請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54028
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姜昱至(Yu-Chih Chiang) | |
dc.contributor.author | Che-Lun Chen | en |
dc.contributor.author | 陳哲倫 | zh_TW |
dc.date.accessioned | 2021-06-16T02:37:07Z | - |
dc.date.available | 2025-08-05 | |
dc.date.copyright | 2020-09-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-06 | |
dc.identifier.citation | [1] Assif D, Gorfil C. Biomechanical considerations in restoring endodontically treated teeth. Journal of Prosthetic Dentistry. 1994;71:565-7. [2] Rosenberg J. Minimally Invasive Dentistry: A Conservative Approach to Smile Makeover. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995). 2017;38:38-42. [3] Caplan DJ, Cai J, Yin G, White BA. Root canal filled versus non‐root canal filled teeth: a retrospective comparison of survival times. Journal of Public Health Dentistry. 2005;65:90-6. [4] Lee A, Cheung G, Wong M. Long-term outcome of primary non-surgical root canal treatment. Clinical oral investigations. 2012;16:1607-17. [5] Awawdeh L, Al-Qudah A, Hamouri H, Chakra RJ. Outcomes of vital pulp therapy using mineral trioxide aggregate or biodentine: a prospective randomized clinical trial. Journal of endodontics. 2018;44:1603-9. [6] Cohenca N, Paranjpe A, Berg J. Vital pulp therapy. Dental Clinics. 2013;57:59-73. [7] Morotomi T, Washio A, Kitamura C. Current and future options for dental pulp therapy. Japanese Dental Science Review. 2019;55:5-11. [8] Dahlkemper P, Dan B, Ang D, Goldberg R, Rubin R, Schultz G, et al. Guide to clinical endodontics. American Association of Endodontics: Chicago, IL, USA. 2013. [9] Goldstein S, Sedaghat-Zandi A, Greenberg M, Friedman S. Apexification apexogenesis. New York State Dental Journal. 1999;65:23. [10] Chueh L-H, Huang GT-J. Immature teeth with periradicular periodontitis or abscess undergoing apexogenesis: a paradigm shift. Journal of endodontics. 2006;32:1205-13. [11] Cushley S, Duncan HF, Lappin MJ, Tomson PL, Lundy FT, Cooper P, et al. Pulpotomy for mature carious teeth with symptoms of irreversible pulpitis: A systematic review. Journal of dentistry. 2019;88:103158. [12] Komabayashi T, Zhu Q. Innovative endodontic therapy for anti-inflammatory direct pulp capping of permanent teeth with a mature apex. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2010;109:e75-e81. [13] Cvek M. A clinical report on partial pulpotomy and capping with calcium hydroxide in permanent incisors with complicated crown fracture. Journal of endodontics. 1978;4:232-7. [14] Alex G. Direct and indirect pulp capping: A brief history, material innovations and clinical case report. Compend Contin Educ Dent. 2018;39:182-9. [15] Craig RG, Curro FA, Green WS, Ship JA. Treatment of deep carious lesions by complete excavation or partial removal: a critical review. The Journal of the American Dental Association. 2008;139:705-12. [16] Komabayashi T, Zhu Q, Eberhart R, Imai Y. Current status of direct pulp-capping materials for permanent teeth. Dental materials journal. 2016;35:1-12. [17] Qureshi A, Soujanya E, Nandakumar P. Recent advances in pulp capping materials: an overview. Journal of clinical and diagnostic research: JCDR. 2014;8:316. [18] Li Z, Cao L, Fan M, Xu Q. Direct pulp capping with calcium hydroxide or mineral trioxide aggregate: a meta-analysis. Journal of endodontics. 2015;41:1412-7. [19] Schröder U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. Journal of dental research. 1985;64:541-8. [20] Mente J, Hufnagel S, Leo M, Michel A, Gehrig H, Panagidis D, et al. Treatment outcome of mineral trioxide aggregate or calcium hydroxide direct pulp capping: long-term results. Journal of endodontics. 2014;40:1746-51. [21] Hørsted P, Søndergaard B, Thylstrup A, El Attar K, Fejerskov O. A retrospective study of direct pulp capping with calcium hydroxide compounds. Dental Traumatology. 1985;1:29-34. [22] Asgary S, Shirvai A. Pulpotomy with calcium hydroxide may be an effective alternative to root canal therapy in vital teeth. Journal of Evidence Based Dental Practice. 2016;16:64-6. [23] da Rosa W, Lima V, Moraes R, Piva E, da Silva A. Is a calcium hydroxide liner necessary in the treatment of deep caries lesions? A systematic review and meta‐analysis. International endodontic journal. 2019;52:588-603. [24] Hilton TJ. Keys to clinical success with pulp capping: a review of the literature. Operative dentistry. 