, M. Z.; Zelenka, J.; Spacek, V.; Socha, F. Maceomol Symp 2003, 200, 291.
[50] Wang, M. S.; Pinnavaia, T. J. Chem. Mater. 1994, 6, 468.
[51] Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. J. phys. Chem. Solids 1996, 57, 1005.
[52] LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Appl. Clay Sci. 1999, 15, 11–29.
[53] Yang, Y.; Zhu, Z. K.; Yin, J.; Wan, X. Y.; Qi, Z. E. Polymer 1999, 40, 4407–4414.
[54] Maiti, M.; Bandyopadhyay, A.; Bhowmick, A. K. J. Appl. Polym. Sci. 2006, 99, 1645–1656.
[55] Subramani, S.; Lee, J. Y.; Choi, S. W.; Kim, J. H. J. Polym. Sci. B: Polym. Phys. 2007, 45, 2747–2761.
[56] Zeng, C.; Lee, L. J. Macromolecules 2001, 34, 4098–4103.
[57] Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem. Mater. 1994, 6, 1017–1022.
[58] Hotta, S.; Paul D. R. Polymer 2004, 45, 7639–7654.
[59] Imai Y. et al. Chem. Mater. 2002, 14, 477–479.
[60] Chang, J. H.; Jang, T. G.; Ihn, K. J.; Lee, W. K.; Sur. G. S. J. Appl. Polym. Sci. 2003, 90, 3208–3214.
[61] Kim, M. H. et al. J. Appl. Polym. Sci. 2004, 92, 2144–2150.
[62] Bottino F. A. et al. Macromol. Rapid Commun. 2003, 24, 1079–1084.
[63] Gilman J. W. et al. Chem. Mater. 2002, 14, 3776–3785.
[64] Wang, K.; Wang, L.; Wu, J.; Chen, L.; He, C. Langmuir 2005, 21, 3613–3618.
[65] Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832
[66] Chou, C. C.; Shieu, F. S.; Lin, J. J. Macromolecules 2003, 36, 2187−2189.
[67] Lin, J. J.; Cheng, I. J.; Chou, C. C. Macromol. Rapid Commum. 2003, 24, 492.
[68] Fan, X.; Xia, C.; Fulghum, T.; Park, M.; Locklin, J.; Advincula, R. C. Langmuir 2003, 19, 916.
[69] Fan, X.; Xia, C.; Advincula, R. C. Langmuir 2003, 19, 4381
[70] Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807.
[71] Zhou, Q.; Fan, X.; Xia, C.; Mays, J.; Advincula, R. C. Chem. Mater. 2001, 13, 2465.
[72] Fan, X.; Zhou, Q.; Xia, C.; Cristofoli, W.; Mays, J.; Advincula, R. C. Langmuir 2002, 18, 4511.
[73] Zhao, H.; Farrell, B. P.; Shipp, D. A. Polymer 2004, 45, 4473.
[74] Yang, Y.; Liu, L.; Zhang, J.; Li, C.; Zhao, H. Langmuir 2007, 23, 2867.
[75] Yang, Y.; Wu, D.; Li, C.; Liu, L.; Cheng, X.; Zhao, H. Polymer 2006, 47, 7374.
[76] Zhao, H.; Shipp, D. A. Chem. Mater. 2003, 15, 2693.
[77] Zhao, H.; Argoti, S. D.; Farrell, B. P.; Shipp, D. A. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 916.
[78] Sedjo, R. A.; Mirous, B. K.; Brittain, W. J. Macromolecules 2000, 33, 1492.
[79] Bottcher, H.; Hallensleben, M. L.; Nu, S.; Wurm, H.; Bauer, J.; Behrens, P. J. Mater. Chem. 2002, 12, 1351.
[80] Datta, H.; Bhowmick, A. K.; Singha, N. K. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 5104.
[81] Datta, H.; Singha, N. K.; Bhowmick, A. K. Macromolecules 2008, 41, 50.
[82] .Behling, R. E.; Williams, B. A.; Staade, B. L.; Wolf, L. M.; Cochran, E. W. Macromolecules 2009, 42, 1867.
[83] Di, J.; Sogah, D. Y. Macromolecules 2006, 39, 1020.
[84] Shah, D.; Fytas, G.; Vlassopoulos, D.; Sogah, D. Y.; Giannelis, E. P. Langmuir 2005, 21, 19.
[85] Weimer, M. W.; Chen, H.; Giannelis, E. P.; Sogah, D. Y. J. Am. Chem. Soc. 1999, 121, 1615.
[86] Di, J.; Sogah, D. Y. Macromolecules 2006, 39, 5052.
[87] Konn, C.; Morel, F.; Beyou, E.; Chaumont, P.; Bourgeat-Lami, E. Macromolecules 2007, 40, 7464.
[88] Negrete-Herrera, N.; Letoffe, J.; Reymond, J.; Bourgeat-Lami, E. J. Mater. Chem. 2005, 15, 863.
[89] Negrete-Herrera, N.; Letoffe, J.; Putaux, J.; David, L.; Bourgeat-Lami, E. Langmuir 2004, 20, 1564.
[90] Bourlinos, A. B.; Jiang, D. D.; Giannelis, E. P. Chem. Mater. 2004, 16, 2404.
[91] Voorn, D. J.; Ming, W.; van Herk, A. M. Macromolecules 2006, 39, 4654.
[92] Negrete-Herrera, N.; Putaux, J.; David, L.; Bourgeat-Lami, E. Macromolecules 2006, 39, 9177.
[93] Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Macromolecules 2005, 38, 6240.
[94] Lin, J. J., Chu, C. C., Chiang, M. L. & Tsai, W. C. J. Phys. Chem. B 2006, 110, 18115.
[95] Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
[96] Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.
[97] Cowie, J. M. G.; Arrighi, V. In Polymers: Chemistry and Physics of Modern Materials; CRC Press Taylor and Francis Group: Boca Raton, Fl, 2008; 3rd ed., 82–84.
[98] Matyjaszewski, K.; Tsarevsky, N. V. Nature Chem. 2009, 1, 276.
[99] Tsarevsky N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270.
[100] Matyjaszewski, K.; Spanswick, J. Mat. Today 2005, 8, 26.
[101] Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921.
[102] Priolo, M. A.; Gamboa, D.; Grunlan, J. C. ACS Appl. Mater. Interfaces 2010, 2, 312.
[103] Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C. Nano Lett. 2010, 10, 4970.
[104] Tetsuka, H.; Ebina, T.; Nanjo, H.; Mizukami, F. J. Mater. Chem. 2007, 17, 3545.
[105] Rao, Y.; Blanton, T. N. Macromolecules 2008, 41, 935.
[106] Karaman, V. M.; Privalko, E. G.; Privalko, V. P.; Kubies, D.; Puffr, R.; Jerome, R. Polymer 2005, 46, 1943.
[107] Uhl, F. M.; Davuluri, S. P.; Wong, S. C.; Webster, D. C. Chem. Mater. 2004, 16, 1135.
[108] Walther, A.; Bjurhager, I.; Malho, J. M.; Ruokolainen, J.; Berglund, L.; Ikkala, O. Angew. Chem. Int. Ed. 2010, 49, 6448.
[109] Walther, et al. Nano Lett. 2010, 10, 2742.
[110] Liu A., Walther, A., Ikkala, O., Belova, L. & Berglund, L. A. Biomacromolecules 2011, 12, 633.
[111] Podsiadlo P. et al. Science 2007, 318, 80.
[112] Podsiadlo, P., Tang, Z., Shim, B. S. & Kotov, N. A. Nano Lett. 2007, 7, 1224.
[113] Okada, A. & Usuki, A. Macromol. Mater. Eng. 2006, 291, 1449.
[114] Haraguchi, K.; Takehisa, T.; Fan, S. Macromolecules 2002, 35, 10162.
[115] Haraguchi, K.; Takehisa, T. Adv. Mater. 2002, 14, 1120.
[116] Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Macromolecules 2003, 36, 5732.
[117] Haraguchi, K.; Li, H. J.; Matsuda, K.; Takehisa, T.; Elliott, E. Macromolecules 2005, 38, 3482.
[118] Haraguchi, K.; Li, H. J. Angew. Chem. Int. Ed. 2005, 44, 6500.
[119] Haraguchi, K.; Li, H. J.; Song, L.; Murata, K.; Macromolecules 2007, 40, 6973.
[120] Haraguchi, K.; Li, H. J.; Okumura, N. Macromolecules 2007, 40, 2299.
[121] Podsiadlo, P., Tang, Z., Shim, B. S. & Kotov, N. A. Nano Lett. 2007, 7, 1224.
Chapter2
[1] Y.J. Sheng, T.Y. Wang, W.M. Chen, H.K. Tsao, J. Phys. Chem. B 111 (2007) 10938.
[2] Y.J. Sheng, S.H. Chou, H.K. Tsao, J. Chem. Phys. 125 (2006) 194903.
[3] X. Lian, D. Wu, X. Song, H. Zhao, Macromolecules 43 (2010) 7434.
[4] J. del Barrio, L. Oriol, C. Sanchez, J.L. Serrano, A. Di Cicco, P. Keller, M.H. Li, J. Am. Chem. Soc. 132 (2010) 3762.
[5] J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, H.K. Schackert, Adv. Mater. 12 (2000) 507.

