Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54120
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣本基(Pen-Chi Chiang)
dc.contributor.authorPo-Chih Tsengen
dc.contributor.author曾渤之zh_TW
dc.date.accessioned2021-06-16T02:40:50Z-
dc.date.available2020-07-23
dc.date.copyright2015-07-23
dc.date.issued2015
dc.date.submitted2015-07-22
dc.identifier.citationAksu, Z., Acikel, Y., Kabasakal, E., Tezer, S., 2002. Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Res. 36,3063-3073
Baran, W., Adamek, E., Ziemia´nska, J., Sobczak, A., 2011. Effects of the presence ofsulfonamides in the environment and their influence on human health. J. Hazard.Mater. 196, 1–15
Belfroid, A., van Velzen, M., van der Horst, B., Vethaak, D., 2002. Occurrence of bisphenol A in surface water and uptake in fish: evaluation of field measurements. Chemosphere 49, 97–103.
Bellona, C., Drewes, J.E., 2005. The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 249,227–234.
Bellona,C., Drewes, J.E., Xu, P., Amy,G.,2004. Factors affecting the rejection of organic solutes during NF/RO treatment – a literature review. Water Research, 38 ,2795-2809.
Benotti, M.J., Trenholm, B.A., Vanderford, B.J., Holady, J.C., Stanford, B.D., Snyder, S.A., 2009 .Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol,43:597–603.
Besse, J.P., Garric, J., 2008. Human pharmaceuticals in surface waters implementation of a prioritization methodology and application to the French situation. Toxicol. Lett. 176,104–123.
Białk-Bieli´nska, A., Stolte, S., Arning, J., Uebers, U., Böschen, A., Stepnowski, P.,Matzke, M., 2011. Ecotoxicity evaluation of selected sulfonamides. Chemosphere85 (6), 928–933
Boleda, M.R., Galceran, M.T, Ventura, F., 2011. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ Pollut 159:1584–1591
Bowen, W.R., Mohammad, A.W., Hilal, N., 1997. Characterization of nanofiltration membranes for predictive purpose-use of salt, uncharged solute and atomic force microscopy. J. Membrane Sci. 126,91-105
Bruchet, A., Hochereau, C., Picard, C., Decottignies, V.,Rodrigues, J.M., Janex-Habibi, M.L., 2005. Analysis of drugs and personal care products in French source and drinking waters: the analytical challenge and examples of application. Water Science and Technology 52 (8), 53-61.
Cao, X.L., Corriveau, J., Popovic, S., 2010. Sources of low concentrations of bisphenol A in canned beverage products. J. Food Prot. 73, 1548–1551.
Caserta, D., Bordi, G., Ciardo, F., Marci, R., La Rocca, C., Tait, S., Bergamasco, B., Stecca, L., Mantovani, A., Guerranti, C., Fanello, E.L., Perra, G., Borghini, F., Focardi, S.E., Moscarini, M., 2013. The influence of endocrine disruptors in a selected population of infertile women. Gynecol. Endocrinol. 29 (5), 444–447.
Castensson, S., Eriksson, V., Lindborg, K., Wettermark, B., 2009. A method to include the environmental hazard in drug prescribing. Pharm. World Sci. 31, 24–31.
Childress, A.E., Elimelech, M., 2000. Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ Sci Technol. 34,3710–3716.
Christensen, A.M., Markussen, B., Baun, A., Halling-Sorensen, B., 2009. Probabilistic environmental risk characterization of pharmaceuticals in sewage treatment plant discharges.Chemosphere 77, 351–358.
Corwin, C. J., Summers, R. S., 2010. Scaling trace organic contaminant adsorption capacity by granular activated carbon. Environ. Sci. Technol. 44,5403-5408
Corwin, C. J. and Summers, R.S., 2010. Scaling trace organic contaminant adsorption capacity by granular activated carbon. Environ Sci Technol. 44,5403-5408
Crittenden, J. C., Berrigan, J.K., Hand, D.W., 1986. Design of rapid small-scale adsorption tests for a constant diffusivity. J. Water Pollut Control Fed. 58,312-319
Crittenden, J.C., Reddy, P.S., Arora, H., Trynoski, J., Hand, D.W., Perram, D.L., Summers, R.S., 1991. Predicting GAC Performance With Rapid Small-Scale Column Tests. American Water Works Association. 83,77-87
Deshmukh, S. S., Childress, A.E., 2001. Zeta potential of commercial RO membranes: influence of source water type and chemistry. Desalination. 140,87–95.