2009;34:615-25. [25] Tawil PZ, Duggan DJ, Galicia JC. MTA: a clinical review. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995). 2015;36:247. [26] Camilleri J. The chemical composition of mineral trioxide aggregate. Journal of conservative dentistry: JCD. 2008;11:141. [27] Camilleri J. Hydration mechanisms of mineral trioxide aggregate. International endodontic journal. 2007;40:462-70. [28] Iwamoto CE, Adachi E, Pameijer CH, Barnes D, Romberg EE, Jefferies S. Clinical and histological evaluation of white ProRoot MTA in direct pulp capping. American Journal of Dentistry. 2006;19:85. [29] Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part III: clinical applications, drawbacks, and mechanism of action. Journal of endodontics. 2010;36:400-13. [30] Nosrat A, Homayounfar N, Oloomi K. Drawbacks and unfavorable outcomes of regenerative endodontic treatments of necrotic immature teeth: a literature review and report of a case. Journal of endodontics. 2012;38:1428-34. [31] Ha WN, Kahler B, Walsh LJ. Clinical Manipulation of Mineral Trioxide Aggregate: Lessons from the construction industry and their relevance to clinical practice. J Can Dent Assoc. 2015;81:f4. [32] Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. Journal of endodontics. 2010;36:16-27. [33] Tunç EŞ, Bayrak Ş, Eğilmez T. The evaluation of bond strength of a composite and a compomer to white mineral trioxide aggregate with two different bonding systems. Journal of Endodontics. 2008;34:603-5. [34] Bayrak S, TUNÇ ES, Saroglu I, Egilmez T. Shear bond strengths of different adhesive systems to white mineral trioxide aggregate. Dental materials journal. 2009;28:62-7. [35] Kang S-H, Shin Y-S, Lee H-S, Kim S-O, Shin Y, Jung I-Y, et al. Color changes of teeth after treatment with various mineral trioxide aggregate–based materials: an ex vivo study. Journal of endodontics. 2015;41:737-41. [36] Felman D, Parashos P. Coronal tooth discoloration and white mineral trioxide aggregate. Journal of endodontics. 2013;39:484-7. [37] Naik S, Hegde AM. Mineral trioxide aggregate as a pulpotomy agent in primary molars: an in vivo study. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2005;23:13. [38] file BS. Active Biosilicate Technology™, Septodont. 2010. [39] Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dental Materials. 2013;29:580-93. [40] Camilleri J. Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dental Materials. 2014;30:709-15. [41] Alotaibi J, Saji S, Swain M. FTIR characterization of the setting reaction of biodentine™. Dental Materials. 2018;34:1645-51. [42] Ha WN, Nicholson T, Kahler B, Walsh LJ. Methodologies for measuring the setting times of mineral trioxide aggregate and Portland cement products used in dentistry. Acta biomaterialia odontologica Scandinavica. 2016;2:25-30. [43] Zamparini F, Siboni F, Prati C, Taddei P, Gandolfi MG. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide. Clinical oral investigations. 2019;23:445-57. [44] Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. Journal of endodontics. 2003;29:814-7. [45] De Souza ETG, Nunes Tameirão MD, Roter JM, De Assis JT, De Almeida Neves A, De‐Deus GA. Tridimensional quantitative porosity characterization of three set calcium silicate‐based repair cements for endodontic use. Microscopy research and technique. 2013;76:1093-8. [46] Léda L, Azevedo T, Pimentel P, de Toledo O, Bezerra A. Dentin optical density in molars subjected to partial carious dentin removal. Journal of Clinical Pediatric Dentistry. 2015;39:452-7. [47] Tanomaru-Filho M, Morales V, da Silva GF, Bosso R, Reis J, Duarte MA, et al. Compressive strength and setting time of MTA and Portland cement associated with different radiopacifying agents. ISRN dentistry. 2012;2012. [48] Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dental Materials. 2013;29:e20-e8. [49] Guo Y-j, Du T-f, Li H-b, Shen Y, Mobuchon C, Hieawy A, et al. Physical properties and hydration behavior of a fast-setting bioceramic endodontic material. BMC oral health. 2016;16:23. [50] O’brien WJ. Dental materials and their selection 4th ed. Illinois: Quintessence Publishing. 2008;378. [51] Walker MP, Diliberto A, Lee C. Effect of setting conditions on mineral trioxide aggregate flexural strength. Journal of endodontics. 2006;32:334-6. [52] Plotino G, Grande NM, Bedini R, Pameijer CH, Somma F. Flexural properties of endodontic posts and human root dentin. dental materials. 