[6] Y. Wang, Z. Tang, S. Tan, N.A. Kotov, Nano Lett. 5 (2005) 243.
[7] 
 Q. Dai, J.G. Worden, J. Trullinger, Q. Huo, J. Am. Chem. Soc. 127 (2005) 8008.
[8] N. Duxin, F. Liu, H. Vali, A. Eisenberg, J. Am. Chem. Soc. 127 (2005) 10063.
[9] M. Zhang, M. Drechsler, A.H.E. Muller, Chem. Mater. 16 (2004) 537.
[10] M.S. Nikolic, C. Olsson, A. Salcher, A. Kornowski, A. Rank, R. Schubert, A. Fromsdorf, H. Weller, S. Forster, Angew. Chem. Int. Ed. 48 (2009) 2752.

[11] Y.M. Chen, H.C. Lin, R.S. Hsu, B.Z. Hsieh, Y.A. Su, Y.J. Sheng, J.J. Lin, Chem. Mater. 21 (2009) 4071.

[12] S.C. Jana, S. Jain, Polymer 42 (2001) 6897.

[13] Y.L. Lin, C.S. Chiou, S.K. Kumar, J.J. Lin, Y.J. Sheng, H.K. Tsao, J. Phys. Chem. C 115 (2011) 5566.
[14] T.J. Pinnavaia, Science 220 (1983) 365.
[15] B.K.G. Theng, The Chemistry of Clay-Organic Reactions, John Wiley & Sons, New York, 1974.
[16] E.P. Giannelis, Adv. Mater. 8 (1996) 29.

[17] S.S. Ray, M. Okamoto, Prog. Polym. Sci. 28 (2003) 1539.

[18] (a) J.J. Lin, I.J. Cheng, R. Wang, R.J. Lee, Macromolecules 34 (2001) 8832; (b) J.J. Lin, Y.M. Chen, Langmuir 20 (2004) 4261.

[19] W.L. Ijdo, T.J. Pinnavaia, Chem. Mater. 11 (1999) 3227.

[20] R. Xu, E. Manias, A.J. Snyder, J. Runt, Macromolecules 34 (2001) 337.
[21] 
J.J. Lin, C.C. Chu, M.L. Chiang, W.C. Tsai, J. Phys. Chem. B 110 (2006) 18115.
[22] J.J. Lin, C.C. Chu, C.C. Chou, F.S. Shieu, Adv. Mater. 17 (2005) 301.

[23] T.J. Hu, J. Gao, C. Wu, H. Auweter, R. Iden, J. Phys. Chem. B 106 (2002) 9815.
[24] D.L. Huber, R.P. Manginell, M.A. Samara, B.I. Kim, B.C. Bunker, Science 301 (2003) 352.

[25] M. Shibayama, Y. Suetoh, S. Nomura, Macromolecules 29 (1996) 6966; R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, Nature 374 (1995) 240.

