請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5407完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉逸軒(I-Hsuan Liu) | |
| dc.contributor.author | Tzu-Yu Hsu | en |
| dc.contributor.author | 許慈宇 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:58:03Z | - |
| dc.date.available | 2016-03-21 | |
| dc.date.available | 2021-05-15T17:58:03Z | - |
| dc.date.copyright | 2014-03-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-03-07 | |
| dc.identifier.citation | Aggarwal, S., and M. F. Pittenger. 2005a. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815-1822.
Aggarwal, S., and M. F. Pittenger. 2005b. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815-1822. Akiyama, K., C. Chen, D. D. Wang, X. T. Xu, C. Y. Qu, T. Yamaza, T. Cai, W. J. Chen, L. Y. Sun, and S. T. Shi. 2012. Mesenchymal-Stem-Cell-Induced Immunoregulation Involves FAS-Ligand-/FAS-Mediated T Cell Apoptosis. Cell stem cell 10: 544-555. Alexanian, A. R., and M. Sieber-Blum. 2003. Differentiating adult hippocampal stem cells into neural crest derivatives. Neuroscience 118: 1-5. Arinzeh, T. L., S. J. Peter, M. P. Archambault, C. van den Bos, S. Gordon, K. Kraus, A. Smith, and S. Kadiyala. 2003. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. The Journal of bone and joint surgery. American volume 85-A: 1927-1935. Ben-Porath, I., M. W. Thomson, V. J. Carey, R. Ge, G. W. Bell, A. Regev, and R. A. Weinberg. 2008. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature genetics 40: 499-507. Bi, B., R. Schmitt, M. Israilova, H. Nishio, and L. G. Cantley. 2007. Stromal cells protect against acute tubular injury via an endocrine effect. Journal of the American Society of Nephrology : JASN 18: 2486-2496. Bjornson, C. R. R., R. L. Rietze, B. A. Reynolds, M. C. Magli, and A. L. Vescovi. 1999. Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science 283: 534-537. Bottai, D., R. Fiocco, F. Gelain, L. Defilippis, R. Galli, A. Gritti, and L. A. Vescovi. 2003. Neural stem cells in the adult nervous system. J Hematother Stem Cell Res 12: 655-670. Calvi, L. M., G. B. Adams, K. W. Weibrecht, J. M. Weber, D. P. Olson, M. C. Knight, R. P. Martin, E. Schipani, P. Divieti, F. R. Bringhurst, L. A. Milner, H. M. Kronenberg, and D. T. Scadden. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841-846. Campagnoli, C., I. A. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono, and N. M. Fisk. 2001. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98: 2396-2402. Caplan, A. I. 1991. Mesenchymal stem cells. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 9: 641-650. Caplan, A. I., and S. P. Bruder. 2001. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in molecular medicine 7: 259-264. Caplan, A. I., and J. E. Dennis. 2006. Mesenchymal stem cells as trophic mediators. Journal of cellular biochemistry 98: 1076-1084. Carrade, D. D., and D. L. Borjesson. 2013. Immunomodulation by Mesenchymal Stem Cells in Veterinary Species. Comparative Med 63: 207-217. Chagraoui, J., A. Lepage-Noll, A. Anjo, D. Uzan, and P. Charbord. 2003. Fetal liver stroma consists of cells in epithelial-to-mesenchymal transition. Blood 101: 2973-2982. Cheng, C. C., W. S. Lian, F. S. Hsiao, I. H. Liu, S. P. Lin, Y. H. Lee, C. C. Chang, G. Y. Xiao, H. Y. Huang, C. F. Cheng, W. T. Cheng, and S. C. Wu. 2012. Isolation and characterization of novel murine epiphysis derived mesenchymal stem cells. Plos One 7: e36085. Childers, M. K., C. S. Okamura, D. J. Bogan, J. R. Bogan, M. J. Sullivan, and J. N. Kornegay. 2001. Myofiber injury and regeneration in a canine homologue of Duchenne muscular dystrophy. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists 80: 175-181. Chiou, S. H., C. C. Yu, C. Y. Huang, S. C. Lin, C. J. Liu, T. H. Tsai, S. H. Chou, C. S. Chien, H. H. Ku, and J. F. Lo. 2008. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 14: 4085-4095. Chivu, M., S. O. Dima, C. I. Stancu, C. Dobrea, V. Uscatescu, L. G. Necula, C. Bleotu, C. Tanase, R. Albulescu, C. Ardeleanu, and I. Popescu. 2009. In vitro hepatic differentiation of human bone marrow mesenchymal stem cells under differential exposure to liver-specific factors. Transl Res 154: 122-132. Choi, S. A., H. S. Choi, K. J. Kim, D. S. Lee, J. H. Lee, J. Y. Park, E. Y. Kim, X. Li, H. Y. Oh, and M. K. Kim. 2012. Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells. In vitro cellular & developmental biology. Animal. Colter, D. C., R. Class, C. M. DiGirolamo, and D. J. Prockop. 2000. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. P Natl Acad Sci USA 97: 3213-3218. Cooper, B. J., N. J. Winand, H. Stedman, B. A. Valentine, E. P. Hoffman, L. M. Kunkel, M. O. Scott, K. H. Fischbeck, J. N. Kornegay, R. J. Avery, and et al. 1988. The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334: 154-156. Cui, L., B. Liu, G. Liu, W. Zhang, L. Cen, J. Sun, S. Yin, W. Liu, and Y. Cao. 2007. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28: 5477-5486. Devine, S. M., A. M. Bartholomew, N. Mahmud, M. Nelson, S. Patil, W. Hardy, C. Sturgeon, T. Hewett, T. Chung, W. Stock, D. Sher, S. Weissman, K. Ferrer, J. Mosca, R. Deans, A. Moseley, and R. Hoffman. 2001. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29: 244-255. Dezawa, M., H. Ishikawa, Y. Itokazu, T. Yoshihara, M. Hoshino, S. Takeda, C. Ide, and Y. Nabeshima. 2005. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309: 314-317. Di Nicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P. D. Longoni, P. Matteucci, S. Grisanti, and A. M. Gianni. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838-3843. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, D. S. Krause, R. J. Deans, A. Keating, D. J. Prockop, and E. M. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317. Erices, A., P. Conget, and J. J. Minguell. 2000. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109: 235-242. Fan, C. G., F. W. Tang, Q. J. Zhang, S. H. Lu, H. Y. Liu, Z. M. Zhao, B. Liu, Z. B. Han, and Z. C. Han. 2005. Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell transplantation 14: 311-321. Fickert, S., U. Schroter-Bobsin, A. F. Gross, U. Hempel, C. Wojciechowski, C. Rentsch, D. Corbeil, and K. P. Gunther. 2011. Human mesenchymal stem cell proliferation and osteogenic differentiation during long-term ex vivo cultivation is not age dependent. Journal of bone and mineral metabolism 29: 224-235. Filioli Uranio, M., L. Valentini, A. Lange-Consiglio, M. Caira, A. C. Guaricci, A. L'Abbate, C. R. Catacchio, M. Ventura, F. Cremonesi, and M. E. Dell'Aquila. 2011. Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa: a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Molecular reproduction and development 78: 361-373. Friedenstein, A. J., R. K. Chailakhjan, and K. S. Lalykina. 1970. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and tissue kinetics 3: 393-403. Fu, X., L. Fang, X. Li, B. Cheng, and Z. Sheng. 2006. Enhanced wound-healing quality with bone marrow mesenchymal stem cells autografting after skin injury. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 14: 325-335. Fujita, J., H. Kawada, K. Kinjo, Y. Matsuzaki, Y. Itabashi, M. Yoshioka, S. Yuasa, K. Hayashida, T. Manabe, K. Matsumura, H. Kawaguchi, J. Endou, M. Ieda, Y. Hisaka, T. Yagi, H. Kanazawa, M. Yata, K. Shimoji, M. Tsuma, H. Miyatake, Y. Muguruma, H. Okano, T. Hotta, K. Andou, and K. Fukuda. 2004. The origin of bone marrow-derived cardiomyocytes is nonhematopoietic: Possible contribution of mesenchymal stem cells. Circulation 110: 70-70. Goh, E. L., D. Ma, G. L. Ming, and H. Song. 2003. Adult neural stem cells and repair of the adult central nervous system. J Hematother Stem Cell Res 12: 671-679. Gronthos, S., M. Mankani, J. Brahim, P. G. Robey, and S. Shi. 2000. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97: 13625-13630. Guercio, A., P. Di Marco, S. Casella, V. Cannella, L. Russotto, G. Purpari, S. Di Bella, and G. Piccione. 2012a. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int 36: 189-194. Guercio, A., P. Di Marco, S. Casella, V. Cannella, L. Russotto, G. Purpari, S. Di Bella, and G. Piccione. 2012b. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int 36: 189-194. Henthorn, P. S., R. L. Somberg, V. M. Fimiani, J. M. Puck, D. F. Patterson, and P. J. Felsburg. 1994. IL-2R gamma gene microdeletion demonstrates that canine X-linked severe combined immunodeficiency is a homologue of the human disease. Genomics 23: 69-74. Herrera, M. B., B. Bussolati, S. Bruno, L. Morando, G. Mauriello-Romanazzi, F. Sanavio, I. Stamenkovic, L. Biancone, and G. Camussi. 2007. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney international 72: 430-441. Hsiao, F. S., W. S. Lian, S. P. Lin, C. J. Lin, Y. S. Lin, E. C. Cheng, C. W. Liu, C. C. Cheng, P. H. Cheng, S. T. Ding, K. H. Lee, T. F. Kuo, C. F. Cheng, W. T. Cheng, and S. C. Wu. 2011a. Toward an ideal animal model to trace donor cell fates after stem cell therapy: production of stably labeled multipotent mesenchymal stem cells from bone marrow of transgenic pigs harboring enhanced green fluorescence protein gene. J Anim Sci 89: 3460-3472. Hsiao, F. S. H., W. S. Lian, S. P. Lin, C. J. Lin, Y. S. Lin, E. C. H. Cheng, C. W. Liu, C. C. Cheng, P. H. Cheng, S. T. Ding, K. H. Lee, T. F. Kuo, C. F. Cheng, W. T. K. Cheng, and S. C. Wu. 2011b. Toward an ideal animal model to trace donor cell fates after stem cell therapy: Production of stably labeled multipotent mesenchymal stem cells from bone marrow of transgenic pigs harboring enhanced green fluorescence protein gene. J Anim Sci 89: 3460-3472. Hughey, C. C., V. L. Johnsen, L. L. Ma, F. D. James, P. P. Young, D. H. Wasserman, J. N. Rottman, D. S. Hittel, and J. Shearer. 2012. Mesenchymal stem cell transplantation for the infarcted heart: a role in minimizing abnormalities in cardiac-specific energy metabolism. Am J Physiol-Endoc M 302: E163-E172. Ichim, T. E., D. T. Alexandrescu, F. Solano, F. Lara, N. Campion Rde, E. Paris, E. J. Woods, M. P. Murphy, C. A. Dasanu, A. N. Patel, A. M. Marleau, A. Leal, and N. H. Riordan. 2010. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cellular immunology 260: 75-82. In 't Anker, P. S., S. A. Scherjon, C. Kleijburg-van der Keur, W. A. Noort, F. H. Claas, R. Willemze, W. E. Fibbe, and H. H. Kanhai. 2003. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102: 1548-1549. Jang, B. J., Y. E. Byeon, J. H. Lim, H. H. Ryu, W. H. Kim, Y. Koyama, M. Kikuchi, K. S. Kang, and O. K. Kweon. 2008. Implantation of canine umbilical cord blood-derived mesenchymal stem cells mixed with beta-tricalcium phosphate enhances osteogenesis in bone defect model dogs. Journal of veterinary science 9: 387-393. Jiang, Y. H., B. N. Jahagirdar, R. L. Reinhardt, R. E. Schwartz, C. D. Keene, X. R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. B. Du, S. Aldrich, A. Lisberg, W. C. Low, D. A. Largaespada, and C. M. Verfaillie. 2007. Pluripotency of mesenchymal stem cells derived from adult marrow (vol 418, pg 41, 2002). Nature 447: 879-880. Jung, D. I., J. Ha, B. T. Kang, J. W. Kim, F. S. Quan, J. H. Lee, E. J. Woo, and H. M. Park. 2009. A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. Journal of the neurological sciences 285: 67-77. Kadiyala, S., R. G. Young, M. A. Thiede, and S. P. Bruder. 1997. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell transplantation 6: 125-134. Kamishina, H., J. Deng, T. Oji, J. A. Cheeseman, and R. M. Clemmons. 