2007;23:1129-35. [53] Tanalp J, Karapınar-Kazandağ M, Dölekoğlu S, Kayahan MB. Comparison of the radiopacities of different root-end filling and repair materials. The Scientific World Journal. 2013;2013. [54] Gul P, Çaglayan F, Akgul N, Akgul HM. Comparison of radiopacity of different composite resins. Journal of conservative dentistry: JCD. 2017;20:17. [55] Samuel A, Asokan S, Priya PG, Thomas S. Evaluation of sealing ability of Biodentine™ and mineral trioxide aggregate in primary molars using scanning electron microscope: A randomized controlled in vitro trial. Contemporary clinical dentistry. 2016;7:322. [56] Ranjkesh B, Isidor F, Dalstra M, Løvschall H. Diametral tensile strength of novel fast-setting calcium silicate cement. Dental materials journal. 2016;35:559-63. [57] Zaytsev D, Ivashov AS, Mandra JV, Panfilov P. On the deformation behavior of human dentin under compression and bending. Materials Science and Engineering: C. 2014;41:83-90. [58] Pradeep P, Randhya R, Shanavas Palliyal MK, Hima S. An in vitro comparative evaluation of shear bond strength of biodentine and MTA. 2018. [59] Hegde N, Hegde MN, Bhat GS. Comparative evaluation of the pushout bond strength of two root-end materials: An in vitro study. Journal of Conservative Dentistry: JCD. 2019;22:340. [60] Palma PJ, Marques JA, Falacho RI, Vinagre A, Santos JM, Ramos JC. Does Delayed Restoration Improve Shear Bond Strength of Different Restorative Protocols to Calcium Silicate-Based Cements? Materials. 2018;11:2216. [61] Chiang Y-C, Wang Y-L, Lin P-Y, Chen Y-Y, Chien C-Y, Lin H-P, et al. A mesoporous biomaterial for biomimetic crystallization in dentinal tubules without impairing the bonding of a self-etch resin to dentin. Journal of the Formosan Medical Association. 2016;115:455-62. [62] de Magalhaes MF, Ferreira RAN, Grossi PA, de Andrade RM. Measurement of thermophysical properties of human dentin: effect of open porosity. Journal of dentistry. 2008;36:588-94. [63] Butt N, Talwar S, Chaudhry S, Nawal RR, Yadav S, Bali A. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian journal of dental research. 2014;25:692. [64] Jang Y-E, Lee B-N, Koh J-T, Park Y-J, Joo N-E, Chang H-S, et al. Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials. Restorative dentistry endodontics. 2014;39:89-94. [65] Dawood A, Manton D, Parashos P, Wong R, Palamara J, Stanton D, et al. The physical properties and ion release of CPP‐ACP‐modified calcium silicate‐based cements. Australian dental journal. 2015;60:434-44. [66] Alhodiry W, Lyons M, Chadwick R. Effect of saliva and blood contamination on the bi-axial flexural strength and setting time of two calcium-silicate based cements: Portland cement and biodentine. The European journal of prosthodontics and restorative dentistry. 2014;22:20-3. [67] Chang S-W, Bae W-J, Yi J-K, Lee S, Lee D-W, Kum K-Y, et al. Odontoblastic differentiation, inflammatory response, and angiogenic potential of 4 calcium silicate–based cements: Micromega MTA, ProRoot MTA, RetroMTA, and experimental calcium silicate cement. Journal of endodontics. 2015;41:1524-9. [68] Villat C, Tran V, Pradelle-Plasse N, Ponthiaux P, Wenger F, Grosgogeat B, et al. Impedance methodology: a new way to characterize the setting reaction of dental cements. Dental Materials. 2010;26:1127-32. [69] Kaup M, Dammann CH, Schäfer E, Dammaschke T. Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo. Head face medicine. 2015;11:14. [70] McClatchey CM. Effect of Setting Time on the Shear Bond Strength Between Biodentine and Composite. Uniformed Services University of the Health Sciences Ft. Bragg United States; 2015. [71] Cengiz E, Ulusoy N. Microshear bond strength of tri-calcium silicate-based cements to different restorative materials. J Adhes Dent. 2016;18:231-7. [72] Meraji N, Camilleri J. Bonding over dentin replacement materials. Journal of endodontics. 2017;43:1343-9. [73] Carretero V, Giner-Tarrida L, Peñate L, Arregui M. Shear Bond Strength of Nanohybrid Composite to Biodentine with Three Different Adhesives. Coatings. 2019;9:783. [74] Krawczyk-Stuss M, Nowak J, Bołtacz-Rzepkowska E. Bond strength of Biodentine to a resin-based composite at various acid etching times and with different adhesive strategies. Dental and medical problems. 