[26] R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T. Okano, Nature 374 (1995) 240.
[27] E.L. Lee, H.A. von Recum, J. Biomed. Mater. Res. A 93 (2010) 411–418; F. Antunes, L. Gentile, L. Tavano, C. Oliviero Rossi, Appl. Rheol. 19 (2009) 42064.

[28] Z. Ju, P. Robert, Langmuir 12 (1996) 2611; Q.R. Huang, C.H. Wang, Langmuir 15 (1999) 634.

[29] G. Liu, S. Yang, J. Phys. Chem. B 111 (2007) 3633.

[30] S. Wataru, K. Masami, K. Tadaya, I. Toyoko, Langmuir 12 (1996) 5947.

[31] L.T. Lee, B. Jean, A. Menelle, Langmuir 15 (1999) 3267.

[32] R.M. Richardson, R. Pelton, T. Cosgrove, J. Zhang, Macromolecules 33 (2000) 6269.

[33] J. Zhang, R. Pelton, Colloids Surf. A 156 (1999) 111.

[34] X. Fan, C. Xia, R.C. Advincula, Langmuir 19 (2003) 4381.

[35] Q. Zhou, X. Fan, C. Xia, J. Mays, R. Advincula, Chem. Mater. 13 (2001) 2465.
[36] (a) M.W. Weimer, E.P. Giannelis, D.Y. Sogah, J. Am. Chem. Soc. 121 (1999) 1615; 
(b) J. Di, D.Y. Sogah, Macromolecules 39 (2006) 5052.
[37] (a) D. Shah, G. Fytas, D. Vlassopoulos, J. Di, D.Y. Sogah, E.P. Giannelis, Langmuir 
21 (2005) 19; 
(b) J. Di, D.Y. Sogah, Macromolecules 39 (2006) 1020.
[38] (a) H. Zhao, D.A. Shipp, Chem. Mater. 15 (2003) 2693; 
(b) R.A. Sedjo, B.K. Mirous, W.J. Brittain, Macromolecules 33 (2000) 1492.
[39] (a) P.A. Wheeler, J. Wang, J. Baker, L.J. Mathias, Chem. Mater. 17 (2005) 3012; (b) P.A. Wheeler, J. Wang, L.J. Mathias, Chem. Mater. 18 (2006) 3937.
[40] A. Dominguez, A. Fernandez, N. Gonzalez, E. Iglesias, L.J. Montenegro, Chem. Educ. 74 (1997) 1227.
[41] P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19 (1992) 155.
[42] R.D. Groot, P.B. Warren, J. Chem. Phys. 107 (1997) 4423.

[43] P. Espanol, P.B. Warren, Europhys. Lett. 30 (1995) 191.

