請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54142完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林敬哲 | |
| dc.contributor.author | Chia-Ying Lu | en |
| dc.contributor.author | 呂家瑩 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:41:46Z | - |
| dc.date.available | 2020-09-25 | |
| dc.date.copyright | 2015-09-25 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-21 | |
| dc.identifier.citation | 1. Blackburn, E.H., “Telomeres: structure and synthesis.” J. Biol. Chem., 1990. 265(11): p. 5919-5921.
2. Blackburn, E.H., “Structure and function of telomeres.” Nature, 1991. 350(6319): p. 569-573. 3. Bochman, M.L., N. Sabouri, and V.A. Zakian, “Unwinding the functions of the Pif1 family helicases.” DNA Repair (Amst), 2010. 9(3): p. 237-249. 4. Bosoy, D. and N.F. Lue, “Yeast telomerase is capable of limited repeat addition processivity.” Nucleic Acids Res., 2004. 32(1): p. 93-101. 5. Boule, J.B. and V.A. Zakian, “The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates.” Nucleic Acids Res., 2007. 35(17): p. 5809-5818. 6. Boule, J.B., L.R. Vega, and V.A. Zakian, “The yeast Pif1p helicase removes telomerase from telomeric DNA.” Nature, 2005. 438(7064): p. 57-61. 7. Brosh, R.M., Jr., J.L. Li, M.K. Kenny, J.K. Karow, M.P. Cooper, R.P. Kureekattil, I.D. Hickson, and V.A. Bohr, “Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity.” J. Biol. Chem., 2000. 275(31): p. 23500-23508. 8. Brosh, R.M., Jr., D.K. Orren, J.O. Nehlin, P.H. Ravn, M.K. Kenny, A. Machwe, and V.A. Bohr, “Functional and physical interaction between WRN helicase and human replication protein A.” J. Biol. Chem., 1999. 274(26): p. 18341-18350. 9. Calado, R.T. and N.S. Young, “Telomere diseases.” N. Engl. J. Med., 2009. 361(24): p. 2353-2365. 10. Chandra, A., T.R. Hughes, C.I. Nugent, and V. Lundblad, “Cdc13 both positively and negatively regulates telomere replication.” Genes Dev., 2001. 15(4): p. 404-414. 11. Chung, W.H., “To peep into Pif1 helicase: multifaceted all the way from genome stability to repair-associated DNA synthesis.” J. Microbiol., 2014. 52(2): p. 89-98. 12. Cohn, M. and E.H. Blackburn, “Telomerase in yeast.” Science, 1995. 269(5222): p. 396-400. 13. Counter, C.M., M. Meyerson, E.N. Eaton, and R.A. Weinberg, “The catalytic subunit of yeast telomerase.” Proc. Natl. Acad. Sci. U S A, 1997. 94(17): p. 9202-9207. 14. DeZwaan, D.C. and B.C. Freeman, “The conserved Est1 protein stimulates telomerase DNA extension activity.” Proc. Natl. Acad. Sci. U S A, 2009. 106(41): p. 17337-17342. 15. Duan, X.L., N.N. Liu, Y.T. Yang, H.H. Li, M. Li, S.X. Dou, and X.G. Xi, “G-quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding.” J. Biol. Chem., 2015. 290(12): p. 7722-7735. 16. Ellis, N.A., D.J. Lennon, M. Proytcheva, B. Alhadeff, E.E. Henderson, and J. German, “Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells.” Am. J. Hum. Genet., 1995. 57(5): p. 1019-1027. 17. Evans, S.K. and V. Lundblad, “Est1 and Cdc13 as comediators of telomerase access.” Science, 1999. 286(5437): p. 117-120. 18. Evans, S.K. and V. Lundblad, “The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance.” Genetics, 2002. 162(3): p. 1101-1115. 19. Foury, F. and J. Kolodynski, “pif mutation blocks recombination between mitochondrial rho+ and rho- genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae.” Proc. Natl. Acad. Sci. U S A, 1983. 80(17): p. 5345-5349. 20. Galletto, R. and E.J. Tomko, “Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA.” Nucleic Acids Res., 2013. 41(8): p. 4613-4627. 21. Garvik, B., M. Carson, and L. Hartwell, “Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint.” Mol. Cell Biol., 1995. 15(11): p. 6128-6138. 