2019;56:39-44. [75] Odabaş ME, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to biodentine. The Scientific World Journal. 2013;2013. [76] Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite–calcium silicate interface as part of a layered/laminate adhesive restoration. Dental Materials. 2014;30:343-9. [77] Aksoy S, Ünal M. Shear bond strength of universal adhesive systems to a bioactive dentin substitute (Biodentine®) at different time intervals. Stomatol Dis Sci. 2017;1:166-22. [78] Elshereksi NW, Ghazali M, Muchtar A, Azhari CH. Review of titanate coupling agents and their application for dental composite fabrication. Dental materials journal. 2017:2016-014. [79] Lung CYK, Matinlinna JP. Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dental materials. 2012;28:467-77. [80] Nihei T. Dental applications for silane coupling agents. Journal of oral science. 2016;58:151-5. [81] Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: A review. Dental Materials. 2018;34:13-28. [82] Tsuchimoto Y, Yoshida Y, Mine A, Nakamura M, Nishiyama N, Van Meerbeek B, et al. Effect of 4-MET-and 10-MDP-based primers on resin bonding to titanium. Dental materials journal. 2006;25:120-4. [83] Nagaoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, et al. Chemical interaction mechanism of 10-MDP with zirconia. Scientific reports. 2017;7:1-7. [84] Llerena-Icochea AE, Costa RMd, Borges AFS, Bombonatti JFS, Furuse AY. Bonding polycrystalline zirconia with 10-MDP–containing adhesives. Operative dentistry. 2017;42:335-41. [85] Chen Y, Lu Z, Qian M, Zhang H, Chen C, Xie H, et al. Chemical affinity of 10-methacryloyloxydecyl dihydrogen phosphate to dental zirconia: Effects of molecular structure and solvents. Dental Materials. 2017;33:e415-e27. [86] Organization IS. ISO 9917-1: 2007: Water-based cements-Part 1: Powder/liquid acid-base cements. ISO Geneva; 2007. [87] International A. ASTM C266-04: Standard Test Method for Time of Setting of Hydraulic-Cement Paste by Gillmore Needles. ASTM International West Conshohocken; 2004. [88] Hooshmand T, van Noort R, Keshvad A. Storage effect of a pre-activated silane on the resin to ceramic bond. Dental Materials. 2004;20:635-42. [89] Chen B, Lu Z, Meng H, Chen Y, Yang L, Zhang H, et al. Effectiveness of pre-silanization in improving bond performance of universal adhesives or self-adhesive resin cements to silica-based ceramics: Chemical and in vitro evidences. Dental Materials. 2019;35:543-53. [90] Jalan AL, Warhadpande MM, Dakshindas DM. A comparison of human dental pulp response to calcium hydroxide and Biodentine as direct pulp-capping agents. Journal of conservative dentistry: JCD. 2017;20:129. [91] Grewal N, Salhan R, Kaur N, Patel HB. Comparative evaluation of calcium silicate-based dentin substitute (Biodentine®) and calcium hydroxide (pulpdent) in the formation of reactive dentin bridge in regenerative pulpotomy of vital primary teeth: Triple blind, randomized clinical trial. Contemporary clinical dentistry. 2016;7:457. [92] Camilleri J. Staining potential of Neo MTA Plus, MTA Plus, and Biodentine used for pulpotomy procedures. Journal of endodontics. 2015;41:1139-45. [93] Grazziotin‐Soares R, Nekoofar MH, Davies T, Hübler R, Meraji N, Dummer PM. Crystalline phases involved in the hydration of calcium silicate‐based cements: Semi‐quantitative Rietveld X‐ray diffraction analysis. Australian Endodontic Journal. 2019;45:26-32. [94] Malkondu Ö, Kazandağ MK, Kazazoğlu E. A review on biodentine, a contemporary dentine replacement and repair material. BioMed research international. 2014;2014. [95] MUNKSGAARD EC, ITOH K, ASMUSSEN E, JÖRGENSEN KD. Effect of combining dentin bonding agents. European Journal of Oral Sciences. 1985;93:377-80. [96] Retief D, Mandras R, Russell C. Shear bond strength required to prevent microleakage of the dentin/restoration interface. American journal of dentistry. 1994;7:44-6. [97] Aksel H, Küçükkaya Eren S, Askerbeyli Õrs S, Karaismailoğlu E. Surface and vertical dimensional changes of mineral trioxide aggregate and biodentine in different environmental conditions. Journal of Applied Oral Science. 2019;27. [98] Ha H-T. The effect of the maturation time of calcium silicate-based cement (Biodentine™) on resin bonding: an in vitro study. Applied Adhesion Science. 2019;7:1. [99] Deepa VL, Dhamaraju B, Bollu IP, Balaji TS. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study. Journal of conservative dentistry: JCD. 2016;19:166. [100] CANTEK? N K, AVC? S. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®). Journal of applied oral science. 2014;22:302-6. [101] Özükoç CaK, Aykut. The Measurement of Shear Strength of Composite Resin Bonded After Application of Silane-Coupling Agent on Surface of Biomaterial Containing Calcium Silicate. International Journal of Dental Science and Innovative Research. 2019;2:134 ~ 40. [102] Xie H, Tay FR, Zhang F, Lu Y, Shen S, Chen C. Coupling of 10-methacryloyloxydecyldihydrogenphosphate to tetragonal zirconia: Effect of pH reaction conditions on coordinate bonding. Dental Materials. 2015;31:e218-e25. [103] Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X. Structure of calcium silicate hydrate (C‐S‐H): Near‐, Mid‐, and Far‐infrared spectroscopy. Journal of the American Ceramic Society. 1999;82:742-8. [104] Liu Q, Nian G, Yang C, Qu S, Suo Z. Bonding dissimilar polymer networks in various manufacturing processes. Nature communications. 2018;9:1-11. [105] González AC-C, MejíaII E-D. Alternatives of surface treatments for adhesion of lithium disilicate ceramics. Revista Cubana de Estomatología. 2018;55:59-72. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54028 | - |
dc.description.abstract | 背景:Biodentine®為三矽酸鈣類基底材料,是現今越來越多案例用來作為牙髓保護的材料。但這高生物相容性的材料與樹脂的鍵結方面仍存在著一些挑戰。 目的:本篇的研究目的為(1)研究Biodentine的結晶過程與結構變化(2)探討Biodentine和複合樹脂填補材料之間的鍵結機制 材料與方法:我們預備了孔洞為直徑4 mm、厚度2 mm的中空壓克力樹脂來製作塊狀Biodentine。而這實驗可分成四個部分來進行。第一部分:生物性牙本質替代性材料結晶與結構變化分析,我們將Biodentine放置在37∘C、100%的相對濕度環境的dd water 或 Hank’s Balanced Salt Solution (HBSS) 當中,並透過XRD (2θ: 20∘-60∘)和SEM分析Biodentine在儲存不同時間點(第1, 2, 3, 7, 14和28天)時觀察不同階段的變化。同時我們也做了固化時間的測試。第二部分:剪切黏著強度(SBS)測試,藉著透過不同固化時間的Biodentine和複合樹脂做SBS測試。也透過三種黏著系統:Prime Bond™ NT (PNT), Single Bond Universal (SBU), Xeno V (Xeno) 和玻璃離子體 (GIC, Fuji II)加入做SBS 測試(每組12個),並在脫膠後利用SEM進行斷裂面分析。第三部分:酸蝕在Biodentine表面與鍵結強度帶來的效果(分組:不酸蝕、15秒、30秒、60秒)。表面粗糙度(每組15個)透過Profilometer (Surfcorder ET 200)來做測試,也在SEM觀察酸蝕過後的塊狀Biodentine表面。酸蝕後的Biodentine也利用先前提到的黏著系統和樹脂做SBS測試(每組12個),脫膠後也利用SEM進行斷裂面分析。第四部分:額外的起始劑對於Biodentine的效用。我們額外利用起始劑RelyX™ Ceramic Primer (RCP)或是Monobond™ Plus (MBP)處理Biodentine表面,並藉由SEM觀察各組鍵結的界面。此外,我們也做了SBS測試與脫膠後的斷裂面分析,也利用EDS和FTIR分析鍵結的界面。 結果與討論:Biodentine 的固化時間平均為21.6 ± 0.2 分,將用來作為本篇研究的其他測試中Biodentine的固化時間。在SEM以及XRD分析下,不論是dd water或HBSS的組別在Biodentine的生長方面並無明顯不同,而Biodentine的結晶至少要2週才會達到成熟。關於儲存不同時間下的Biodentine對SBS帶來的影響,使用自酸蝕黏著系統時,14d組會顯著高於22min組(P<0.05)。GI不論是在哪個時間點下做測試都得到最低的SBS(22min/GI: 3.5 ± 2.13 MPa; 1d/GI: 0.9 ± 0.83 MPa; 14d/GI: 0.1 ± 0.34 MPa)。此一測試中,一共只有約17%的樣本能超過10MPa。 結合表面粗糙度(Ra)與SEM檢驗可以看到過長的酸蝕時間(超過30s)處理Biodentine會損害表面的結構,損壞的表面則可能會損壞黏著的品質(0.07 ± 0.05~13.0 ± 4.2 MPa)。當使用monobond plus 預處理Biodentine時,MBP/SBU組能夠達到最高的剪切黏著強度(17.5 ± 3.6 MPa, p<0.05)。根據斷裂分析顯示大部分測試為混合型或內聚型破壞。這篇研究中只有一組可以達到合格的黏著強度(17 MPa)。結合EDS和FTIR分析的結果顯示MBP/SBU能增強鍵結可能是因為γ-MPTS和10-MDP功能性單體的幫忙導致。 結論:Biodentine不論在哪個環境下培養,結晶至少要2週才會達到完全固化。使用含γ-MPTS和10-MDP功能性單體的矽烷在Biodentine表面做預處理,能提供提升鍵結強度的效果。而玻璃離子體並不建議作為覆蓋Biodentine的修復材料。作為一個牙本質替代性材料提供樹脂材料來做鍵結,Biodentine的機械強度可能是不足的。 | zh_TW |
dc.description.abstract | Background. Biodentine®, a tricalcium-silicate based material, has potential for dental pulp protection. However, the poor bonding ability of Biodentine to composite resin severely limits its application. Objective. The aims of this study include (1) the investigation of the crystallization process and microstructural changes of Biodentine, and (2) the elucidation of the bonding mechanism of Biodentine to composite resin restoration. Material and methods. A Biodentine block was fabricated from the hollow acrylic block (4 mm in diameter, 2 mm in thickness). This study was carried out in 4 parts: Part I included the characterization of bioactive dentin substitute materials, followed by the phase change analyses of Biodentine. X-ray diffraction was conducted on Biodentine specimens immersed in either DD water or HBSS at 37 °C and 100% relative humidity for various time intervals (1 d, 2 d, 3 d, 7 d, 14 d, and 28 d) at 2θ = 20°-60°. Furthermore, scanning electron microscopy (SEM) was performed on the obtained samples. Part II involved the shear bond strength (SBS) test of the composite resin with Biodentine under various setting times (22 min, 1 d, and 14 d). Three adhesive systems: Prime Bond™ NT (PNT), Single Bond Universal (SBU), Xeno V (Xeno), and glass ionomer cement (GIC, Fuji II) were used for the SBS test (n=12 for each group). The fractography was analyzed using SEM after debonding. Part III involved the investigation of the etching effect on Biodentine surface (Grouping: no-etch/ 15 s/ 30 s/ 60 s). In addition, the surface roughness (n=15 for each group) was tested using Surfcorder ET 200. The etched surfaces of the Biodentine blocks were examined using SEM. The SBS of the etched Biodentine to composite resin using the aforementioned adhesive systems was also evaluated (n=12 for each group). The fractography was also observed using SEM. Part IV involved the investigation of the effects of additional primers on Biodentine surface. Primers used for this study were RelyX™ Ceramic Primer (RCP) and Monobond™ Plus (MBP)\. The bonding interface of primer-Biodentine was observed using SEM. In addition, SBS test and fractographic analysis were performed. Energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were performed to analyze the bonding interfaces. Results and discussion. The average setting time of Biodentine was tested as 21.6 ± 0.2 min, which was used as the setting time in this study for other tests. No evident difference in the Biodentine growth between the specimens immersed in DD water and those immersed in HBSS was observed during SEM and XRD. In addition, the crystal maturation of Biodentine was confirmed to take at least 2 weeks. For the effects of various time intervals of Biodentine on the SBS, a higher SBS value was observed in the 14-d group compared to that of the 22-min group using self-etch adhesive system (P<0.05). However, the lowest SBS value was observed in the GI group for all the time intervals (22 min/GI: 3.5 ± 2.13 MPa; 1 d/GI: 0.9 ± 0.83 MPa; 14 d/GI: 0.1 ± 0.34 MPa). In addition, only 17% of all the specimens achieved a bond strength above 10 MPa. The SEM examination of the surface roughness (Ra) confirmed that an increase in the etching time destroys the structure of Biodentine. The damaged surface may be detrimental to the adhesion quality (0.07 ± 0.05~13.0 ± 4.2 MPa). Furthermore, the highest SBS value was observed in the MBP/SBU group (17.5 ± 3.6 MPa, p<0.05). The fractographic analysis showed that most of the specimens tested in this study exhibited mixed failures. In addition, only one group in this study achieved the qualified bond strength (17 MPa). The EDS and FTIR analyses showed that the enhanced bonding of MBP/SBU group might be due to the presence of γ-MPTS and 10-MDP functional monomers in the silane primer. Conclusion. The Biodentine crystallization needs at least 2 weeks to achieve totally set regardless of the immersing solution. The Biodentine surface pretreated with silane containing of γ-MPTS and 10-MDP and further bonded with SBU exhibited an enhanced bond strength. In addition, GI is not recommended as a cover material on Biodentine. The mechanical strength of Biodentine may not be sufficient as a substitute for dentin and adhesion to composite resin. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:37:07Z (GMT). No. of bitstreams: 1 U0001-0408202011103500.pdf: 9896618 bytes, checksum: cd8509c533f2014f85eb91606d4e41d7 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | CHAPTER 1 INTRODUCTION 1.1 VITAL PULP THERAPY......................................................................................................................1 1.1.1. Impact of dental pulp damage on teeth....................................................................................1 1.1.2. The survival rate of endodontic treated tooth..........................................................................1 1.1.3. The Role of Vital Pulp Therapy.................................................................................................2 1.1.4. Classification of Vital Pulp Therapy..........................................................................................3 1.1.4.1. Apexogenesis...........................................................................................................................3 1.1.4.2. Pulpotomy................................................................................................................................4 1.1.4.3. Pulpal Debridement..................................................................................................................5 1.1.4.4. Indirect Pulp