DiGiano, F. A., Roudman, A., Arnold M., Freeman, B.D,, Preston, J., Nagai, K., DeSimone, J. M.,2001. Laboratory tests of new membrane materials. Denver, CO: AWWA Research Foundation.
Dinh, Q.T., Alliot, F., Moreau-Guigon, E., Eurin, J., Chevreuil, M., Labadie, P.,2011. Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC-MS/MS. Talanta 85 (3), 1238–1245
Do, D.D., 1999. Adsorption analysis: Equilibria and kinetics. Imperial College Press.
Dong, Z., Senn, D.B., Moran, R.E., Shine, J.P., 2013. Prioritizing environmental risk of prescription pharmaceuticals. Regul. Toxicol. Pharmacol. 65, 60–67.
Escher, B. I., Bramaz, N., Eggen, R.I.L., Richter, M., 2005. In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life. Environmental Science & Technology 39 (9),3090-3100.
Fang, T. H., Nan, F. H., Chin, T.S., and Feng, H.M.,2012.The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters.Mar Pollut Bull 64(7),1435-1444
Fenichel, P., Chevalier, N., Brucker-Davis, F., 2013. Bisphenol A: an endocrine and metabolic disruptor. Ann. Endocrinol. (Paris) 74 (3), 211–220.
Ferrari,B.,R.Mons,B.Vollat,B.Frayse,N.Paxeaus,R.L.Giudice,A.Pollio&J.Garric.,2004.Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environment Toxicology and Chemistry. 23,1344-1354
Gallenkemper, M., Wintgens, T., Melin, T., 2002. Nanofiltration of endocrine disrupting compounds. Membranes in Drinking and Industrial Water Conference Proceedings, Mülheim Ruhr, Germany.
Garba, Y., Taha, S., Gondrexon, N., Dorange, G., 2000. Mechanisms involved in cadmium salts transport through a nanofiltration membrane: characterization and distribution. J. Membrane Sci. 168,135-141
Giguère, S., Prescott, J.F., Dowling PM. Antimicrobial therapy in veterinary medicine. Chichester: Wiley 978-0-470-96302-9; 2013
Heijman, S.G.J., Hopman, R., 1999. Activated carbon filtration in drinking water production: model prediction and new concepts. Colloids Surf. A: Physicochem. Eng. Aspects 151, 303–310.
Ho, Y.S. and Mckay, G., 1999. Competitive sorption of copper and nickel ions from aqueous solution using peat. Adsorption. 5,409-417
Hoa, P.T.P., Managaki, S., Nakada, N., Takada, H., Shimizu, A., Anh, D.H., Viet, P.H.,Suzuki, S., 2011. Antibiotic contamination and occurrence of antibiotic-resistantbacteria in aquatic environments of northern Vietnam. Sci. Total Environ. 409(15), 2894–2901
Hu, J.Y., Aizawa, T., Ookubo, Y., Morita, Y., 1998. Adsorptive characteristics of ionogenic aromatic pesticides in water on powdered activated carbon. Water Res. 32,2593-2600
Hughes, S.R., Kay, P., Brown, L.E., 2013. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol.47, 661–677.
Hughes, S.R., Kay, P., Brown, L.E., 2013. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 47(2), 661–677
Huovinen, P., Sundström, L., Swedberg, G., Sköld, O., 1995. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother. 39,279–89.
Ikehata, K., Naghashkar, N. J., El-Din, M. G., 2006. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone Sci. Eng., 2(6),353-414.
Jones, O.A.H., Voulvoulis, N., Lester, J.N., 2002. Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res. 36, 5013–5022.