[44] C.C. Chu, M.L. Chiang, C.M. Tsai, J.J. Lin, Macromolecules 38 (2005) 6240.
chapter3
[1] Shibayama, M.; Suetoh, Y.; Nomura, S. Macromolecules 1996, 29, 6966.
[2] Fan, X.; Xia, C.; Advincula, R. C. Langmuir 2003, 19, 4381.
[3] Zhou, Q.; Fan, X.; Xia, C.; Mays, J.; Advincula, R. Chem. Mater. 2001, 13, 2465.
[4] (a) Weimer, M. W.; Giannelis, E. P.; Sogah, D. Y. J. Am. Chem. Soc. 1999, 121, 1615. (b) Di, J.; Sogah, D. Y. Macromolecules 2006, 39, 5052.
[5] (a) Shah, D.; Fytas, G.; Vlassopoulos, D.; Di, J.; Sogah, D. Y.; Giannelis, E. P. Langmuir 2005, 21, 19. (b) Di, J.; Sogah, D. Y. Macromolecules 2006, 39, 1020.
[6] (a) Zhao, H.; Shipp, D. A. Chem. Mater. 2003, 15, 2693. (b) Sedjo, R. A.; Mirous, B. K.; Brittain, W. J. Macromolecules 2000, 33, 1492.
[7] (a) Wheeler, P. A.; Wang, J.; Baker, J.; Mathias, L. J. Chem. Mater. 2005, 17, 3012. (b) Wheeler, P. A.; Wang, J.; Mathias, L. J. Chem. Mater. 2006, 18, 3937.
[8] Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Macromolecules 2005, 38, 6240.
[9] Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C. J. Phys. Chem. B 2006, 110, 18115.
[10] Chen, Y. M.; Lin, H. C.; Hsu, R. S.; Hsieh, B. Z.; Su, Y. A.; Sheng, Y. J.; Lin, J. J. Chem. Mater. 2009, 21, 4071.
[11] Callegari, A.; Tonti, D.; Chergui, M. Nano Lett. 2003, 3, 1565.
[12] Nesher, G.; Marom, G.; Avnir, D. Chem. Mater. 2008, 20, 4425.
[13] Niesz, K.; Grass, M.; Somorjai, G. A. Nano Lett. 2005, 5, 2238.
[14] Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.
[15] Aizawa, M.; Buriak, J. M. Chem. Mater. 2007, 19, 5090.
[16] Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z. Y.; Xia, Y. Nano Lett. 2005, 5, 2058.
[17] Lewis, L. N. Chem. Rev. 1994, 94, 857.
[18] Magana, S. M.; Quintana, P.; Aguilar, D. H.; Toledo, J. A.; Angeles-Chavez, C.; Cortes, M. A.; Leon, L.; Freile-Pelegrin, Y.; Lopez, T.; Sanchez, R. M. T. J. Mol. Catal. 2008, 281, 192.
[19] Kakuta, N.; Goto, N.; Ohkita, H.; Mizushima, T. J. Phys. Chem. B 1999, 103, 5917.
[20] Shimizu, K.-i.; Komai, S.-i.; Kojima, T.; Satokawa, S.; Satsuma, A. J. Phys. Chem. C 2007, 111, 3480.
[21] Shimizu, K.-i.; Satsuma, A. Appl. Catal. B 2007, 77, 202.
[22] Shibata, J.; Shimizu, K.-i.; Takada, Y.; Shichi, A.; Yoshida, H.; Satokawa, S.; Satsuma, A.; Hattori ,T. J. Catal. 2004, 227, 367.
[23] Su, H. L. ; Chou, C. C.; Hung, D. J.; Lin, S. H.; Pao, I. C.; Lin, J. H.; Huang, F. L.; Dong, R. X.; Lin, J. J. Biomaterials 2009, 30, 5979.
[24] Tripp, R. A.; Dluhy, R. A.; Zhao, Y. Nano Today 2008, 3, 31.
[25] Zhang, X.; Young, M. A.; Lyandres, O.; Duyne, R. P. V. J. Am. Chem. Soc. 2005, 127, 4484.
[26] Huan, Y.; Liang, Z.; Sun, H.; Xiao, H.; Tsai, H. L. Appl. Phys. A. 2011, 102, 415.
[27] Xu, K.; Huang, J.; Ye, Z.; Ying, Y.; Li, Y. Sensors 2009, 9, 5534.
[28] Kneipp, K.; Haka, A. S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C.; Shafer-Peltier, K. E.; Motz, J. T.; Dasari, R. R.; Feld, M. S. Appl. Spectrosc. 2002, 56, 150.
[29] Sujith, A.; Itoh, T.; Abe, H.; Yoshida, K.-I.; Kiran, M. S.; Biju, V.; Ishikawa, M. Bioanal. Chem. 2009, 394,1803.
[30] Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832.
[31] Lin, J. J.; Chen, Y. M. Langmuir 2004, 20, 4261.
[32] C.C. Chu, M.L. Chiang, C.M. Tsai, J.J. Lin, Macromolecules, 2005, 38, 6240.
[33] Jin, R.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science, 2001, 294, 1901.
[34] Guo, L.; Nie, J.; Du, B.; Peng, Z.; Tesche, B.; Kleinermanns, K. J. colloid Interface Sci. 2008, 319, 175.
[35] Khan, M. M.; Ista, L. K.; Lopez, G. P.; Schuler, A. J. Environ. Sci. Technol. 2011, 45, 1055.
[36] Lin, H. C.; Hsieh, B. Z.; Lin, Y. L.; Sheng, Y. J.; Lin, J. J. J. colloid Interface Sci. 2012, 387, 106.
Chapter4[1] Ivnitski, D.; Abdel-Hamid, I.; Atanasov P.; Wilkins E. Biosensors for Detection of Pathogenic Bacteria. Biosens. Bioelectron. 1999, 14, 599–624.
[2] Disney, M. D.; Zheng, J.; Swager, T. M.; Seeberger, P. H. Detection of Bacteria with Carbohydrate-Functionalized Fluorescent Polymers. J. Am. Chem. Soc. 2004, 126, 13343–13346.
[3] Willis, R. C. A Review on Some Methods for Pathogen Detection. Mod. Drug Discovery 2004, 36.
[4] Yu, L. S. L.; Reed, S. A.; Golden, M. J. G. Time-Resolved Fluorescence Immunoassay (TRFIA) for the Detection of Escherichia Coli O157:H7 in Apple Cider. J. Microbiol. Methods 2002, 49, 63–68.
[5] Nakamura, N.; Burgess, J. G.; Yagiuda, K.; Kudo, S.; Sakaguchi, T.; Matsunaga, T. Detection and Removal of Escherichia Coli Using Fluorescein Isothiocyanate Conjugated Monoclonal Antibody Immobilized on Bacterial Magnetic Particles. Anal. Chem. 1993, 65, 2036–2039.
[6] Yamaguchi, N.; Sasada, M.; Yamanaka, M.; Nasu, M. A Simple Way of Quantifying Immunostained Cell Nuclei on the Whole Histologic Section. Cytometry 2003, 54A, 27–35.
[7] Jung, W. S.; Kim, S.; Hong, S. I.; Min, N. K.; Lee, C. W.; Peak, S. H. DNA Probe Chip System for Multiple Detection of Food Poisoning Microorganisms. Mater. Sci. Eng. C 2004, 24, 47–51.
[8] Stender, H.; Oliveria, K.; Rigby, S.; Bargoot, F.; Coull, J. Rapid Detection, Identification, and Enumeration of Escherichia Coli by Fluorescence In Situ Hybridization Using an Array Scanner. J. Microbiol. Methods 2001, 45, 31–39.
[9] Goodridge, L.; Chen, J.; Griffiths. M. The Use of a Fluorescent Bacteriophage Assay for Detection of Escherichia Coli O157:H7 in Inoculated Ground Beef and Raw Milk. Int. J. Food Microbiol. 1999, 47, 43–50.
[10] Robert, F. NANOTECHNOLOGY: Can High-Speed Tests Sort Out Which Nanomaterials Are Safe? Science 2008, 321, 1036–1037.
[11] Goodman, T. T.; Ng, C. P.; Pun, S. H. 3-D Tissue Culture Systems for the Evaluation and Optimization of Nanoparticle-Based Drug Carriers. Bioconjugate Chem. 2008, 19, 1951–1959.
[12] De Cristofaro, A.; Violante, A. Effect of Hydroxy-Aluminium Species on the Sorption and Interlayering of Albumin onto Montmorillonite. Appl. Clay Sci. 2001, 19, 59–67.