Capping...............................................................................................................5 1.1.4.5. Direct Pulp Capping.................................................................................................................6 1.2. APPLICATION OF PULP-CAPPING MATERIAL..................................................................................7 1.2.1. Requirement of Ideal Pulp-Capping Material............................................................................7 1.2.2. Contemporary Commercial Pulp-Capping Materials................................................................8 1.2.2.1. Calcium Hydroxide...................................................................................................................8 1.2.2.2. Mineral Trioxide Aggregate......................................................................................................9 1.2.2.3. Biodentine..............................................................................................................................10 1.3. PROPERTIES OF BIODENTINE........................................................................................................10 1.3.1. The Composition and Reaction of Biodentine.........................................................................10 1.3.2. Comparison with Other Tricalcium Silicate-based Materials...................................................11 1.4. CONTROVERSY OF BIODENTINE...................................................................................................13 1.4.1. Setting Time...........................................................................................................................13 1.4.2. Shear Bond Strength (SBS)....................................................................................................14 1.4.2.1. Different Incubation Time of Biodentine.................................................................................14 1.4.2.2. Effect of Various Adhesive Systems on Biodentine................................................................17 1.5. PRIMERS TO TREAT BIODENTINE SURFACE..................................................................................17 1.5.1. Silane......................................................................................................................................17 1.5.2. 10-MDP...................................................................................................................................19 CHAPTER 2. MOTIVATION AND OBJECTIVE CHAPTER 3 MATERIALS AND METHOD 3.1. SPECIMEN PREPARATION..............................................................................................................21 3.1.1. Materials.................................................................................................................................21 3.2. CHARACTERISTICS OF BIOACTIVE DENTIN SUBSTITUTE MATERIALS.........................................22 3.2.1. XRD: The Crystal Changes of Biodentine...............................................................................22 3.2.2. SEM: The Crystal Changes of Biodentine...............................................................................23 3.2.3. Setting Time Determination...................................................................................................24 3.3. EFFECT OF THE INCUBATION TIME OF BIODENTINE ON THE SBS...............................................25 3.3.1. SBS Test: Different Incubation Time of Biodentine................................................................25 3.3.2. Fractography..........................................................................................................................26 3.4. EFFECT OF THE SURFACE ETCHING TIME OF BIODENTINE ON THE SBS....................................27 3.4.1. Surface Roughness of Extension Etching Time of Biodentine................................................27 3.4.2. SEM examination of the Etched Biodentine Surface..............................................................28 3.4.3. Fractography..........................................................................................................................30 3.5. EFFECT OF ADDITIONAL PRIMER SURFACE TREATMENT ON THE SBS OF BIODENTINE.............31 3.5.1. Ultrastructure of the Primed Biodentine Bonded to Composite Resin....................................31 3.5.2. The SBS Test: Additional Primer Surface Treatment..............................................................33 3.5.3. Fracture analysis: Additional Primer Surface Treatment........................................................34 3.5.4. EDS........................................................................................................................................35 3.5.5. ATR-FTIR analysis..................................................................................................................37 3.6. STATISTICAL ANALYSIS.................................................................................................................38 CHAPTER 4 RESULTS 4.1. CHARACTERIZATION OF BIODENTINE CRYSTALLIZATION...........................................................39 4.1.1. XRD........................................................................................................................................39 4.1.2. SEM examinations of the Biodentine samples in various phases...........................................40 4.1.3. Setting time determination.....................................................................................................41 4.2. EFFECT OF DIFFERENT ADHESIVE SYSTEMS AND SETTING TIME ON THE SBS TEST.................42 4.2.1. SBS at various setting times..................................................................................................42 4.2.2. Failure mode of the shear bond test at various setting times................................................44 4.3. EFFECT OF EXTENDING ETCHING TIME ON BIODENTINE............................................................45 4.3.1. Surface roughness.................................................................................................................45 4.3.2. SEM observation of the etched surface.................................................................................45 4.3.3. Effect of extended etching time on the SBS test...................................................................46 4.3.4. Failure mode of prolonging etching time................................................................................47 4.4. ADDITIONAL PRIMER TREATMENT ON BIODENTINE....................................................................48 4.4.1. Ultrastructure of bonding interface.......................................................................................48 4.4.2. Effect of additional primer treatment of the SBS...................................................................48 4.4.3. Failure mode after additional primer treatment on Biodentine...............................................50 4.4.4. EDS........................................................................................................................................50 4.4.5. ATR-FTIR analysis...................................................................................................................51 CHAPTER 5. DISCUSSION.....................................................................................................................53 CHAPTER 6. CONCLUSION...................................................................................................................63 REFERENCE...........................................................................................................................................65 TABLES..................................................................................................................................................81 FIGURES................................................................................................................................................84 | |
dc.language.iso | en | |
dc.title | 生物活性替代性牙本質材料與複合樹脂鍵結機制之探討 | zh_TW |
dc.title | Bonding Mechanism of Bioactive Dentin Substitute Material to Composite Resin | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳敏慧(Min-Huey Chen),林鴻萍(Hong-Ping Lin) | |
dc.subject.keyword | Biodentine,三矽酸鈣,結晶,鍵結機制,起始劑, | zh_TW |
dc.subject.keyword | Biodentine,tricalcium silicate,crystallization,bonding mechanism,primer, | en |
dc.relation.page | 101 | |
dc.identifier.doi | 10.6342/NTU202002349 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-06 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0408202011103500.pdf 目前未授權公開取用 | 9.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。