Julian Leslie Fairey.,2006. Elucidation of physichemical properties of granular activated carbon for monochloramine destruction in natural waters
K’oreje, K.O., Demeestere, K., De Wispelaere, P., Vergeynst, L., Dewulf, J., VanLangenhove, H., 2012. From multi-residue screening to target analysis of pharmaceuticals in water: development of a new approach based on magnetic sectormass spectrometry and application in the Nairobi River basin, Kenya. Sci. Total Environ. 437, 153–164
Kaplan, S., 2013. Review: pharmacological pollution in water. Crit. Rev. Environ. Sci. Technol. 43, 1074–1116.
Kedem, O., Katchalsky, A., 1963. Permeability of composite membranes, Part I: Electric current, volume flow and flow of solute through membranes. Trans. Faraday Soc.59,1918–1930.
Kim, Y., Choi, K., Jung, J., Park, S., Kim. P-G,, Park. J., 2007. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int.33:370–375.
Kim, S.H., Shon, H.K., Ngo, H.H., 2010. Adsorption characteristics of antibiotics trimethoprim on powdered and granular activated carbon. Journal of Industrial and Engineering Chemistry. 16,344-349
Kimura, K. Toshima, S., Amy, G., Watanabe, Y.,2004. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes, J. Membr. Sci. 245,71–78.
Kimura, K., Amy, G., Drewes, J., Heberer, T., Kim, T-U., Watanabe, Y., 2003. Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. J Membr Sci 227,113–21.
Kimura, K., Amy, G.L., Drewes, J., Watanabe, Y., 2003. Adsorption of hydrophobic compounds onto NF/RO membranes—an artifact leading to overestimation of rejection. J Membr Sci.221:89–101
Kimura, K., Amy, G.L., Drewes, J., Watanabe, Y., 2003. Adsorption of hydrophobic compounds onto NF/RO membranes—an artifact leading to overestimation of rejection.J Membr Sci 221:89–101.
Kiso, Y., 2001. Factors affecting adsorption of organic solutes on cellulose in an aqueous solution system. Chromatographia. 22,55–58.
Kiso, Y., Kon, T., Kitao, T., Nishimura, K.., 2001. Rejection properties of alkyl phthalates with nanofiltration membranes. J. Membrane Sci. 182,205–214
Kools, S.A.E., Boxall, A.B.A., Moltmann, J.F., Bryning, G., Koschorreck II, J., Knacker, T., 2008. A ranking of European veterinary medicines based on environmental risks. Integr. Environ. Assess. Manag. 4, 399–408.
Kumar, A., Xagoraraki, I., 2010. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system. Sci. Total Environ. 408, 5972–5989.
Lathi, R.B., Liebert, C.A., Brookfield, K.F., Taylor, J.A., Vom Saal, F.S., Fujimoto, V.Y., Baker, V.L., 2014. Conjugated bisphenol A (BPA) in maternal serum in relation to miscarriage risk. Fertil. Steril. 102 (1), 123–128.
Leitão, A. and Serrão, R., 2005. Adsorption of phenolic compounds from water on activated carbon: prediction of multicomponent equilibrium isotherms using single-component data. Adsorption 11,167-179
Lienert, J., Gudel, K., Escher, B.I., 2007. Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ. Sci. Technol. 41, 4471–4478.
Lin, A.Y.C, Tsai,Y.T.,2009. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment 407.3793–3802
Lin, Y.L., Chiang, P.C., Chang, E.E., 2007. Removal of small trihalomethane precursors from aqueous solution by nanofiltration. Journal of Hazardous Materials. 146,20-29
López-Muñoz, M.J., Sottoa, A., Arsuaga, J. M., Van der Bruggen, B., 2009. Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Separation and Purification Technology. 66,194-201
López-Muñoz, M.J., Sottoa, A., Arsuagaa, J.M., Van der Bruggen, B.,2009. Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes. Separation and Purification Technology 66,194-201
Melzer, D., Rice, N.E., Lewis, C., Henley, W.E., Galloway, T.S., 2010. Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One 5 (1), e8673.
Murthy, Z.V.P. , Gupta, Sharad K. ,1997. Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model. Desalination.109,39-49.
Nghiem, DL, Schaefer, A & Elimelech, M, 2005. Pharmaceutical retention mechanisms by nanofiltration membranes. Environmental Science and Technology. 39,7698-7755
Nghiem, L.D., Schäfer, A.I., 2002. Adsorption and transport of trace contaminant estrone in NF/RO membranes. Environmental engineering science.19, 441-451
Nghiem, L.D., Schäfer, A.I., Elimelech, M., 2004b. Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms Environmental science & technology.38,1888-1896.
Nghiem, L.D., Schäfer, A.I., Waite, T.D., 2002. Adsorption of estrone on nanofiltration and reverse osmosis membranes in water and wastewater treatment. Water Sci Technol. 46,265–72.
Nghiem, L.D., Schäfer, A.I., Waite, T.D., 2002. Adsorptive interactions between membranes and trace contaminants. Desalination 147.269–74.
Nikolaou, A., Meric, S., Fatta, D., 2007. Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical Bioanalytical Chemistry 387, 1225-234.
Ortiz de Garcia, S., Pinto, G.P., Garcia-Encina, P.A., Irusta Mata, R.I., 2013. Ranking of concern,based on environmental indexes, for pharmaceutical and personal care products:an application to the Spanish case. J. Environ. Manag. 129.
Park, G., Lee, J.H., Kim, I.S., Cho, J., 2004. Pharmaceutical rejection by membranes for wastewater reclamation and reuse. Water Sci. Technol. 50 (2), 239–244.
Patni, A. G., Ludlow, D. K., Adams, C. D., 2008. Characteristics of Ground Granular Activated Carbon for Rapid Small-Scale Column Tests. J. Environ. Eng. 134,216-221
Puijker, L., Mons, M., 2004. Pharmaceuticals and Personal Care Products in the Water Cycle—International Review. Kiwa Report KWR 04.013. Kiwa N.V. Water Research, Nieuwegein,The Netherlands.
Radjenović, J, M. Petrovic, F, Venturac, D. Barcelo.,2008. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research, 42(14):3601–3610.
Richardson, S.D., 2009. Water analysis: emerging contaminants and current Issues. Analytical Chemistry 81, 4645-4677.
Rodriguez-Mozaz, S., López de Alda, M.J., Barceló, D., 2004. Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction–liquid chromatography–mass spectrometry. J. Chromatogr. A 1045, 85–92.
Rutkowska, A., Rachon´ , D., 2014. Bisphenol A (BPA) and its potential role in the pathogenesis of the polycystic ovary syndrome (PCOS). Gynecol. Endocrinol. 30(4), 260–265.
Saha, B., Tai, M.H., Streat, M., 2001. Study of Activated Carbon After Oxidation and Subsequent Treatment: Characterization. Process Safety and Environmental Protection.79,211-217
Schäfer AI, Mastrup M, Lund Jensen R., 2002. Particle interactions and removal of trace contaminants from water and wastewaters. Desalination.147,243–250.
Scharf, R.G., Johnston, R.W., Semmens, M.J., Hozalski, R.M., 2010. Comparison of batch sorption tests, pilot studies, and modeling for estimating GAC bed life. Water Res. 44,769-780
Schidemana, L.C., Snoeyink, V.L. Mariñas, B.J., Ding, L., Campos, C., 2007. Application of a three-component competitive adsorption model to evaluate and optimize granular activated carbon systems. Water Res. 41,3289-3298
Schwab BW, Hayes EP, Fiori JM, Mastrocco FJ, Roden NM, Cragin D, Meyerhoff RD, D'Aco VJ, Anderson PD.,2005. Human pharmaceuticals in US surface waters: a human health risk assessment. Regul Toxicol Pharmacology.42:296-312.
Snyder, S.A., Westerhoff, P., Yoon, Y., Sedlak, D.L., 2003.Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry.Environmental Engineering Science 20 (5), 449-469.
Steinle-Darling E, Litwiller E, Reinhard M., 2010. Effects of sorption on the rejection of trace organic contaminants during nanofiltration. Environ Sci Technol. 44(7),2592-2598
Stoquart, C., Servais, P., Bérubé, P.R., Barbeau, B., 2012. Hybrid Membrane Process using activated carbon treatment of drinking water : A review. J Membr. Sci. 411/412,1-12
Stumm, W., 1992. Chemistry of the solid-water interface. A Wiley-Interscience Publication, John Wiley & Sons, Inc.
Tsuru, T., Urairi, M., Nakao, S-I., Kimura, S., 1991. Reverse osmosis of single and mixed electrolytes with charged membranes: experiment and analysis . J Chem Eng Jpn.24(4),518–24.
Van der Bruggen B, Braeken L, Vandecasteele C., 2002. Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds. Desalination. 147,281-288.
Van der Bruggen, B., Schaep, J.,Wilims, D., Vandecasteele, C.,1999. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration
Van der Bruggen, B., Vandecasteele, C., 2002. Modelling of the retention of unchargedmolecules with nanofiltration,Water Res. 36.1360–1368.
Van der Bruggena, B., Manttari, M., Nystrom, M., 2008. Drawbacks of applying nanofiltration and how to avoid them: A review. Separation and Purification Technology. 63,251-263
Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Verberk, J.Q.J.C., Amy, G.L., Van der Bruggen, B., van Dijk, J.C., 2009. Construction and validation of a full-scale model for rejection of organic micropollutants by NF membranes. J. Membrane Sci. 339,10-20
Vieno, N.M., Tuhkanen, T., Kronberg, L., 2005. Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant in the recipient water. Environ. Sci. Technol. 39, 8220–8226.
Vosges, M., Braguer, J.C., Combarnous, Y., 2008. Long-term exposure of male rats to low-dose ethinylestradiol (EE2) in drinking water: effects on ponderal growth and on litter size of their progeny. Reproductive Toxicology 25 (2), 161-168.
Wintgens T, Gallenkemper M, Melin T., 2003. Occurrence and removal of endocrine disrupters in landfill leachate treatment plants. Water Sci Technol 48(3),127–34.
Wong, K.O., Leo, L.W., Seah, H.L., 2005. Dietary exposure assessment of infants to isphenol A from the use of polycarbonate baby milk bottles. Food Addit. Contam. 22, 280–288.
Worch, E., 2008. Fixed-bed adsorption in drinking water treatment: a critical review on models and parameter estimation. Journal of Water Supply: Research and Technology-AQUA. 57,171-183
Yangali-Quintanilla, V, Verliefde. A, Kim, T.-U. Sadmani, A, Kennedy, M, Amy, G.,2009. Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 342,251-262
Ying, G.G., 2007. Analysis of endrocrine disrupting chemicals and pharmaceuticals and personal care products in water. In: Nollet, L.M.L. (Ed.), Handbook of Water Analysis. Boca Raton, CRC Press, Taylor & Francis, Group, pp. 693–727.
Yoon, Y., Westerhoff, P., Snyder, S.A., Wert, E.C., 2006. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membr. Sci. 270, 88–100
Yu Qiang, Zhang Ruiqi, Deng Shubo, Huang Jun, Yu Gang., 2009. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research. 43,1150-1158
Yu, Z., Peldszus, S., Huck P. M., 2009. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics. Environ. Sci. Technol. 43, 1467–1473
Yu, Y., Liu, Y. and Wu, L., 2013. Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants. Sci Total Environ. 442,310-316
Zhang, R., Zhang, G., Zheng, Q., Tang, J., Chen, Y., Xu, W., Zou Yongde Chen, X., 2012. Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Eco toxicol. Environ. Safety. 80, 208-215
Zhanga, Q., Crittendenb, J., Hristovskic, K., Hand, D., Westerhoffc, P., 2009. User-oriented batch reactor solutions to the homogeneous surface diffusion model for different activated carbon dosages. Water Res. 43,1859-1866
Zheng, Q., Zhang, R., Wang, Y., Pan, X., Tang, J., Zhang, G., 2012. Occurrence and distribution of antibiotics in the Beibu Gulf, China: impacts of river discharge and aquaculture activities. Mar. Environ. Res. 78, 26–33
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54120-
dc.description.abstract本研究使用不同程序的奈米薄膜結合活性碳去除個人衛生保健用品(PPCPs)或者內分泌干擾物質(EDCs)的效能研究。目標化合物分為三種類型:第一型為高分子量(接近薄膜MWCO);第二型為帶負電的物質;第三型為疏水中性物質。為了研究各單元內最適化的操作條件,兩單元將先分開實驗後,找出最佳的條件後再做結合,討論不同程序提高的效能差別。
本研究評估奈米薄膜在各種不同條件下去除效能的影響,膜孔徑小會顯著增加去除效率、減少出水通量;透膜壓力的增加會提高些許的去除率但對於某些物質會呈不規則的變化(增加、減少);掃流速度增加能提高些許去除率達成穩定。
本研究評估活性碳表面界達電位對於各目標化合物的吸附量的影響,在酸性下(pH<6)與偏鹼性(pH>8)下,除了疏水中性物質的吸附量沒有變化外,其餘兩種類型的目標化合物會有極大的改變,為結合薄膜的操作條件及現實水體,本研究採用將pH值控制在8左右。
不同活性碳與薄膜的結合程序具有不同的去除效能,不論在批次實驗或者連續操作的實驗,都能有效提高去除效果。根據薄膜對於水體中目標化合物的去除特性,薄膜結合活性碳為更加良好的組合次序, 最高能將所有目標化合物有高達90%以上的去除效能。薄膜結合活性碳能有效的提高標化合物去除效率,對於微小分子量汙染物有著顯著的作用。
zh_TW
dc.description.abstractIn this study, NF membrane combine with activated carbon were used to removal of PPCP/EDCs in different sequence and assessed the removal efficiency. The target compounds were classified into three types: Type 1 was hydrophilic neutral compounds; Type 2 was negatively charged compounds; Type 3 was hydrophobic neutral compounds. In order to investigate the optimized operation conditions for integrated system. The discussions were started in per unit process: NF and AC.
This study investigated the rejection of target compounds by NF under different operational conditions. The decrease of membrane pore radius significantly increased the rejection but decreased the solvent flux. Rejection slightly increased as the transmembrane pressure increased but for some compounds exhibit not regular change (increase or decrease the rejection). The rejection of target compounds slightly increased as cross-flow velocity increased.
The zeta potential of activated carbon affected the adsorption capacity of target compounds by AC. At acid or base condition, the adsorption capacity of hydrophobic neutral compound did not change. The others types had great change of adsorption capacity. In order to combine with membrane process and real water body. This study controlled pH around 8 for elevation of removal efficiency.
Different sequence of the combination of AC and NF has different removal efficiency. Both in batch and continuous operation experiments, NF combined with AC have great performance and have the higher rejection than only single process. According to the property of membrane for removal of target compounds, NF/AC were the better combination, the removal efficiency can reach more than 90 % for all compounds. This study investigated that NF combined with AC were effectively increased the removal of micro-pollutants.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:40:50Z (GMT). No. of bitstreams: 1