[13] Shan, D.; Yao, W.; Xue, H. Amperometric Detection of Glucose with Glucose Oxidase Immobilized in Layered Double Hydroxides. Electroanalysis 2006, 18, 1485–1491.
[14] Lin, J. J.; Wei, J. C.; Tsai, W. T. Layered Confinement of Protein in Synthetic Fluorinated Mica via Stepwise Polyamine Exchange. J. Phys. Chem. B 2007, 111, 10275–10280.
[15] Lin, J. J.; Wei, J. C.; Juang, T. Y.; Tsai, W. T. Preparation of Protein−Silicate Hybrids from Polyamine Intercalation of Layered Montmorillonite. Langmuir 2007, 23, 1995–1999.
[16] Wei, J. C.; Yen, Y. T.; Su, H. L.; Lin, J. J. Inhibition of Bacterial Growth by the Exfoliated Clays and Observation of Physical Capturing Mechanism. J. Phys. Chem. C 2011, 115, 18770–18775.
[17] Olphen, H. V. Clay Colloid Chemistry, 2nd ed; John Wiley & Sons: New York, 1997.
[18] Theng, B. K. G. The Chemistry of Clay-Organic Reaction, 2nd ed; John Wiley & Sons: New York, 1974.
[19] Lin, S.; Lee, C. K.; Lee, S. Y.; Kao, C. L.; Lin, C. W.; Wang, A. B.; Hsu, S. M.; Huang, L. S. Surface Ultrastructure of SARS Coronavirus Revealed by Atomic Force Microscopy. Cell. Microbiol. 2005, 7, 1763–1770.
[20] Ozdemir, G.; Limoncu, M. H.; Yapar, S. The Antibacterial Effect of Heavy Metal and Cetylpridinium-Exchanged Montmorillonites. Appl. Clay Sci. 2010, 48, 319–323.
[21] Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules 2005, 38, 6240–6243.
[22] Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C. First Isolation of Individual Silicate Platelets from Clay Exfoliation and Their Unique Self-Assembly into Fibrous Arrays. J. Phys. Chem. B 2006, 110, 18115–18120.
[23] Lin, J. J.; Chu, C. C.; Chou, C. C. Self-Assembled Nanofibers from Random Silicate Platelets. Adv. Mater. 2005, 17, 301–304.
[24] Fan, X.; Xia, C.; Advincula R. C. Grafting of Polymers from Clay Nanoparticles via In Situ Free Radical Surface-Initiated Polymerization:  Monocationic versus Bicationic Initiators. Langmuir 2003, 19, 4381–4389.
[25] Zhou, Q; Fan, X.; Xia, C.; Mays, J.; Advancular, R. Living Anionic Surface Initiated Polymerization (SIP) of Styrene from Clay Surfaces. Chem. Mater. 2001, 13, 2465–2467.
[26] Weimer, M. W.; Chen, H.; Giannelis, E. P.; Sogah, D. Y. Direct Synthesis of Dispersed Nanocomposites by In Situ Living Free Radical Polymerization Using a Silicate-Anchored Initiator. J. Am. Chem. Soc. 1999, 121, 1615–1616.
[27] Di, J.; Sogah, D. Y. Exfoliated Block Copolymer/Silicate Nanocomposites by One-Pot, One-Step In-Situ Living Polymerization from Silicate-Anchored Multifunctional Initiator. Macromolecules 2006, 39, 5052–5057.
[28] Shah, D.; Fytas, G.; Vlassopoulos, D.; Di, J.; Sogah, D. Y.; Giannelis, E. P. Structure and Dynamics of Polymer-Grafted Clay Suspensions. Langmuir 2005, 21, 19–25.
[29] Zhao, H.; Shipp, D. A. Preparation of Poly(styrene-block-butyl acrylate) Block Copolymer−Silicate Nanocomposites. Chem. Mater. 2003, 15, 2693–2695.
[30] Sedjo, R. A.; Mirous, B. K.; Brittain, W. J. Synthesis of Polystyrene-block-poly(methyl methacrylate) Brushes by Reverse Atom Transfer Radical Polymerization. Macromolecules 2000, 33, 1492–1493.
[31] Wheeler, P. A.; Wang, J.; Baker, J.; Mathias, L. J. Synthesis and Characterization of Covalently Functionalized Laponite Clay. Chem. Mater. 2005, 17, 3012–3018.
[32] Wheeler, P. A.; Wang, J. and Mathias, L. J. Poly(methyl methacrylate)/Laponite Nanocomposites: Exploring Covalent and Ionic Clay Modifications. Chem. Mater. 2006, 18, 3937–3945.
[33] Chen, Y. M.; Lin, H. C.; Hsu, R. S.; Hsieh, B. Z.; Su, Y. A.; Sheng, Y. J.; Lin, J. J. Thermoresponsive Dual-Phase Transition and 3D Self-Assembly of Poly(N-Isopropylacrylamide) Tethered to Silicate Platelets. Chem. Mater. 2009, 21, 4071–4079.
[34] Li, P. R.; Wei, J. C.; Chiu, Y. F.; Su, H. L.; Peng, F. C.; Lin, J. J. Evaluation on Cytotoxicity and Genotoxicity of the Exfoliated Silicate Nanoclay. ACS Appl. Mater. Interfaces 2010, 2, 1608–1613.
[35] Meakin, J. R.; Hukins, D. W. L; Aspden, R. M.; Imrie, C. T. Rheological Properties of Poly(2-Hydroxyethyl Methacrylate) (pHEMA) as a Function of Water Content and Deformation Frequency. J. Mater. Sci.: Mater. Med. 2003, 14, 783–787.
[36] Nguyen, T. Q.; Doan, V.; Schwartz B. J. Conjugated Polymer Aggregates in Solution: Control of Interchain Interactions. J. Chem. Phys. 1999, 110, 4068–4078.
[37] Hanaor, D.; Michelazzi, M.; Leonelli C.; Sorrell C. C. The Effects of Carboxylic Acids on the Aqueous Dispersion and Electrophoretic Deposition of ZrO2. J. Eur. Ceram. Soc. 2012, 32, 235–244.
[38] Jan, K. M.; Chien, S. Influence of the Ionic Composition of Fluid Medium on Red Cell Aggregation. J Gen. Physiol. 1973, 61, 665–668.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54199-
dc.description.abstract本研究主要在於探討利用酯化反應及麥克加成反應製備新穎的起始劑,並再以溶膠–凝膠法進行共價鍵結於脫層型奈米矽片上,進一步利用原子轉移自由基聚合法將高分子接枝於奈米矽片製備新型奈米複合材料。研究分為三部分:(1)製備新型雙親性複合材料矽片-聚異丙基丙烯醯胺並探討其界面性質的變化。(2)導入奈米銀粒子於矽片-聚異丙基丙烯醯胺中,利用其溫度感應性質對於不同細菌的抗菌或偵測研究。(3)製備矽片-聚六乙基甲基丙烯酸酯並導入具螢光之化合物作為螢光偵測細菌之新型複合材料研究。以上各部分主要探討如下:
第一部分為將高分子聚異丙基丙烯醯胺接枝於奈米矽片製備新型雙親性奈米複合材料。研究中發現由於高分子與矽片有親疏水差異因而造成如同界面活性劑的界面現象,而製備不同接枝密度或改變起始劑之結構會影響分子間或分子內作用力的變化,進而改變其界面性質。當高分子接枝密度大時,因為分子間團聚力較大導致臨界微胞濃度上升。而改變起始劑接枝構型由一個變為兩個接枝點時,也會造成高分子間團聚力提高而使臨界微胞濃度上升。此研究利用表面張力、粒徑測量觀察其差異,同時藉由分子模擬亦可證明其結果。
第二部分是將還原奈米銀粒子於矽片-聚異丙基丙烯醯胺中。由結果顯示銀粒子大小具均一性約8奈米且穩定貼附於矽片表面,此結果可經由TEM觀察。銀粒子/矽片-聚異丙基丙烯醯胺中仍保有最低臨界溶解溫度32-33 oC,可由UV-vis及DSC觀察。利用此複合材料的溫感特性,可以用來辨識格蘭氏陽性菌及陰性菌的不同。在高於最低臨界溶解溫度的37 oC時,複合材料較為疏水所以容易與表面疏水的格蘭氏陰性菌親和,反之,當溫度為28 oC時複合材料轉為親水性而與表面親水的格蘭性楊氏菌親和。此結果在抗菌及表面增強拉曼光譜可以驗證。此新型複合材料可作為偵測不同細菌之研究。
第三部分是延續第一部分之合成方法製備矽片-聚六乙基甲基丙烯酸酯。利用縮合反應將具有螢光之化合物鍵結於高分子鏈段製備出新型具有螢光性質的奈米複合材料。利用矽片表面的離子與細菌間的物理捕捉效應,進而可以利用螢光的強弱變化偵測細菌含量。由SEM可以觀察矽片貼附於細菌表面。利用離子交換法改質矽片所製備之螢光矽片則因為離子交換之螢光化合物無法穩定接於矽片上,而無法有效利用於細菌的偵測。由螢光光譜可以觀察兩者螢光強弱變化的差異。此新型螢光複合材料可應用於偵測細菌。
zh_TW