22. Giraud-Panis, M.J., M.T. Teixeira, V. Geli, and E. Gilson, “CST meets shelterin to keep telomeres in check.” Mol. Cell, 2010. 39(5): p. 665-676. 23. Gottschling, D.E., O.M. Aparicio, B.L. Billington, and V.A. Zakian, “Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription.” Cell, 1990. 63(4): p. 751-762. 24. Grandin, N., C. Damon, and M. Charbonneau, “Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13.” EMBO J., 2001. 20(5): p. 1173-1183. 25. Grandin, N., S.I. Reed, and M. Charbonneau, “Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13.” Genes Dev., 1997. 11(4): p. 512-527. 26. Grandin, N., C. Damon, and M. Charbonneau, “Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment.” Mol. Cell. Biol., 2000. 20(22): p. 8397-8408. 27. Greider, C.W. and E.H. Blackburn, “Identification of a specific telomere terminal transferase activity in Tetrahymena extracts.” Cell, 1985. 43(2 Pt 1): p. 405-413. 28. Hang, L.E., X. Liu, I. Cheung, Y. Yang, and X. Zhao, “SUMOylation regulates telomere length homeostasis by targeting Cdc13.” Nat. Struct. Mol. Biol., 2011. 18(8): p. 920-926. 29. Harley, C.B., “Telomere loss: mitotic clock or genetic time bomb?” Mutat. Res., 1991. 256(2-6): p. 271-282. 30. Hsu, C.L., Y.S. Chen, S.Y. Tsai, P.J. Tu, M.J. Wang, and J.J. Lin, “Interaction of Saccharomyces Cdc13p with Pol1p, Imp4p, Sir4p and Zds2p is involved in telomere replication, telomere maintenance and cell growth control.” Nucleic Acids Res., 2004. 32(2): p. 511-521. 31. Hughes, T.R., R.G. Weilbaecher, M. Walterscheid, and V. Lundblad, “Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein.” Proc. Natl. Acad. Sci. U S A, 2000. 97(12): p. 6457-6462. 32. Kong, C.M., X.W. Lee, and X. Wang, “Telomere shortening in human diseases.” FEBS. J., 2013. 280(14): p. 3180-3193. 33. Lahaye, A., H. Stahl, D. Thines-Sempoux, and F. Foury, “PIF1: a DNA helicase in yeast mitochondria.” EMBO J., 1991. 10(4): p. 997-1007. 34. LeBowitz, J.H. and R. McMacken, “The Escherichia coli dnaB replication protein is a DNA helicase.” J. Biol. Chem., 1986. 261(10): p. 4738-4748. 35. Lebo, K.J., R.O. Niederer, and D.C. Zappulla, “A second essential function of the Est1-binding arm of yeast telomerase RNA.” RNA, 2015. 21(5): p. 862-876. 36. Lendvay, T.S., D.K. Morris, J. Sah, B. Balasubramanian, and V. Lundblad, “Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes.” Genetics, 1996. 144(4): p. 1399-1412. 37. Lewis, K.A. and D.S. Wuttke, “Telomerase and telomere-associated proteins: structural insights into mechanism and evolution.” Structure, 2012. 20(1): p. 28-39. 38. Lewis, K.A., D.A. Pfaff, J.N. Earley, S.E. Altschuler, and D.S. Wuttke, “The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain.” Nucleic Acids Res., 2014. 42(1): p. 475-484. 39. Li, J.R., T.Y. Yu, I.C. Chien, C.Y. Lu, J.J. Lin, and H.W. Li, “Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends.” Nucleic Acids Res., 2014. 42(13): p. 8527-8536. 40. Lin, J.J. and V.A. Zakian, “The Saccharomyces CDC13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo.” Proc. Natl. Acad. Sci. U S A, 1996. 93(24): p. 13760-13765. 41. Lindsey, J., N.I. McGill, L.A. Lindsey, D.K. Green, and H.J. Cooke, “In vivo loss of telomeric repeats with age in humans.” Mutat. Res., 1991. 256(1): p. 45-48. 42. Lue, N.F., “Adding to the ends: what makes telomerase processive and how important is it?” Bioessays., 2004. 26(9): p. 955-962 43. Lue, N.F., J. Chan, W.E. Wright, and J. Hurwitz, “The CDC13-STN1-TEN1 complex stimulates Pol alpha activity by promoting RNA priming and primase-to-polymerase switch.” Nat. Commun., 2014. 5: p. 5762. 44. Lundblad, V. and J.W. Szostak, “A mutant with a defect in telomere elongation leads to senescence in yeast.” Cell, 1989. 57(4): p. 633-643. 