2006. Expression of neural markers on bone marrow-derived canine mesenchymal stem cells. American journal of veterinary research 67: 1921-1928. Kanazawa, H., Y. Fujimoto, T. Teratani, J. Iwasaki, N. Kasahara, K. Negishi, T. Tsuruyama, S. Uemoto, and E. Kobayashi. 2011. Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Hepatic Ischemia Reperfusion Injury in a Rat Model. Plos One 6. Kang, B. J., H. H. Ryu, S. S. Park, Y. Koyama, M. Kikuchi, H. M. Woo, W. H. Kim, and O. K. Kweon. 2012. Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton's jelly for treating bone defects. Journal of veterinary science 13: 299-310. Karnoub, A. E., A. B. Dash, A. P. Vo, A. Sullivan, M. W. Brooks, G. W. Bell, A. L. Richardson, K. Polyak, R. Tubo, and R. A. Weinberg. 2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: 557-563. Kiel, M. J., and S. J. Morrison. 2008. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8: 290-301. Kisiel, A. H., L. A. McDuffee, E. Masaoud, T. R. Bailey, B. P. Esparza Gonzalez, and R. Nino-Fong. 2012. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. American journal of veterinary research 73: 1305-1317. Knoepfler, P. S. 2009. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27: 1050-1056. Koc, O. N., S. L. Gerson, B. W. Cooper, S. M. Dyhouse, S. E. Haynesworth, A. I. Caplan, and H. M. Lazarus. 2000. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 18: 307-316. Kopen, G. C., D. J. Prockop, and D. G. Phinney. 1999a. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96: 10711-10716. Kopen, G. C., D. J. Prockop, and D. G. Phinney. 1999b. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. P Natl Acad Sci USA 96: 10711-10716. Lamerato-Kozicki, A. R., K. M. Helm, C. M. Jubala, G. C. Cutter, and J. F. Modiano. 2006. Canine hemangiosarcoma originates from hematopoietic precursors with potential for endothelial differentiation. Exp Hematol 34: 870-878. Li, Q., X. Xu, Z. Wang, W. Liu, and Z. Li. 2007. [Investigation of canine mesenchymal stem cells differentiation to vascular endothelial cell in vitro]. Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi 24: 1348-1351. Lim, J. H., Y. E. Byeon, H. H. Ryu, Y. H. Jeong, Y. W. Lee, W. H. Kim, K. S. Kang, and O. K. Kweon. 2007. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. Journal of veterinary science 8: 275-282. Mahmood, A., D. Lu, M. Lu, and M. Chopp. 2003. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53: 697-702; discussion 702-693. Markert, C. D., A. Atala, J. K. Cann, G. Christ, M. Furth, F. Ambrosio, and M. K. Childers. 2009. Mesenchymal stem cells: emerging therapy for Duchenne muscular dystrophy. PM & R : the journal of injury, function, and rehabilitation 1: 547-559. Mias, C., O. Lairez, E. Trouche, J. Roncalli, D. Calise, M. H. Seguelas, C. Ordener, M. D. Piercecchi-Marti, N. Auge, A. N. Salvayre, P. Bourin, A. Parini, and D. Cussac. 2009. Mesenchymal Stem Cells Promote Matrix Metalloproteinase Secretion by Cardiac Fibroblasts and Reduce Cardiac Ventricular Fibrosis After Myocardial Infarction. Stem Cells 27: 2734-2743. Mitsiadis, T. A., B. Omella, A. Rochat, Y. Barrandon, and C. Bari. 2007. Stem cell niches in mammals. Experimental cell research 313: 3377-3385. Morigi, M., B. Imberti, C. Zoja, D. Corna, S. Tomasoni, M. Abbate, D. Rottoli, S. Angioletti, A. Benigni, N. Perico, M. Alison, and G. Remuzzi. 2004. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. Journal of the American Society of Nephrology : JASN 15: 1794-1804. Muguruma, Y., T. Yahata, H. Miyatake, T. Sato, T. Uno, J. Itoh, S. Kato, M. Ito, T. Hotta, and K. Ando. 2006. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 107: 1878-1887. Munoz-Elias, G., A. J. Marcus, T. M. Coyne, D. Woodbury, and I. B. Black. 2004. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. The Journal of neuroscience : the official journal of the Society for Neuroscience 24: 4585-4595. Neupane, M., C. C. Chang, M. Kiupel, and V. Yuzbasiyan-Gurkan. 2008. Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue engineering. Part A 14: 1007-1015. Nishida, H., M. Nakayama, H. Tanaka, M. Kitamura, S. Hatoya, K. Sugiura, Y. Suzuki, C. Ide, and T. Inaba. 2011. Evaluation of transplantation of autologous bone marrow stromal cells into the cerebrospinal fluid for treatment of chronic spinal cord injury in dogs. American journal of veterinary research 72: 1118-1123. Oh, H. J., J. E. Park, M. J. Kim, S. G. Hong, J. C. Ra, J. Y. Jo, S. K. Kang, G. Jang, and B. C. Lee. 2011. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. Orlic, D., J. Kajstura, S. Chimenti, F. Limana, I. Jakoniuk, F. Quaini, B. Nadal-Ginard, D. M. Bodine, A. Leri, and P. Anversa. 2001. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98: 10344-10349. Ostrander, E. A., F. Galibert, and D. F. Patterson. 2000. Canine genetics comes of age. Trends in genetics : TIG 16: 117-124. Oswald, J., S. Boxberger, B. Jorgensen, S. Feldmann, G. Ehninger, M. Bornhauser, and C. Werner. 2004. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22: 377-384. Ozawa, Y., T. Goto, K. Ohashi, M. Murata, T. Eto, N. Kobayashi, S. Taniguchi, M. Imamura, K. Ando, S. Kato, T. Mori, T. Teshima, M. Mori, K. Muroi, K. Miyamura, and K. Ozawa. 2011. Mesenchymal Stem Cells As a Treatment for Steroid-Resistant Acute Graft Versus Host Disease (aGVHD); A Multicenter Phase I/II Study. Blood 118: 1311-1312. Park, S. B., M. S. Seo, H. S. Kim, and K. S. Kang. 2012. Isolation and characterization of canine amniotic membrane-derived multipotent stem cells. Plos One 7: e44693. Park, S. S., Y. E. Byeon, H. H. Ryu, B. J. Kang, Y. Kim, W. H. Kim, K. S. Kang, H. J. Han, and O. K. Kweon. 2011. Comparison of canine umbilical cord blood-derived mesenchymal stem cell transplantation times: Involvement of astrogliosis, inflammation, intracellular actin cytoskeleton pathways, and neurotrophin. Cell transplantation. Perin, E. C., G. V. Silva, J. A. Assad, D. Vela, L. M. Buja, A. L. Sousa, S. Litovsky, J. Lin, W. K. Vaughn, S. Coulter, M. R. Fernandes, and J. T. Willerson. 2008. Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol 44: 486-495. Petersen, B. E., W. C. Bowen, K. D. Patrene, W. M. Mars, A. K. Sullivan, N. Murase, S. S. Boggs, J. S. Greenberger, and J. P. Goff. 1999. Bone marrow as a potential source of hepatic oval cells. Science 284: 1168-1170. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147. Quintanilha, L. F., T. Takami, Y. Hirose, K. Fujisawa, Y. Murata, N. Yamamoto, R. C. Goldenberg, S. Terai, and I. Sakaida. 2013. Canine mesenchymal stem cells show antioxidant properties against thioacetamide-induced liver injury in vitro and in vivo. Hepatology research : the official journal of the Japan Society of Hepatology. Raffaghello, L., G. Bianchi, M. Bertolotto, F. Montecucco, A. Busca, F. Dallegri, L. Ottonello, and V. Pistoia. 2008. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 26: 151-162. Rouger, K., T. Larcher, L. Dubreil, J. Y. Deschamps, C. Le Guiner, G. Jouvion, B. Delorme, B. Lieubeau, M. Carlus, B. Fornasari, M. Theret, P. Orlando, M. Ledevin, C. Zuber, I. Leroux, S. Deleau, L. Guigand, I. Testault, E. Le Rumeur, M. Fiszman, and Y. Cherel. 2011. Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in duchenne muscular dystrophy dogs. The American journal of pathology 179: 2501-2518. Ryu, H. H., J. H. Lim, Y. E. Byeon, J. R. Park, M. S. Seo, Y. W. Lee, W. H. Kim, K. S. Kang, and O. K. Kweon. 2009. Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. Journal of veterinary science 10: 273-284. Sacchetti, B., A. Funari, S. Michienzi, S. Di Cesare, S. Piersanti, I. Saggio, E. Tagliafico, S. Ferrari, P. G. Robey, M. Riminucci, and P. Bianco. 