dc.description.abstractNanoscale silicate platelets (NSP) were derived from the exfoliation of naturally occurring sodium montmorillonite clay. The silicate platelets were modified with two different polymers via a novel initiator covalently bonded to the edge of NSP by a sol–gel reaction and atom transfer radical polymerization (ATRP) to afford the new class of nanohybrids. In this study, we grafted poly(N-isopropylacrylamide) (PNiPAAm) onto the edge of NSP through the covalent bonding with single- or double-headed linkers to prepare the NSP-PNiPAAm nanohybrids. By tailoring the architecture of the linker and controlling the number of grafted linkers, we were able to prepare NSP-PNiPAAm of varios grafting densities. The inherent ionic character of NSP and the organic moieties of isopropyl amide in PNiPAAm impart surfactant-like properties to the nanohybrids. Surface tension and particle size measurements were used to determine the critical micelle concentration (CMC) of the nanohybrids. The CMC can be tailored by adjusting the densities and architectures of the linkers. The NSP-PNiPAAm nanohybrids from single-headed linkers are loosely packed and can easily expand in water to faciliate inter-hybrid interactions to render a low CMC. In contrast, the nanohybrids from double-headed linkers enhance intra-hybrid interactions, thus exhibiting a higher CMC. The simulation results were found to be in a good agreement with the experimental observations.
We further introduced silver nanoparticles (AgNPs) onto NSP-PNiPAAm. The generated AgNPs had an average diameter of 8 nm with a narrow size distribution. The AgNP/NSP-PNiPAAm exhibited the property of lowest critical solution temperature (LCST) at 32 oC, which was similar to the LCST of the NSP-PNiPAAm precursor. This is a clear indication of AgNPs attachment on the NSP surface rather than with PNiPAAm organic chains. The strong embedment between AgNPs and NSP was evidenced by transmission electron microscopic (TEM) and LCST thermal cycles between 28-37 oC monitored by ultraviolet-visible spectrophotometry (UV-vis). At 37 oC, the nanohybrids and E. coli give stronger SERS intensities and hydrophobic interaction than the hydrophilic B. subtilis counterparts. In contrast at 28 oC, the nanohybrids interact with hydrophilic B. subtilis, thus giving a relatively strong SERS intensities. Similar results were also observed in their antibacterial ability. It could be thus anticipated that the new AgNP/NSP-PNiPAAm hybrids have good potentials to serve as biosensors and antibacterial materials.
We have also synthesized new fluorescent nanohybrids via tethering poly(hydroxyethyl methacrylate) pendants (HEMA) onto NSP through a sol-gel and living polymerization and by a further modification of the pendants with a nathphalimide-type fluorescence compound. The fluorescent NSP-PHEMA-HA was characterized for their photoluminescence (PL) and bacterial trapping properties from NSP’s affinity toward the surface of bacteria. In addition, the investigation of PL emission revealed that the fluorescent NSP hybrids could be applicable in bacteria detection. The fluorescent NSP hybrids are proposed for the biosensor applications for the combined features of photoluminescence and physical trapping for bacteria.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:44:21Z (GMT). No. of bitstreams: 1
ntu-104-D98549005-1.pdf: 5643280 bytes, checksum: 268ba4b6300a54fb80307ac8eb1b4012 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsIndex
摘要 I
Abstract III
List of Figures X
List of Tables XIV
List of Schemes XV
Chapter 1 Introduction 1
1.1 Introduction of nanomaterials 1
1.2 Fundamental structure of layeren clays 3
1.3 Organic modification of clay by intercalation and exfoliation 5
1.3.1 Ionic exchange method 5
1.3.2 Modification by covalent bonding 7
1.4 Fundamental properties of Nanoscale silicate platelet (NSP) 9
1.5 Atom Transfer Radical Polymerization (ATRP) 12
1.6 Clay/polymer nanocomposite 14
1.7 Reference 16
Chapter 2 Effect of grafting architecture on the surface-like behavior of clay-poly(NiPAAm) nanohybrids 24
2.1 Introduction 25
2.2 Experimental section 30
2.2.1 Materials 30
2.2.2 Synthesis of the mono-bromr-triethoxysilane (MBTES) and bis-bromo-triethoxysilane (BBTES) linkers with bromide and triethoxysilane functionalities 30
2.2.3 Preparation of different NSP-linker as initiator 32
2.2.4 Atom transfer radical polymerization grafting of PNiPAAm 33
2.2.5 Characterization and analytical instruments 34
2.3 Simulation model and method 36
2.4 Results and discussion 38
2.4.1 Synthesis of the mono-bromr-triethoxysilane (MBTES) and bis-bromo-triethoxysilane (BBTES) linkers with bromide and triethoxysilane functionalities 38
2.4.2 Tethering the different initiator to NSP 39
2.4.3 PNiPAAm grafting via ATRP 42
2.4.4 Comparison of CMC between pure PNiPAAm and NSP-PNiPAAm hybrids 43
2.4.5 Effect of grafting architecture on the CMCs of NSP-PNiPAAm hybrids 45
2.4.6 CMC from particle size measurement of NSP-PNiPAAm hybrids 47
2.4.7 Comparison between simulation and experimental results 49
2.5 Conclusion 51
2.6 Reference 53
Chapter 3 Synthesizing Tri-Component Nanohybrids of Silver Nanoparticle, Silicate Nanoplatelet and Thermo-Responsive PNiPAAm for the Antimicrobial Applications 57
3.1 Introduction 58
3.2 Experimental section 60
3.2.1 Materials 60
3.2.2 Synthesis of dual-linker with bromide and triethoxysilane functionality 60
3.2.3 General procedure for the preparation of NSP-linker as an initiator 61
3.2.4 Atom transfer redical polymerization grafting of PNiPAAm to NSP 61
3.2.5 General procedure for the preparation of AgNP/NSP-PNiPAAm dispersion 62
3.2.6 Preparation of bacterial cultures 63
3.2.7 Bacteria growth and inhibition assay 63
3.2.8 SERS detection 63
3.2.9 Characterization 64
3.3 Results and discussion 65
3.3.1 Synthesis of AgNP/NSP-PNiPAAm nanohybrids 65
3.3.2 Analysis of AgNP/NSP-PNiPAAm nanohybrids 67
3.3.3 Interaction between AgNPs and the surface of NSP-physical blending 71
3.3.4 The influence of the thermo-responsiveness of NSP-PNiPAAm hybrid on AgNPs 74
3.3.5 Selective antibacterial activity by thermo-responsive effect of AgNP/NSP-PNiPAAm nanohybrids 75