45. Lustig, A.J., “Cdc13 subcomplexes regulate multiple telomere functions.” Nat. Struct. Biol., 2001. 8(4): p. 297-299. 46. Makovets, S. and E.H. Blackburn, “DNA damage signalling prevents deleterious telomere addition at DNA breaks.” Nat. Cell. Biol., 2009. 11(11): p. 1383-1386. 47. Marcand, S., V. Brevet, C. Mann, and E. Gilson, “Cell cycle restriction of telomere elongation.” Curr. Biol., 2000. 10(8): p. 487-490. 48. Marcand, S., V. Brevet, and E. Gilson, ”Progressive cis-inhibition of telomerase upon telomere elongation.” EMBO J., 1999. 18(12): p. 3509-3519. 49. Mason, M., J.J. Wanat, S. Harper, D.C. Schultz, D.W. Speicher, F.B. Johnson, and E. Skordalakes, “Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance.” Structure, 2013. 21(1): p. 109-120. 50. Matsunaga, T., C.H. Park, T. Bessho, D. Mu, and A. Sancar, “Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease.” J. Biol. Chem., 1996. 271(19): p. 11047-11050. 51. McClintock, B., “The Stability of Broken Ends of Chromosomes in Zea Mays.” Genetics, 1941. 26(2): p. 234-282. 52. Mitchell, M.T., J.S. Smith, M. Mason, S. Harper, D.W. Speicher, F.B. Johnson, and E. Skordalakes, “Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation.” Mol. Cell. Biol., 2010. 30(22): p. 5325-5334. 53. Nandakumar, J. and T.R. Cech, “Finding the end: recruitment of telomerase to telomeres.” Nat. Rev. Mol. Cell Biol., 2013. 14(2): p. 69-82. 54. Nugent, C.I., T.R. Hughes, N.F. Lue, and V. Lundblad, “Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance.” Science, 1996. 274(5285): p. 249-252. 55. Olovnikov, A.M., A theory of marginotomy. “The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon.” J. Theor. Biol., 1973. 41(1): p. 181-190. 56. Paeschke, K., M.L. Bochman, P.D. Garcia, P. Cejka, K.L. Friedman, S.C. Kowalczykowski, and V.A. Zakian, “Pif1 family helicases suppress genome instability at G-quadruplex motifs.” Nature, 2013. 497(7450): p. 458-462. 57. Peng, Y., I.S. Mian, and N.F. Lue, “Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance.” Mol. Cell, 2001. 7(6): p. 1201-1211. 58. Pennock, E., K. Buckley, and V. Lundblad, “Cdc13 delivers separate complexes to the telomere for end protection and replication.” Cell, 2001. 104(3): p. 387-396. 59. Pfeiffer, V. and J. Lingner, “Replication of telomeres and the regulation of telomerase.” Cold Spring Harb Perspect Biol., 2013. 5(5): p. a010405. 60. Phillips, J.A., A. Chan, K. Paeschke, and V.A. Zakian, “The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres.” PLoS Genet., 2015. 11(4): p. e1005186. 61. Price, C.M., K.A. Boltz, M.F. Chaiken, J.A. Stewart, M.A. Beilstein, and D.E. Shippen, “Evolution of CST function in telomere maintenance.” Cell Cycle, 2010. 9(16): p. 3157-3165. 62. Puglisi, A., A. Bianchi, L. Lemmens, P. Damay, and D. Shore, “Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition.” EMBO J., 2008. 27(17): p. 2328-2339. 63. Qian, W., J. Wang, N.N. Jin, X.H. Fu, Y.C. Lin, J.J. Lin, and J.Q. Zhou, “Ten1p promotes the telomeric DNA-binding activity of Cdc13p: implication for its function in telomere length regulation.” Cell Res., 2009. 19(7): p. 849-863. 64. Ramanagoudr-Bhojappa, R., L.P. Blair, A.J. Tackett, and K.D. Raney, “Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein.” Nucleic Acids Res., 2013. 41(2): p. 1029-1046. 65. Sandell, L.L. and V.A. Zakian, “Loss of a yeast telomere: arrest, recovery, and chromosome loss.” Cell, 1993. 75(4): p. 729-739. 66. Schafer, D.A., J. Gelles, M.P. Sheetz, and R. Landick, “Transcription by single molecules of RNA polymerase observed by light microscopy.” Nature, 1991. 352(6334): p. 444-448. 67. Schmidt, J.C. and T.R. Cech, “Human telomerase: biogenesis, trafficking, recruitment, and activation.” Genes Dev., 2015. 