2007. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131: 324-336. Sakaguchi, Y., I. Sekiya, K. Yagishita, S. Ichinose, K. Shinomiya, and T. Muneta. 2004. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 104: 2728-2735. Sanchez-Ramos, J., S. Song, F. Cardozo-Pelaez, C. Hazzi, T. Stedeford, A. Willing, T. B. Freeman, S. Saporta, W. Janssen, N. Patel, D. R. Cooper, and P. R. Sanberg. 2000. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164: 247-256. Schwartz, R. E., M. Reyes, L. Koodie, Y. Jiang, M. Blackstad, T. Lund, T. Lenvik, S. Johnson, W. S. Hu, and C. M. Verfaillie. 2002. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of clinical investigation 109: 1291-1302. Seo, M. S., Y. H. Jeong, J. R. Park, S. B. Park, K. H. Rho, H. S. Kim, K. R. Yu, S. H. Lee, J. W. Jung, Y. S. Lee, and K. S. Kang. 2009. Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells. Journal of veterinary science 10: 181-187. Seo, M. S., S. B. Park, and K. S. Kang. 2012. Isolation and characterization of canine Wharton's jelly-derived mesenchymal stem cells. Cell transplantation. Sharp, N. J., J. N. Kornegay, S. D. Van Camp, M. H. Herbstreith, S. L. Secore, S. Kettle, W. Y. Hung, C. D. Constantinou, M. J. Dykstra, A. D. Roses, and et al. 1992. An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 13: 115-121. Shimer, K. S., B. Landis, L. O'Rear, S. Aakula, L. Longobardi, D. Jansen, H. Moses, and A. Spagnoli. 2005. Adult bone marrow derived mesenchymal stem cell (MSC) migration in response to a fracture regeneration cue. J Bone Miner Res 20: S18-S18. Short, B., S. Nilsson, N. Brouard, and P. Simmons. 2003. Purification of mesenchymal stem cells from mouse compact bone. Exp Hematol 31: 99-99. Song, L., N. J. Young, N. E. Webb, and R. S. Tuan. 2005. Origin and characterization of multipotential mesenchymal stem cells derived from adult human trabecular bone. Stem cells and development 14: 712-721. Songsasen, N., and D. E. Wildt. 2007. Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Animal reproduction science 98: 2-22. Sperger, J. M., X. Chen, J. S. Draper, J. E. Antosiewicz, C. H. Chon, S. B. Jones, J. D. Brooks, P. W. Andrews, P. O. Brown, and J. A. Thomson. 2003. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A 100: 13350-13355. Tang, D. Q., L. Z. Cao, B. R. Burkhardt, C. Q. Xia, S. A. Litherland, M. A. Atkinson, and L. J. Yang. 2004. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53: 1721-1732. Thomas, E. D. 1982. The Use and Potential of Bone-Marrow Allograft and Whole-Body Irradiation in the Treatment of Leukemia. Cancer 50: 1449-1454. Till, J. E., and E. A. McCulloch. 1980. Hemopoietic stem cell differentiation. Biochimica et biophysica acta 605: 431-459. Travis, A. J., Y. Kim, and V. Meyers-Wallen. 2009. Development of new stem cell-based technologies for carnivore reproduction research. Reproduction in domestic animals = Zuchthygiene 44 Suppl 2: 22-28. Vieira, N. M., V. Brandalise, E. Zucconi, M. Secco, B. E. Strauss, and M. Zatz. 2010. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell transplantation 19: 279-289. Wang, W. J., Y. M. Zhao, B. C. Lin, J. Yang, and L. H. Ge. 2012. Identification of multipotent stem cells from adult dog periodontal ligament. European journal of oral sciences 120: 303-310. Wenceslau, C. V., M. A. Miglino, D. S. Martins, C. E. Ambrosio, N. F. Lizier, G. C. Pignatari, and I. Kerkis. 2011. Mesenchymal progenitor cells from canine fetal tissues: yolk sac, liver, and bone marrow. Tissue engineering. Part A 17: 2165-2176. Wickham, M. Q., G. R. Erickson, J. M. Gimble, T. P. Vail, and F. Guilak. 2003. Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clinical orthopaedics and related research: 196-212. Williams, J. T., S. S. Southerland, J. Souza, A. F. Calcutt, and R. G. Cartledge. 