請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54191
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊吉水(Jye-Shane Yang) | |
dc.contributor.author | Chen-Yi Kao | en |
dc.contributor.author | 高振益 | zh_TW |
dc.date.accessioned | 2021-06-16T02:43:59Z | - |
dc.date.available | 2020-07-21 | |
dc.date.copyright | 2015-09-30 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-20 | |
dc.identifier.citation | 1. Feynman, R. P., There's plenty of room at the bottom. Eng. Sci. 1960, 23, 22-36. 2. Drexler, K. E., Engines of Creation: The Coming Era of Nanotechnology. Doubleday: 1986. 3. Thompson, S. E.; Parthasarathy, S., Moore's law: the future of Si microelectronics. Mater. Today 2006, 9 (6), 20-25. 4. (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F., Artificial Molecular Machines. Angew. Chem. Int. Ed. 2000, 39 (19), 3348-3391; (b) Balzani, V.; Credi, A.; Venturi, M., The Bottom-Up Approach to Molecular-Level Devices and Machines. Chem. Eur. J. 2002, 8 (24), 5524-5532; (c) Balzani, V.; Credi, A.; Venturi, M., General Concepts. In Molecular Devices and Machines – A Journey into the Nano World, Wiley-VCH Verlag GmbH Co. KGaA: 2004; (d) Balzani, V.; Credi, A.; Venturi, M., Molecular devices and machines. Nano Today 2007, 2 (2), 18-25. 5. Kinbara, K.; Aida, T., Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies. Chem. Rev. 2005, 105 (4), 1377-1400. 6. Boyer, P. D., Energy, Life, and ATP (Nobel Lecture). Angew. Chem. Int. Ed. 1998, 37 (17), 2296-2307. 7. Yildiz, A.; Forkey, J. N.; McKinney, S. A.; Ha, T.; Goldman, Y. E.; Selvin, P. R., Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization. Science 2003, 300 (5628), 2061-2065. 8. (a) Yang, C.-H.; Prabhakar, C.; Huang, S.-L.; Lin, Y.-C.; Tan, W. S.; Misra, N. C.; Sun, W.-T.; Yang, J.-S., A Redox-Gated Slow-Fast-Stop Molecular Rotor. Org. Lett. 2011, 13 (20), 5632-5635; (b) Dial, B. E.; Pellechia, P. J.; Smith, M. D.; Shimizu, K. D., Proton Grease: An Acid Accelerated Molecular Rotor. J. Am. Chem. Soc. 2012, 134 (8), 3675-3678; (c) Setaka, W.; Inoue, K.; Higa, S.; Yoshigai, S.; Kono, H.; Yamaguchi, K., Synthesis of Crystalline Molecular Gyrotops and Phenylene Rotation inside the Cage. J. Org. Chem. 2014, 79 (17), 8288-8295; (d) Sun, W.-T.; Huang, G.-J.; Huang, S.-L.; Lin, Y.-C.; Yang, J.-S., A Light-Gated Molecular Brake with Antilock and Fluorescence Turn-On Alarm Functions: Application of Singlet-State Adiabatic Cis → Trans Photoisomerization. J. Org. Chem. 2014, 79 (13), 6321-6325; (e) Schoevaars, A. M.; Kruizinga, W.; Zijlstra, R. W. J.; Veldman, N.; Spek, A. L.; Feringa, B. L., Toward a Switchable Molecular Rotor. Unexpected Dynamic Behavior of Functionalized Overcrowded Alkenes. J. Org. Chem. 1997, 62 (15), 4943-4948. 9. (a) Ma, Y.-X.; Meng, Z.; Chen, C.-F., A Novel Pentiptycene Bis(crown ether)-Based [2](2)Rotaxane Whose Two DB24C8 Rings Act as Flapping Wings of a Butterfly. Org. Lett. 2014, 16 (7), 1860-1863; (b) Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A., Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 2012, 41 (1), 19-30; (c) Bruns, C. J.; Frasconi, M.; Iehl, J.; Hartlieb, K. J.; Schneebeli, S. T.; Cheng, C.; Stupp, S. I.; Stoddart, J. F., Redox Switchable Daisy Chain Rotaxanes Driven by Radical–Radical Interactions. J. Am. Chem. Soc. 2014, 136 (12), 4714-4723; (d) Badjić, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F., A Molecular Elevator. Science 2004, 303 (5665), 1845-1849. 