29(11): p. 1095-1105. 68. Schulz, V.P. and V.A. Zakian, “The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation.” Cell, 1994. 76(1): p. 145-155. 69. Seto, A.G., A.J. Livengood, Y. Tzfati, E.H. Blackburn, and T.R. Cech, “A bulged stem tethers Est1p to telomerase RNA in budding yeast.” Genes Dev., 2002. 16(21): p. 2800-2812. 70. Shampay, J., J.W. Szostak, and E.H. Blackburn, “DNA sequences of telomeres maintained in yeast.” Nature, 1984. 310(5973): p. 154-157. 71. Shay, J.W., “Telomerase in human development and cancer.” J. Cell. Physiol., 1997. 173(2): p. 266-270. 72. Singer, M.S. and D.E. Gottschling, “TLC1: template RNA component of Saccharomyces cerevisiae telomerase.” Science, 1994. 266(5184): p. 404-409. 73. Smith, J.R. and O.M. Pereira-Smith, “Replicative senescence: implications for in vivo aging and tumor suppression.” Science, 1996. 273(5271): p. 63-67. 74. Sommers, J.A., S. Sharma, K.M. Doherty, P. Karmakar, Q. Yang, M.K. Kenny, C.C. Harris, and R.M. Brosh, Jr., “p53 modulates RPA-dependent and RPA-independent WRN helicase activity.” Cancer Res., 2005. 65(4): p. 1223-1233. 75. Soudet, J., P. Jolivet, and M.T. Teixeira, “Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae.” Mol. Cell, 2014. 53(6): p. 954-964. 76. Steinberg-Neifach, O. and N.F. Lue, “Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites.” Front. Genet., 2015. 6: p. 162. 77. Taggart, A.K., S.C. Teng, and V.A. Zakian, “Est1p as a cell cycle-regulated activator of telomere-bound telomerase.” Science, 2002. 297(5583): p. 1023-1026. 78. Teixeira, M.T., M. Arneric, P. Sperisen, and J. Lingner, “Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states.” Cell, 2004. 117(3): p. 323-335. 79. Tseng, S.F., J.J. Lin, and S.C. Teng, “The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation.” Nucleic Acids Res., 2006. 34(21): p. 6327-6336. 80. Tucey, T.M. and V. Lundblad, “A yeast telomerase complex containing the Est1 recruitment protein is assembled early in the cell cycle.” Biochemistry, 2013. 52(7): p. 1131-1133. 81. Vega, L.R., J.A. Phillips, B.R. Thornton, J.A. Benanti, M.T. Onigbanjo, D.P. Toczyski, and V.A. Zakian, “Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase.” PLoS Genet., 2007. 3(6): p. e105. 82. Waga, S. and B. Stillman, “The DNA replication fork in eukaryotic cells.” Annu. Rev. Biochem., 1998. 67: p. 721-751. 83. Yu, C.E., J. Oshima, Y.H. Fu, E.M. Wijsman, F. Hisama, R. Alisch, S. Matthews, J. Nakura, T. Miki, S. Ouais, G.M. Martin, J. Mulligan, and G.D. Schellenberg, “Positional cloning of the Werner's syndrome gene.” Science, 1996. 272(5259): p. 258-262. 84. Zakian, V.A., “Structure and function of telomeres.” Annu. Rev. Genet., 1989. 23: p. 579-604. 85. Zakian, V.A., “Structure, function, and replication of Saccharomyces cerevisiae telomeres.” Annu. Rev. Genet., 1996. 30: p. 141-172. 86. Zakian, V.A., “Telomeres: beginning to understand the end.” Science, 1995. 270(5242): p. 1601-1607. 87. Zappulla, D.C., J.N. Roberts, K.J. Goodrich, T.R. Cech, and D.S. Wuttke, “Inhibition of yeast telomerase action by the telomeric ssDNA-binding protein, Cdc13p.” Nucleic Acids Res., 2009. 37(2): p. 354-367. 88. Zhou, J., E.K. Monson, S.C. Teng, V.P. Schulz, and V.A. Zakian, “Pif1p helicase, a catalytic inhibitor of telomerase in yeast.” Science, 2000. 289(5480): p. 771-774. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54142 | - |