3.3.6 Selective SERS detecting capability by thermo-responsive effect of agNP/NSP-PNiPAAm nanohybrids 78
3.4 Conclusion 80
3.5 Reference 81
Chapter 4 Interaction of Novel Fluorescent Nanoscale Ionic Silicate Platelets with Biomaterials for Biosensors 84
4.1 Introduction 85
4.2 Experimental section 88
4.2.1 Materials 88
4.2.2 Synthesis of dual-linker wirh bromide and triethoxysilane functionality 89
4.2.3 Preparation of NSP-linker as an initiator 89
4.2.4 Atom transfer radical polymerization grafting of PHEMA to NSP 90
4.2.5 Preparation of fluorescent NSP-PHEMA-HA 90
4.2.6 Ionic exchange of Na+-NSP by 1-aminopyrene-salts 92
4.2.7 Prepartion of bacterial cultures 92
4.2.8 SEM observation experiments of NSP-PHEMA-HA with bacterial 92
4.2.9 Characterization 93
4.3 Results and discussion 94
4.3.1 Synthesis and characterization of NSP-PHEMA-HA 94
4.3.2 Synthesis and characterization of NSP-Pyrene 97
4.3.3 Interaction between NSP hybrids and bacteria 99
4.3.4 Zeta potential of NSP and NSP-Pyrene 101
4.3.5 Physical Trapping and detection of NSP-PHEMA-HA 102
4.4 Conclusion 106
4.4 Reference 107
Chapter 5 Summary 113
Appendix 114
List of Figures
Figure 1.1. Morphology of nanomaterials (A) spherical (silver nanoparticles); (B) rod/fiber-like (carbon nanotubes); (C) layer/lamellar (nature clays). 1
Figure 1.2. Structure of sodium montmorillonite 4
Figure 1.3. Representation of Na+-MMT intercalateion by hydrophilic and hydrophobic poly(oxyalkylene)-diamine salts with the same molecular weight. 6
Figure 1.4. The condensation of tetraethoxysilane (TEOS) in sol-gel processs 8
Figure 1.5. (a) Synthesis of AMO polyamines from hydrophobic and hydrophilic POA-diamine, p-cresol, and formaldehyde. (b) Conceptual representations of an intercalated silicate stack and exfoliated platelets in association with the polyamines at different amine/H+ ratios 9
Figure 1.6. Synthesis process of NSP 10
Figure 1.7. (a) Preparation of NSP material by the exfoliation of layered Na+-MMT in water and its physical properties. (b) TEM and (c and d) AFM micrographs of exfoliated silicate platelets suspended in water (0.1 wt%). 11
Figure 1.8. General ATRP Reaction (A) Initiation. (B) Equilibrium with dormant species. (C) Propagation 12
Figure 1.9. Methods of incorporating functionality into polymers using ATRP 13
Figure 1.10. (a) Schematic representation of the organic/inorganic network in the NC gel, which consists of uniformly dispersed (exfoliated) inorganic clay sheets and two primary types of flexible polymer chains, χ and g, grafted to two neighboring clay sheets and one clay sheet, respectively. (b) All NC gels exhibit extraordinary mechanical toughness. 15
Figure 1.11. (a) Schematic representation of the internal architecture of the PVA/MMT nanocomposite (picture shows 8 bilayers). (b) Close-up of the cross section showing the separation of layers. (c) Free-standing, 300-bilayer PVA/MMT composite film showing high flexibility and transparency. The lower image was taken at an angle to show diffraction colors. 15
Figure 2.1. FTIR spectra of HEA, bromo-terminated acrylate, and mono-bromo-triethoxysilane..... 39
Figure 2.2. FTIR spectra of NSP-BBTES and NSP-PNiPAAm. 41
Figure 2.3. Surface tension of PNiPAAm and NSP-PNiPAAms at different concentrations..…………….. 44
Figure 2.4. Conceptual diagrams of NSP-PNiPAAms in water 46
Figure 2.5. Surface tension of NSP-PNiPAAm-H1 versus time 47
Figure 2.6. Simulation results of the CMCs for (a) hybrids with different grafting density and (b) hybrids using different types of linkers. 50
Figure 3.1. (a) Monitoring the formation dynamics of AgNPs from the reduction of Ag+ ions to Ag0 at the presence of NSP-PNiPAAm hybrid (WA/N-P = 7/93) by using UV spectrophotometry. (b) UV-Vis spectra of AgNP/NSP-PNiPAAm nanohybrids at different WA/N-P.t.... 68
Figure 3.2. TEM images of (a) AgNP/ PNiPAAm (WA/P = 7/93), (b) AgNP/ NSP (WA/N = 7/93), (c), (d), (e), and (f) AgNP/ NSP-PNiPAAm (WA/N-P = 3/97, 5/95, 7/93, and 10/90, respectively), and (g) cross-section of AgNP/ NSP-PNiPAAm (WA/N-P = 7/93). 70
Figure 3.3. UV spectra of AgNP/NSP-PNiPAAm nanohybrids and physical blend of AgNP/NSP/PNiPAAm at 28 and 37 oC. 72
Figure 3.4. (a) LCST of AgNP/NSP-PNiPAAm, NSP-PNiPAAm and NSP. (b) DSC analysis of AgNP/NSP-PNiPAAm and NSP-PNiPAAm..…………….. 73
Figure 3.5. UV-vis spectra of reversible absorption of AgNPs on AgNP.NSP-PNiPAAm for several heating-cooling cycles 75
Figure 3.6. Comparison on the antibacterial ability between AgNP/NSP-PNiPAAm (WA/N-P = 7/93) and AgNP/ NSP against (a) E. Coli and (b) B. subtilis at 28 and 37 oC. 77
Figure 3.7. SERS intensity of AgNP/NSP-PNiPAAm nanohybrids against E. coli (hydrophobic bacteria) at (a) 28 and (b) 37 oC, and AgNP/NSP-PNiPAAm nanohybrids against B. subtilis (hydrophilic bacteria) at (c) 28 and (d) 37 oC 79
Figure 4.1. FTIR spectra of NSP-PHEMA-HA and NSP-Pyrene..... 95
Figure 4.2. (a) UV–vis spectra and photoluminescent spectra in different excited wavelength of NSP-PHEMA-HA. (b) The photoluminescent spectra of NSP-PHEMA-HA in different concentration. The inserted part were the photos of compounds under the UV light.. 96
Figure 4.3. (a) UV–vis spectra and photoluminescent spectra in different excited wavelength of NSP-pyrene. (b) The photoluminescent spectra of NSP-pyrene in different concentration. The inserted part were the photos of compounds under the UV light. 98
Figure 4.4. Photoluminescent spectra of NSP-PHEMA-HA and NSP-pyrene with different bacteria respectively. In which, a is NSP-PHEMA-HA (50 ppm) only, b is with 107 CFU/mL E. coli or S. aureus, c is with 106 CFU/mL , d is with 105 CFU/mL and e is 107 CFU/mL E. coli or S. aureus only..…………….. 100
Figure 4.5. Zata potential of NSP and NSP-pyrene in different pH. 102
Figure 4.6. SEM micrographs of original (a) E. coli and (b) S. aureus and after treatment with NSP-PHEMA-HA (0.005 wt %) over a 1 h ((c) for E coli and (d) for S. aureus). 104