10. (a) Schalley, C. A.; Beizai, K.; V ouml;gtle, F., On the Way to Rotaxane-Based Molecular Motors: Studies in Molecular Mobility and Topological Chirality+. Acc. Chem. Res. 2001, 34 (6), 465-476; (b) Feringa, B. L., In Control of Motion: From Molecular Switches to Molecular Motors+. Acc. Chem. Res. 2001, 34 (6), 504-513. 11. (a) Li, H.; Cheng, C.; McGonigal, P. R.; Fahrenbach, A. C.; Frasconi, M.; Liu, W.-G.; Zhu, Z.; Zhao, Y.; Ke, C.; Lei, J.; Young, R. M.; Dyar, S. M.; Co, D. T.; Yang, Y.-W.; Botros, Y. Y.; Goddard, W. A.; Wasielewski, M. R.; Astumian, R. D.; Stoddart, J. F., Relative Unidirectional Translation in an Artificial Molecular Assembly Fueled by Light. J. Am. Chem. Soc. 2013, 135 (49), 18609-18620; (b) Leigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F., Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 2003, 424 (6945), 174-179. 12. Huberman, J. A.; Riggs, A. D., On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 1968, 32 (2), 327-341. 13. Lee, J.-B.; Hite, R. K.; Hamdan, S. M.; Sunney Xie, X.; Richardson, C. C.; van Oijen, A. M., DNA primase acts as a molecular brake in DNA replication. Nature 2006, 439 (7076), 621-624. 14. Yarden, Y., Structural and Functional Aspects of Signal Transduction by Receptor Tyrosine Kinases. In Molecular Basis of Membrane-Associated Diseases, Azzi, A.; Drahota, Z.; Papa, S., Eds. Springer Berlin Heidelberg: 1989; pp 14-21. 15. Chen, H.; Ma, J.; Li, W.; Eliseenkova, A. V.; Xu, C.; Neubert, T. A.; Miller, W. T.; Mohammadi, M., A Molecular Brake in the Kinase Hinge Region Regulates the Activity of Receptor Tyrosine Kinases. Molecular Cell 27 (5), 717-730. 16. Brown, R., Philos. Mag. 1828, 4, 171-173. 17. Overview. In Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing, Taylor Francis: 2002. 18. Bennett, C. H., Demons, Engines and the Second Law. Scientific American 1987, 257 (5), 108-117. 19. Onsager, L., Reciprocal Relations in Irreversible Processes. I. Phys. Rev. 1931, 37 (4), 405-426. 20. (a) Astumian, R. D., Thermodynamics and Kinetics of a Brownian Motor. Science 1997, 276 (5314), 917-922; (b) Astumian, R. D.; H auml;nggi, P., Brownian motors. Phys. Today 2002, 55 (11), 33-39; (c) Reimann, P., Brownian motors: noisy transport far from equilibrium. Phys. Rep. 2002, 361 (2–4), 57-265. 21. Kelly, T. R.; De Silva, H.; Silva, R. A., Unidirectional rotary motion in a molecular system. Nature 1999, 401 (6749), 150-152. 22. Yamashita, M.; Furutachi, H.; Tosha, T.; Fujinami, S.; Saito, W.; Maeda, Y.; Takahashi, K.; Tanaka, K.; Kitagawa, T.; Suzuki, M., Regioselective Arene Hydroxylation Mediated by a (μ-Peroxo)diiron(III) Complex: A Functional Model for Toluene Monooxygenase. J. Am. Chem. Soc. 2007, 129 (1), 2-3. 23. Fletcher, S. P.; Dumur, F.; Pollard, M. M.; Feringa, B. L., A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy. Science 2005, 310 (5745), 80-82. 24. Perera, U. G. E.; Ample, F.; Kersell, H.; Zhang, Y.; Vives, G.; Echeverria, J.; Grisolia, M.; Rapenne, G.; Joachim, C.; Hla, S. W., Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotechnol. 2013, 8 (1), 46-51. 25. Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada, N.; Feringa, B. L., Light-driven monodirectional molecular rotor. Nature 1999, 401 (6749), 152-155. 26. Greb, L.; Lehn, J.-M., Light-Driven Molecular Motors: Imines as Four-Step or Two-Step Unidirectional Rotors. J. Am. Chem. Soc. 2014, 136 (38), 13114-13117. 27. Kelly, T. R.; Bowyer, M. C.; Bhaskar, K. V.; Bebbington, D.; Garcia, A.; Lang, F.; Kim, M. H.; Jette, M. P., A Molecular Brake. J. Am. Chem. Soc. 1994, 116 (8), 3657-3658. 28. Yang, J.-S.; Huang, Y.-T.; Ho, J.-H.; Sun, W.-T.; Huang, H.-H.; Lin, Y.-C.; Huang, S.-J.; Huang, S.-L.; Lu, H.-F.; Chao, I., A Pentiptycene-Derived Light-Driven Molecular Brake. Org. Lett. 2008, 10 (11), 2279-2282. 29. Chen, Y.-C.; Sun, W.-T.; Lu, H.-F.; Chao, I.; Huang, G.-J.; Lin, Y.-C.; Huang, S.-L.; Huang, H.-H.; Lin, Y.-D.; Yang, J.-S., A Pentiptycene-Derived Molecular Brake: Photochemical E→Z and Electrochemical Z→E Switching of an Enone Module. Chem. Eur. J. 2011, 17 (4), 1193-1200. 30. Kao, C.-Y.; Lee, I. T.; Prabhakar, C.; Yang, J.-S., Light- and Redox-Gated Molecular Brakes Consisting of a Pentiptycene Rotor and an Indole Pad. J. Chin. Chem. Soc. 2014, 61 (5), 507-516. 31. Yang, J.-S.; Yan, J.-L.; Jin, Y.-X.; Sun, W.-T.; Yang, M.-C., Synthesis of New Halogenated Pentiptycene Building Blocks. Org. Lett. 2009, 11 (6), 1429-1432. 32. Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L., Asymmetric Conjugate Reduction of α,β-Unsaturated Esters Using a Chiral Phosphine−Copper Catalyst. J. Am. Chem. Soc. 1999, 121 (40), 9473-9474. 33. Yamaguchi, J.-i.; Harada, M.; Narushima, T.; Saitoh, A.; Nozaki, K.; Suyama, T., Diastereoselective conjugate addition of 1-(α,β-unsaturated acyl)hydantoin with nucleophiles. Tetrahedron Lett. 2005, 46 (38), 6411-6415. 34. Stephan, E.; Rocher, R.; Aubouet, J.; Pourcelot, G.; Cresson, P., Preparation of chiral indanones and dihydrocoumarins; application to synthesis of (+)-3-(2,6-dimethoxyphenyl) pentanoic acid. Tetrahedron: Asymmetry 1994, 5 (1), 41-44. 35. Kao, C.-Y.; Hsu, Y.-T.; Lu, H.-F.; Chao, I.; Huang, S.-L.; Lin, Y.-C.; Sun, W.-T.; Yang, J.-S., Toward a Four-Toothed Molecular Bevel Gear with C2-Symmetrical Rotors. J. Org. Chem. 2011, 76 (14), 5782-5792. 36. Niu, W.-X.; Wang, T.; Hou, Q.-Q.; Li, Z.-Y.; Cao, X.-P.; Kuck, D., Synthesis and Optical Resolution of Inherently Chiral Difunctionalized Tribenzotriquinacenes. J. Org. Chem. 2010, 75 (19), 6704-6707. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54191 | - |
dc.description.abstract | 近年來,化學家嘗試增加工作的精準度與效率從而以原子層級建構出分子機械,此種分子可以利用外部施加能量來仿效如巨觀世界中的機械運轉模式。本論文的研究過程中,我們嘗試以先前本實驗室研究具五苯荑之分子剎車為基底,進一步發展出分子馬達而合成出E-1及Z-2分子。經由DFT理論計算指出,經由外部施加電壓,E-1在中性態與自由基陰離子態之間的轉換,可以控制五苯荑分子與茚酮所連接的碳‒碳單鍵旋轉方向。而在Z-2的研究中,合成並純化出具有光學活性的五苯荑前驅物為最困難的議題,經利用(R)-BINOL為掌性輔助基,可以分離純化出具有光活性的五苯荑前驅物,進而成功的合成出Z-2分子。Z-2的單方向旋轉特性則是利用混參於5CB液晶分子中,並在裝備有偏光鏡的光學顯微鏡下觀察其在受光照射後,是否能改變液晶分子的排列。 | zh_TW |
dc.description.abstract | For more precise and efficient work, chemists have been trying to synthesize molecular machines that perform quasi-mechanical motion by adding external stimuli. Here, we tried to synthesize two Brownian molecular motors E-1 and Z-2 which are based on one of our previous molecular brakes containing pentiptycene scaffold. In the case of E-1, the DFT-derived rotational potential energy surfaces (RPES) for the neutral and radical anion states are distinct, which suggests that the pulsating ratchet mechanism can be applied in performing directional rotations about the exocyclic C‒C bond with electrical energy. For Z-2, the most challenging issue is to obtain optically pure pentiptycene precursor. (R)-BINOL was used as a chiral auxiliary for the purpose. The unidirectional rotation of Z-2 was performed in doped 1 wt% of Z-2 in 5CB. A preliminary test shows that the texture of nematic liquid crystal is not affected by Z-2. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:43:59Z (GMT). No. of bitstreams: 1 ntu-104-D97223116-1.pdf: 14520489 bytes, checksum: 10178fd2346fe4d9e94549363044f3c2 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 I Abstract II Table of Context IV List of Figures VII List of Schemes XII List of Tables XIII List of Charts XIV Chapter 1 1 Introduction 1 1-1 Molecular Machine 2 1-1-1 General Concept 2 1-1-2 Classifications of Molecular Machines 4 1-2 Naturally-occurring Molecular Machines 6 1-2-1 Naturally-occurring Molecular Motors 6 1-2-2 Naturally-occurring Molecular Brakes 9 1-2-3 Features of Naturally-occurring Molecular Machines 13 1-3 Design of an Artificial Molecular Motor 14 1-3-1 Brownian Motions and the Second Law of Thermodynamics 14 1-3-2 Thought experiment: Maxwell’s Demon 15 1-3-3 Braking the Detailed Balance 17 1-3-4 Pulsating Ratchet 19 1-3-5 Temperature Ratchet (Tilting Ratchet) 20 1-3-6 Criteria for the Design of an Artificial Molecular Motor 22 1-4 Literature Survey of Molecular Motors 23 1-4-1 Brownian Molecular Motors 23 1-4-2 Non-Brownian Molecular Motors 27 1-5 Pentiptycene–derived Molecular Brakes 30 1-6 Research Topic 34 Chapter 2 35 A Unidirectional Molecular Motor Powered by Electrical Energy 35 2-1 Research Motivation 36 2-2 Target Compound Synthesis 36 2-3 NMR Peak Assignment 42 2-4 Kinetic Parameters 52 2-5 DFT-derived Rotational Potential Energy Surface (RPES) of E-1 and E-1•− 56 2-6 Electrochemical Properties and Electrical Switching of E-1 66 2-7 Conclusion 69 Chapter 3 71 A Unidirectional Molecular Motor Powered by Photo-chemical Energy 71 3-1 Research Motivation 72 3-2 Target Compound Synthesis 73 3-3 NMR Peak Assignment 82 3-4 Kinetic Parameters 87 3-5 DFT-derived Rotational Potential Energy Surface (RPES) of Z-2 in Ground State 89 3-6 Photochemical Switching of Z-2 in Liquid Crystalline Phase 93 3-7 Conclusion 96 Chapter 4 97 Experimental Section 97 4-1 Materials 98 4-2 Methods and Instruments 98 4-3 Synthesis and Structural Characterization Data 104 Reference 129 Appendix S1 List of Appendix Figures S2 | |
dc.language.iso | zh-TW | |
dc.title | 五苯荑衍生之分子馬達 | zh_TW |
dc.title | Pentiptycene-Derived Molecular Motors | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林英智(Ying-Chih Lin),鄭原忠(Yuan-Chung Cheng),趙亦姼(Ito Chao),何郡軒(Jinn-Hsuan Ho) | |
dc.subject.keyword | 五苯荑,分子馬達,掌性, | zh_TW |
dc.subject.keyword | pentiptycene,molecular motor,chiral, | en |
dc.relation.page | 188 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 14.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。