ntu-104-R02541122-1.pdf: 4792397 bytes, checksum: 174dd0c736e96d2c5ba68e9033acb266 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents致謝 1
中文摘要 2
Abstract 3
Contents 5
List of Figures 9
Lists of Tables 13
Oral Defense Comments 14
Chapter 1 Introduction 16
1-1 Background 16
1-2 Objectives 19
Chapter 2 Literature Review 20
2-1 Contaminants of Emerging Concern in Environment 20
2-1-1 Trimethoprim 22
2-1-2 Sulfamathoxazole 22
2-1-3 Bisphenol A 24
2-2 PPCP/EDCs Removal by Nanofiltration 25
2-2-1 Size Exclusion (SE) 28
2-2-2 Electrostatic Repulsion (ER) 30
2-2-3 Adsorption (AD) 31
2-3 Predicting models of Nanofiltration 33
2-3-1 Resistance-in-Series Model 33
2-3-2 Concentration Polarization Model (Film Theory Model) 34
2-3-3 Solution-Diffusion Model 35
2-3-4 Irreversible Thermodynamics Model (Spiegler-Kedem Model) 36
2-3-5 Extended Nerst-Planck Model (Hydrodynamic Model) 37
2-4 Activated carbon 38
2-5 Langmuir Isotherm Model 40
2-6 Multi-component Adsorption Model 41
2-6-1 Non-Competitive Langmuir Model 41
2-6-2 Competitive Adsorption Models 42
2-6-2-1 Extended Langmuir Model 42
2-6-2-2 Modified Extended Langmuir Model 43
2-7 Rapid Small-Scale Column Test 44
2-8 Predicting model of GAC adsorption for RSSCT 46
2-8-1 Yoon-Nelson Model (Y-N Model) 46
2-8-2 Homogeneous Surface Diffusion Model (HSDM) 47
Chapter 3 Materials and Methods 50
3-1 Research Flowchart 50
3-2 NF Membranes 51
3-3 Activated Carbon 52
3-4 Target Compounds 53
3-5 Experiment Designs 54
3-5-1 Nanofiltration process 54
3-5-1-1 Experimental set-up 55
3-5-1-2 Membrane adsorption test process 56
3-5-2 Activated Carbon 57
3-5-2-1 Batch Reactor Experiments 58
3-5-2-2 Rapid Small-Scale Column Test (RSSCT) 59
3-5-3 Integrated treatment process system 61
3-5-3-1 NF/AC System 62
3-5-3-2 AC/NF System 62
3-6 Analytical Methods 63
3-6-1 High Performance Liquid Chromatography Analysis (HPLC) 63
Chapter 4 Results and Discussions 66
4-1 Effect of Membrane and Solute Characteristics on Rejection 66
4-1-1 Rejection of target compounds by membranes 66
4-1-2 Influence of pH on rejection of target compounds 69
4-1-3 Membrane adsorption capacity of target compounds 72
4-1-4 Effect of operating condition on NF membrane filtration 76
4-1-4-1 Effect of transmembrane pressure 76
4-1-4-2 Effect of cross-flow velocity 79
4-1-4-3 Optimal operation parameters 82
4-1-5 Summary 85
4-2 Adsorption of Target compounds by AC 86
4-2-1 Langmuir Isotherm 86
4-2-2 Effect of AC Dosage on Adsorption Capacity 91
4-2-3 Multi-component Langmuir Adsorption Isotherm 94
4-2-3-1 Non-competitive Isotherm 94
4-2-3-2 Competitive Isotherm 95
4-2-4 Summary 98
4-3 Integrated System of AC and NF 99
4-3-1 Integrated System Experiments 100
4-3-1-1 NF/AC in Batch Reactor 100
4-3-1-2 AC/NF Batch Reactor 103
4-3-2 Integrated System Continuous Operation 107
4-3-2-1 NF/AC Continuous Operations 107
4-4-2-2 GAC / NF Continuous Operations 110
Chapter 5 Conclusions and Recommendations 113
5-1 Conclusions 113
5-2 Recommendations 115
Chapter 6 References 116
Chapter 7 Appendix 126
dc.language.isoen
dc.title利用奈米薄膜及活性碳吸附去除水中Trimethoprim、Sulfamethoxazole與Bisphenol-Azh_TW
dc.titleRemoval of Trimethoprim,Sulfamethoxazole and Bisphenol-A by Nanofiltration and Adsorption Processesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張怡怡(E-E Chang),顧洋(Young Ku),林逸彬(Yi-Ping Lin),侯嘉洪(Chia-Hung Hou)
dc.subject.keyword奈米薄膜,活性碳吸附,藥物及個人衛生保健用品,內分泌干擾物,去除機制,zh_TW
dc.subject.keywordNanofiltration,Activated Carbon,Pharmaceuticals and Personal Care Products,Endocrine Disrupting Chemicals,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2015-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved