請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54124完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡欣穆(Hsin-Mu Tsai) | |
| dc.contributor.author | Chia-Fu Lee | en |
| dc.contributor.author | 李佳福 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:41:00Z | - |
| dc.date.available | 2015-07-23 | |
| dc.date.copyright | 2015-07-23 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-22 | |
| dc.identifier.citation | [1] Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. Whole-home gesture recognition using wireless signals. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, MobiCom ’13, pages 27–38, New York, NY, USA, 2013. ACM.
[2] Shuangquan Wang and Gang Zhou. A review on radio based activity recognition. Digital Communications and Networks, 1(1):20 – 29, 2015. [3] Yan Wang, Jian Liu, Yingying Chen, Marco Gruteser, Jie Yang, and Hongbo Liu. E-eyes: Device-free location-oriented activity identification using fine-grained wifi signatures. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom ’14, pages 617–628, New York, NY, USA, 2014. ACM. [4] Fadel Adib and Dina Katabi. See through walls with wifi! SIGCOMM Comput. Commun. Rev., 43(4):75–86, August 2013. [5] Xin Qi, Gang Zhou, Yantao Li, and Ge Peng. adiosense: Exploiting wireless communication patterns for body sensor network activity recognition. In Real-Time Systems Symposium (RTSS), 2012 IEEE 33rd, pages 95–104, Dec 2012. [6] Markus Scholz, Till Riedel, Mario Hock, and Michael Beigl. Device-free and devicebound activity recognition using radio signal strength. In Proceedings of the 4th Augmented Human International Conference, AH ’13, pages 100–107, New York, NY, USA, 2013. ACM. 36 [7] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. Bringing gesture recognition to all devices. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pages 303–316, Seattle, WA, April 2014. USENIX Association. [8] Jue Wang, Deepak Vasisht, and Dina Katabi. Rf-idraw: Virtual touch screen in the air using rf signals. SIGCOMM Comput. Commun. Rev., 44(4):235–246, August 2014. [9] Yunhao Liu, Yiyang Zhao, Lei Chen, Jian Pei, and Jinsong Han. Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays. Parallel and Distributed Systems, IEEE Transactions on, 23(11):2138–2149, Nov 2012. [10] Shuyu Shi, Stephan Sigg, and Yusheng Ji. Joint localization and activity recognition from ambient fm broadcast signals. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, UbiComp ’13 Adjunct, pages 521–530, New York, NY, USA, 2013. ACM. [11] Masatoshi Sekine and Kurato Maeno. Activity recognition using radio doppler effect for human monitoring service. Journal of Information Processing, 20(2):396–405, 2012. [12] Jie Xiong and Kyle Jamieson. Arraytrack: A fine-grained indoor location system. In Presented as part of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13), pages 71–84, Lombard, IL, 2013. USENIX. [13] R. Schmidt. Multiple emitter location and signal parameter estimation. Antennas and Propagation, IEEE Transactions on, 34(3):276–280, March 1986. [14] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. [15] Sidhant Gupta, Daniel Morris, Shwetak Patel, and Desney Tan. Soundwave: Using the doppler effect to sense gestures. In Proceedings of the SIGCHI Conference on 37 Human Factors in Computing Systems, CHI ’12, pages 1911–1914, New York, NY, USA, 2012. ACM. [16] Michael B. Crouse, Kevin Chen, and HT Kung. Gait recognition using encodings with flexible similarity metrics. In 11th International Conference on Autonomic Computing (ICAC 14), pages 169–175, Philadelphia, PA, June 2014. USENIX Association. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54124 | - |
| dc.description.abstract | 本論文實作多無線網路訊號源之手勢辨識系統。
無線網路訊號具備可以穿透牆壁的特性,加上現今無線訊號裝置的高普及率等特性,我們希望能夠藉由無線訊號在不同手勢下時會有不同的都卜勒效應變化,藉以實現一個與傳統手勢辨識方法中影像辨識系統中(受相機鏡頭範圍所限制和光源強度影響)、實體感測器(需無時無刻配戴感測器裝置)等不同的手勢辨識系統。 然而,藉由實驗數據發現,手勢辨識正確率會因位置而有顯著的影響。因此,我們提出方法藉由在實際生活情境同一個空間中,可能同時有多無線網路訊號源的特性,像是現今家庭中同時具備手機、平板電腦、筆電$cdots$等等會產生無線訊號的裝置,根據實驗結果我們發現當其中一個訊號源因為手勢位置所產生的都卜勒效應不夠顯著到可以辨別時,可以藉由另一訊號源的能產生較好的都卜勒效應來成功的辨別手勢。 在此論文中,我們提出三種方式利用不同訊號源資料多樣性來改進因手勢位置而造成辨識正確率降低的問題, 我們可以成功地改善辨識正確率達93\%。從此結果可以看出實現一個居家手勢辨識系統是具可行性的。 | zh_TW |
| dc.description.abstract | This thesis presents a multi-source signal source gesture recognition system. We leverage the characteristics of wireless signal, including traverse through the whole home, and high penetration rate to implement a gesture recognition system which is unlike the line of sight and light condition limitation of vision-based system, non device-free physical sensor system.
However, according to our experimental measurement studies, the accuracy of single transmitter system depends on the angle of performing gesture(location). Fortunately, in real world, current environments are full of wireless signals transmitted by different devices coming from various angles. For example, the signals sent by one source is very likely to create a stronger Doppler effect than that sent by another source. In thesis, we presents three approaches exploiting this diversity of multiple signal sources to tackle the above location issues, as a result realizing the whole-home gesture recognition in practice. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:41:00Z (GMT). No. of bitstreams: 1 ntu-104-R02922135-1.pdf: 4753910 bytes, checksum: d6717ef5ab6240af99dc2f643b416654 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 誌謝ii
摘要iii Abstract iv 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related Works 5 2.1 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 ZigBee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 RFID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Background 8 3.1 Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 MUSIC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 System Design 12 4.1 Transmission/Reception Design . . . . . . . . . . . . . . . . . . . . . . 13 4.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.2 Reference Transmitter . . . . . . . . . . . . . . . . . . . . . . . 14 v 4.1.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1 Phase calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.2 Packet Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.3 Extract Doppler Pattern . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.4 Extract AoA information . . . . . . . . . . . . . . . . . . . . . . 20 4.3 Feature Vector Construction . . . . . . . . . . . . . . . . . . . . . . . . 21 4.4 Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Measurement Impact of Gesture Location 23 5.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Doppler Pattern Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 Impact of Gesture Location . . . . . . . . . . . . . . . . . . . . . . . . . 26 6 Multi-Source Gesture Recognition 30 6.1 Sum of Doppler Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.2 Sum of Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3 Multi-Source Trace Combination . . . . . . . . . . . . . . . . . . . . . . 31 7 Evaluation 32 8 Conclusion 34 8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Bibliography 36 | |
| dc.language.iso | en | |
| dc.subject | 手勢辨識 | zh_TW |
| dc.subject | 多無線訊號源 | zh_TW |
| dc.subject | 手勢辨識 | zh_TW |
| dc.subject | 多無線訊號源 | zh_TW |
| dc.subject | Multiple WiFi signal sources | en |
| dc.subject | Multiple WiFi signal sources | en |
| dc.subject | Gesture recognition | en |
| dc.subject | Gesture recognition | en |
| dc.title | 使用多無線網路訊號源之手勢辨識 | zh_TW |
| dc.title | Hand Gesture Recognition with Multiple Wireless Signal Sources | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾煜棋,藍崑展,林靖茹,蕭旭君,王鈺強 | |
| dc.subject.keyword | 多無線訊號源,手勢辨識, | zh_TW |
| dc.subject.keyword | Multiple WiFi signal sources,Gesture recognition, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-22 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