| dc.description.abstract | 端粒是位於真核生物染色體末端的重複DNA序列結構,可以保護染色體末端不被分解,以維持染色體穩定性。由於聚合酶的限制,端粒會隨著染色體複製而越來越短,使細胞老化,細胞則可以使用端粒酶進行端粒延長以延遲老化現象發生。酵母菌的端粒酶是由反轉錄酶Est2及RNA分子TLC1組成,會利用自身TLC1 RNA當作引子延長端粒,而端粒酶活性會受到許多端粒相關蛋白的調控。Pif1是一個解螺旋酶,會坐落在單股DNA區域以5’端到3’端的方向將雙股解開。先前報導指出Pif1會透過將端粒酶從端粒末端移除而抑制端粒酶活性,在實驗室之前的研究中,我們發現了Cdc13會防止Pif1移除之單股DNA重新黏回受質,暗示著Cdc13可能會與Pif1一同調控端粒酶活性。有趣的是在引子延伸實驗當中,我發現了Pif1會增加端粒酶活性,此外,Cdc13會防止被Pif1移除之端粒酶再度結合至新的受質上面進行延伸,因而抑制端粒酶活性。在引子延伸實驗中,由於靈敏度及受質與端粒酶濃度比的限制,大部分看到的產物都是端粒酶進行一次循環延伸的產物,透過與台大化學系李弘文老師的合作,我們以布朗運動原理建立了單分子拴球實驗,應用於端粒酶活性檢測。透過單分子拴球實驗,我們可以觀察到端粒酶進行多次延伸循環產生之產物,另外,我們也發現了Cdc13會抑制端粒酶進行多次循環延伸反應。在本篇論文中,我們分別利用引子延伸實驗及單分子拴球實驗探討了Cdc13及Pif1對於端粒酶活性的調控。在未來,我們也會進一步將單分子拴球實驗應用於探討其他端粒結合蛋白是如何調控端粒酶活性,為端粒酶調控提供更多可能的機制。 | zh_TW |
| dc.description.abstract | Telomeres are regions of repetitive DNA sequences at the ends of eukaryotic linear chromosomes to protect chromosomes from deterioration. Due to the end replication problem, telomeres get shorter upon each cell division that lead cells to enter senescence. Telomerase has an enzymatic activity that utilizes a RNA molecule as template to elongate telomeres. Pif1 is a single-stranded DNA-dependent helicase which unwinds DNA duplexes in a 5’ to 3’direction. Pif1 was shown to inhibit telomerase activity through removing it from telomeres. Previously, we found that telomere binding protein, Cdc13, prevents the re-association of the Pif1-unwound DNA to telomeres, implicating that Cdc13 might collaborate with Pif1 to modulate telomerase activity. Using primer extension assay, I found that Cdc13 indeed prevents Pif1-removed telomerase from re-loading to new substrates. Due to the sensitivity and the high concentration ratio of DNA substrate to telomerase, primer extension assay is limited to observe mostly single-run products. Through the collaboration with Dr. Li HW (Department of Chemistry, National Taiwan University), we have established a single-molecule assay using tethered particle motion (TPM) to evaluate telomerase activity. TPM is based on the correlation of DNA length with the Brownian motion of a tethered particle. The assay enables the observation of telomerase extensions at the single molecule level. Using the assay, I found that Cdc13 inhibits multiple-run reactions of telomerase, consistent with the results from biochemical analyses. Thus, the single-molecule TPM approach can be used to investigate how other telomere-associated proteins regulate telomerase activity in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:41:46Z (GMT). No. of bitstreams: 1 ntu-104-R02442010-1.pdf: 3093208 bytes, checksum: e2def0d7ecc5e464d0e1d02052248d02 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員審定書…………………………………………………………………….....i
謝辭…………………………………………………………………………………... ii 目錄…………………………………………………………………………………...iii 圖表目錄……………………………………………………………………………...iv 中文摘要………………………………………………………………………………v 英文摘要……………………………………………………………………………...vi 導論……………………………………………………………………………………1 材料方法…………………………………………………………..…………………12 實驗結果……………………………………………………………………………..29 討論…………………………………………………………………………………..34 參考文獻…………………………………………………………………………..…40 附圖……………………………………………………………………………….….49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 單分子實驗 | zh_TW |
| dc.subject | 解旋? | zh_TW |
| dc.subject | 單股結合蛋白 | zh_TW |
| dc.subject | 單分子實驗 | zh_TW |
| dc.subject | 端粒? | zh_TW |
| dc.subject | 解旋? | zh_TW |
| dc.subject | 端粒? | zh_TW |
| dc.subject | 單股結合蛋白 | zh_TW |
| dc.subject | Cdc13 | en |
| dc.subject | TPM | en |
| dc.subject | TPM | en |
| dc.subject | Cdc13 | en |
| dc.subject | telomerase | en |
| dc.subject | Pif1 | en |
| dc.subject | Pif1 | en |
| dc.subject | telomerase | en |
| dc.title | 探討Cdc13及Pif1在端粒酶活性調控上所扮演的角色 | zh_TW |
| dc.title | Investigating the role of Cdc13 and Pif1 on telomerase activity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李弘文,鄧述諄 | |
| dc.subject.keyword | 端粒?,單分子實驗,單股結合蛋白,解旋?, | zh_TW |
| dc.subject.keyword | Cdc13,telomerase,Pif1,TPM, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