1999. Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. The American surgeon 65: 22-26. Wilson, A., and A. Trumpp. 2006. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93-106. Won, J. H., C. H. Kim, M. K. Cho, S. C. Lee, C. K. Kim, N. S. Lee, D. S. Hong, and H. S. Park. 2007. Mesenchymal stem cells improve wound healing via early activation of the matrix metalloproteinase-9 and vascular endothelial growth factor: using a 3-dimensional collagen gel model. Blood 110: 1080a-1080a. Wong, D. J., H. Liu, T. W. Ridky, D. Cassarino, E. Segal, and H. Y. Chang. 2008. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell stem cell 2: 333-344. Wynn, R. F., C. A. Hart, C. Corradi-Perini, L. O'Neill, C. A. Evans, J. E. Wraith, L. J. Fairbairn, and I. Bellantuono. 2004. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104: 2643-2645. Yao, Y., G. Wang, Z. Wang, C. Wang, H. Zhang, and C. Liu. 2011. Synergistic enhancement of new bone formation by recombinant human bone morphogenetic protein-2 and osteoprotegerin in trans-sutural distraction osteogenesis: a pilot study in dogs. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 69: e446-455. Zhang, J. W., C. Niu, L. Ye, H. Y. Huang, X. He, W. G. Tong, J. Ross, J. Haug, T. Johnson, J. Q. Feng, S. Harris, L. M. Wiedemann, Y. Mishina, and L. H. Li. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836-841. Zhou, S., J. S. Greenberger, M. W. Epperly, J. P. Goff, C. Adler, M. S. Leboff, and J. Glowacki. 2008. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging cell 7: 335-343. Zhu, H., Z. K. Guo, X. X. Jiang, H. Li, X. Y. Wang, H. Y. Yao, Y. Zhang, and N. Mao. 2010. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5: 550-560. Zucconi, E., N. M. Vieira, D. F. Bueno, M. Secco, T. Jazedje, C. E. Ambrosio, M. R. Passos-Bueno, M. A. Miglino, and M. Zatz. 2010. Mesenchymal stem cells derived from canine umbilical cord vein--a novel source for cell therapy studies. Stem cells and development 19: 395-402. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211-228. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5407 | - |
| dc.description.abstract | 由於間葉幹細胞(mesenchymal stem cells)之低免疫源性(immunogenicity)、低癌化風險(tumorigenic risk)及取得容易,因此較胚胎幹細胞(embryonic stem cells)來得適合應用於臨床細胞療法。本試驗將探討由安樂死後犬隻大體取得兩種不同來源之成體間葉幹細胞,以建立一套流程能有效率擴展並維持幹細胞庫存以供學術研究、人類臨床前研究及伴侶動物臨床應用所需。
從安樂死捐贈大體所取得之骨髓液,經由密度梯度離心後,可將骨髓液內之單核細胞群(mononuclear cells)分離出,並於培養期間利用更換新鮮培養液之方式,即可得到具貼附性之單核細胞群。骨骺間葉幹細胞之分離,則是以骨骺端海綿骨組織剪碎後,未經任何酵素作用即可直接培養於培養皿中。對本試驗所分離之單核細胞群進行定性分析,可發現此單核細胞群能行體外分化成硬骨細胞、脂肪細胞及軟骨細胞,並經由流式細胞儀分析其表面抗原呈現間葉幹細胞特性(CD44+, CD90+, CD34-, CD45R-),證實其為間葉幹細胞。 為了確認間葉幹細胞其捐贈個體之年齡與繼代次數對細胞特性是否造成影響,利用群落形成單位(colony-forming unit)代表分離效率(isolation efficiency)、細胞倍增時間(population doubling time, PDT)表示增殖能力(proliferation ability)、分化潛能(differentiation potential)代表細胞幹性(stemness)、並調查表面抗原特性是否穩定。並且檢測趨化因子配體5(Chemokine ligand 5, CCL5)表現量以判定內源性腫瘤轉移之風險。結果顯示,捐贈個體年齡(老年與幼年)與採集部位(肱骨及股骨)並不影響安樂死後犬骨髓間葉幹細胞之分離效率與增殖能力,而細胞幹性亦不受個體年齡影響。無論個體年齡差異,隨著繼代數增加則細胞增殖速率沒有明顯差異且表面抗原向性維持恆定,惟CD44陽性細胞比例於第12代(passage 12, P12)顯著較第四代(passage 4, P4)升高;已知CD44與細胞癌化有關,故此結果暗示P12之骨髓間葉幹細胞致癌率可能較高。而老年組之群落形成能力於P12相較於P4與P8則有顯著下降,暗示P12細胞轉化程度較高,因此其幹細胞特性降低。 綜合上述,以本試驗之分離法能成功取得安樂死後犬之間葉幹細胞,因此大體捐贈可成為另一項成體幹細胞供應來源,且分離效率與細胞增殖速率不受限於個體年齡及採集位置。以幹細胞特性分析,幼年個體與老年個體之骨髓間葉幹細胞其分化能力沒有差異。另一方面,隨著繼代數增加,其間葉幹細胞之癌化風險亦有可能增加。 | zh_TW |
| dc.description.abstract | Compared to embryonic stem cells, mesenchymal stem cells (MSCs) are more suitable for clinical cell therapy due to the low immunogenicity, low tumorigenic risk and better accessibility. In this study, two kinds of MSCs with different anatomical origins from canine body donations after euthanasia were investigated, aiming to establish a procedure to effectively expand and maintain the stem cell inventory for the potential clinical applications.
The cells from aspirated bone marrow were separated by density gradient centrifugation. Mononuclear cells were harvested from plasma interface and seeded in culture dish, while non-attached cells were removed by changing medium. Epiphysis-derived mesenchymal stem cells (EMSCs) can be harvested from epiphysis by directly culturing in dish without enzymatic digestion. In confirming that the cells isolated from the body donors are MSCs, the isolated cells were successfully induced differentiation into three lineages: osteocytes, adipocytes and chondrocytes. The flow cytometry of the surface markers showed consistent profiles as MSCs markers (CD44+, CD90+, CD34-, CD45R-). To elucidate the influence of age and anatomical origins on the harvest of MSCs, we collected MSCs from both humerus and femur with different ages. No difference in the numbers of colony-forming units (CFUs) as well as population doubling time between two anatomical locations and two age groups indicated that these factors do not affect the harvest efficiency of BMMSCs. Several tri-lineage marker genes were investigated by qPCR to assess the tri-lineage differentiation between age groups and no significant difference is detected. However, in old group, the number of CFUs in P12 is significantly decreased compared to P1 and P4 implying the clonogenicity is losing though passage. Among the surface markers, a higher percentage of positive cells of CD44, which was associated with cell transformation, can be observed in passage 12 compared to passage 4 implying the higher tumorigenic risk in P12. To evaluate the potential tumor promoting effects on endogenous tumors in the recipients, the expression of chemokine ligand 5 (CCL5) was detected by qPCR, and there is no difference in the expression of CCL5 between age groups and various passages. In summary, we successfully purified BMMSCs and EMSCs from canine after euthanasia in animal hospital and shelter. Our results indicated that age and anatomical origin do not affect the isolation efficiency, cell proliferations and potential of tri-lineage differentiation in MSCs. For clinical application, more studies such as nude mice inoculation are needed to confirm the tumorigenic risk of MSCs in the future. Furthermore, pathogen screening methods and profiles will be established as part of the cell donation protocol. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:58:03Z (GMT). No. of bitstreams: 1 ntu-103-R99626016-1.pdf: 2691582 bytes, checksum: bee14b8a57517c995bc242527d9be9ad (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書
中文摘要 2 ABSTRACT 4 目次 6 圖次 8 表次 9 第1章 前言 10 1.1 幹細胞 10 1.1.1 間葉幹細胞 11 1.1.2 骨髓間葉幹細胞 13 1.1.3 骨骺間葉幹細胞 14 1.2 犬間葉幹細胞之研究進展 17 1.2.1 表面抗原分析 17 1.2.2 犬間葉幹細胞臨床應用之可行性 18 第2章 試驗目的 20 第3章 試驗研究 22 3.1 材料與方法 22 3.1.1 實驗動物 22 3.1.2 分組 22 3.1.3 安樂死後犬間葉幹細胞之建立與定性分析 23 3.1.4 流式細胞儀分析 25 3.1.5 細胞三系分化之體外誘導及分析 27 3.1.6 總核醣核酸抽取 28 3.1.7 反轉錄反應 28 3.1.8 即時定量聚合酶連鎖反應 29 3.1.9 群落形成能力分析 30 3.1.10 噻唑藍比色法 31 3.2 試驗結果 33 3.2.1 安樂死後犬骨髓間葉幹細胞之建立與定性分析 33 3.2.2 個體年齡差異與其骨髓間葉幹細胞特性之探討 39 3.2.3 安樂死後犬骨骺間葉幹細胞之建立與特性比較 48 第4章 討論 55 第5章 結論 59 第6章 未來展望 60 REFERENCES 61 | |
| dc.language.iso | zh-TW | |
| dc.title | 安樂死後犬骨髓與骨骺間葉幹細胞之特性分析 | zh_TW |
| dc.title | The characteristics of bone marrow and epiphysis-derived mesenchymal stem cells from canine body donation after euthanasia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳信志(Shinn-Chih Wu),鄭登貴(Teng-Kuei Cheng),張雅珮 | |
| dc.subject.keyword | 安樂死,犬,狗,骨髓間葉幹細胞,骨?間葉幹細胞, | zh_TW |
| dc.subject.keyword | euthanasia,canine,bone marrow-derived mesenchymal stem cells,epiphysis-derived mesenchymal stem cells, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-03-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 2.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