List of Tables
Table 2.1. Characterization of the NSP-linkers 42
Table 2.2. Particle size of NSP-PNiPAAM hybrids at different concentrations 48

List of Schemes
Scheme 2.1. Synthesis of the linker by esterification and Michael addition 31
Scheme 2.2. (a) Linkers tethering onto NSP edges by sol-gel reaction; (b) Conceptual diagram of NSP- PNiPAAm formation by the ATRP “grafting from” method and morphological transformation at LCST. 34
Scheme 3.1. Conceptual diagrams of NSP-PNiPAAm by ATRP and in-situ reduction of Ag+ to AgNPs to afford the thermoresponsive AgNP/NSP-PNiPAAm. 66
Scheme 3.2. Conceptual diagrams of AgNP/NSP-PNiPAAm interaction with different bacteria at 28 and 37 oC.. 79
Scheme 4.1. Conceptual diagram of preparation of NSP-PHEMA-HA by sol-gel and ATRP 91
Scheme 4.2. Conceptual diagram of preparation of NSP-Pyrene by ionic exchanging 97
Scheme 4.3. Conceptual diagram of the mechanism of NSP-PHEMA-HA and NSP-pyrene reacted with bacteria at the detected environment in pH= 7. 105
dc.language.isoen
dc.title原子轉移自由基聚合應用於奈米矽片接枝高分子及其介面、螢光感測、抗菌性質之探討zh_TW
dc.titleStudies on Polymers Grafting from Exfoliated Silicate Nanoplatelets via Atom Transfer Radical Polymerization and Applications of Surface Properties, Fluorescent Sensors and Antibacterial Abilitiesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee謝國煌,諶玉真,何永盛,戴憲弘,鄭如忠
dc.subject.keyword原子轉移自由基聚合,奈米矽片,聚異丙基丙烯醯胺,臨界微胞濃度,奈米銀粒子,最低臨界溶解溫度,聚六乙基甲基丙烯酸酯,物理捕捉效應,螢光偵測,zh_TW
dc.subject.keywordatom transfer radical polymerization,nano silicate platelets,poly(N-isopropylacrylamide),critical micelle concentrations,silver nanoparticles,lowest critical solution temperature,poly(hydroxyethyl methacrylate),physical trapping,fluorescent sensors,en
dc.relation.page116
dc.rights.note有償授權
dc.date.accepted2015-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
5.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved