Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54020
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡孟君
dc.contributor.authorJou-Yin Mengen
dc.contributor.author孟柔吟zh_TW
dc.date.accessioned2021-06-16T02:36:49Z-
dc.date.available2025-07-24
dc.date.copyright2015-09-25
dc.date.issued2015
dc.date.submitted2015-07-24
dc.identifier.citationBayrer JR, Mukkamala S, Sablin EP, Webb P, Fletterick RJ (2015) Silencing LRH-1 in colon cancer cell lines impairs proliferation and alters gene expression programs. Proceedings of the National Academy of Sciences of the United States of America 112:2467-2472.
Benod C, Vinogradova MV, Jouravel N, Kim GE, Fletterick RJ, Sablin EP (2011) Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation. Proceedings of the National Academy of Sciences of the United States of America 108:16927-16931.
Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458:430-437.
Boerboom D, Pilon N, Behdjani R, Silversides DW, Sirois J (2000) Expression and regulation of transcripts encoding two members of the NR5A nuclear receptor subfamily of orphan nuclear receptors, steroidogenic factor-1 and NR5A2, in equine ovarian cells during the ovulatory process. Endocrinology 141:4647-4656.
Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, Wendling O, Tanaka T, Kodama T, Thomas W, Auwerx J, Schoonjans K (2004) Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Molecular cell 15:499-509.
Chand AL, Herridge KA, Thompson EW, Clyne CD (2010) The orphan nuclear receptor LRH-1 promotes breast cancer motility and invasion. Endocrine-related cancer 17:965-975.
Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576-1583.
Chitalia V, Shivanna S, Martorell J, Meyer R, Edelman E, Rahimi N (2013) c-Cbl, a ubiquitin E3 ligase that targets active beta-catenin: a novel layer of Wnt signaling regulation. The Journal of biological chemistry 288:23505-23517.
Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, Bharti A, Seldin DC, Lecker SH, Dominguez I, Cohen HT (2008) Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Nature cell biology 10:1208-1216.
Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays : news and reviews in molecular, cellular and developmental biology 22:442-451.
Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192-1205.
Clyne CD, Kovacic A, Speed CJ, Zhou J, Pezzi V, Simpson ER (2004) Regulation of aromatase expression by the nuclear receptor LRH-1 in adipose tissue. Molecular and cellular endocrinology 215:39-44.
Clyne CD, Speed CJ, Zhou J, Simpson ER (2002) Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. The Journal of biological chemistry 277:20591-20597.
Corcoran CA, Huang Y, Sheikh MS (2004) The p53 paddy wagon: COP1, Pirh2 and MDM2 are found resisting apoptosis and growth arrest. Cancer biology & therapy 3:721-725.
del Castillo-Olivares A, Gil G (2000) Alpha 1-fetoprotein transcription factor is required for the expression of sterol 12alpha -hydroxylase, the specific enzyme for cholic acid synthesis. Potential role in the bile acid-mediated regulation of gene transcription. The Journal of biological chemistry 275:17793-17799.
Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT (2012) BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat Struct Mol Biol 19:876-883.
Fayard E, Auwerx J, Schoonjans K (2004) LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends in cell biology 14:250-260.
Fisher RD, Wang B, Alam SL, Higginson DS, Robinson H, Sundquist WI, Hill CP (2003) Structure and ubiquitin binding of the ubiquitin-interacting motif. The Journal of biological chemistry 278:28976-28984.
Galarneau L, Pare JF, Allard D, Hamel D, Levesque L, Tugwood JD, Green S, Belanger L (1996) The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Molecular and cellular biology 16:3853-3865.
Giannini AL, Gao Y, Bijlmakers MJ (2008) T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain. The Biochemical journal 410:101-111.
Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Molecular cell 6:517-526.
Hay-Koren A, Caspi M, Zilberberg A, Rosin-Arbesfeld R (2011) The EDD E3 ubiquitin ligase ubiquitinates and up-regulates beta-catenin. Molecular biology of the cell 22:399-411.
Hershko A, Ciechanover A (1998) The ubiquitin system. Annual review of biochemistry 67:425-479.
Hicke L (2001) Protein regulation by monoubiquitin. Nature reviews Molecular cell biology 2:195-201.
Hou Y, Gao J, Xu H, Xu Y, Zhang Z, Xu Q, Zhang C (2014) PPARgamma E3 ubiquitin ligase regulates MUC1-C oncoprotein stability. Oncogene 33:5619-5625.
Hou Y, Moreau F, Chadee K (2012) PPARgamma is an E3 ligase that induces the degradation of NFkappaB/p65. Nature communications 3:1300.
Iuchi S (2001) Three classes of C2H2 zinc finger proteins. Cellular and molecular life sciences : CMLS 58:625-635.
Kim JW, Peng N, Rainey WE, Carr BR, Attia GR (2004) Liver receptor homolog-1 regulates the expression of steroidogenic acute regulatory protein in human granulosa cells. The Journal of clinical endocrinology and metabolism 89:3042-3047.
Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K, Nakayama K (1999) An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. The EMBO journal 18:2401-2410.
Kravtsova-Ivantsiv Y, Ciechanover A (2012) Non-canonical ubiquitin-based signals for proteasomal degradation. Journal of cell science 125:539-548.
Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA (2008) Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PloS one 3:e1487.
Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL, White RL, Matsunami N (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Molecular cell 7:927-936.
Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annual review of cell and developmental biology 20:781-810.
Luo Y, Liang CP, Tall AR (2001) The orphan nuclear receptor LRH-1 potentiates the sterol-mediated induction of the human CETP gene by liver X receptor. The Journal of biological chemistry 276:24767-24773.
Lyubarova R, Itagaki BK, Itagaki MW (2009) The impact of National Institutes of Health funding on U.S. cardiovascular disease research. PloS one 4:e6425.
Ma P, Yang X, Kong Q, Li C, Yang S, Li Y, Mao B (2014) The ubiquitin ligase RNF220 enhances canonical Wnt signaling through USP7-mediated deubiquitination of beta-catenin. Molecular and cellular biology 34:4355-4366.
MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental cell 17:9-26.
Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Molecular cell 7:915-926.
Modica S, Gofflot F, Murzilli S, D'Orazio A, Salvatore L, Pellegrini F, Nicolucci A, Tognoni G, Copetti M, Valanzano R, Veschi S, Mariani-Costantini R, Palasciano G, Schoonjans K, Auwerx J, Moschetta A (2010) The intestinal nuclear receptor signature with epithelial localization patterns and expression modulation in tumors. Gastroenterology 138:636-648, 648 e631-612.
Moser AR, Pitot HC, Dove WF (1990) A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247:322-324.
Muhlen S, Ruchaud-Sparagano MH, Kenny B (2011) Proteasome-independent degradation of canonical NFkappaB complex components by the NleC protein of pathogenic Escherichia coli. The Journal of biological chemistry 286:5100-5107.
Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201-205.
Nakamura N (2011) The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function. Membranes 1:354-393.
Nitta M, Ku S, Brown C, Okamoto AY, Shan B (1999) CPF: an orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7alpha-hydroxylase gene. Proceedings of the National Academy of Sciences of the United States of America 96:6660-6665.
Nusse R (2005) Wnt signaling in disease and in development. Cell research 15:28-32.
Pare JF, Roy S, Galarneau L, Belanger L (2001) The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3beta, Hnf4alpha, and Hnf1alpha gene promoters. The Journal of biological chemistry 276:13136-13144.
Pezzi V, Sirianni R, Chimento A, Maggiolini M, Bourguiba S, Delalande C, Carreau S, Ando S, Simpson ER, Clyne CD (2004) Differential expression of steroidogenic factor-1/adrenal 4 binding protein and liver receptor homolog-1 (LRH-1)/fetoprotein transcription factor in the rat testis: LRH-1 as a potential regulator of testicular aromatase expression. Endocrinology 145:2186-2196.
Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nature reviews Molecular cell biology 10:398-409.
Sablin EP, Krylova IN, Fletterick RJ, Ingraham HA (2003) Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Molecular cell 11:1575-1585.
Schoonjans K, Dubuquoy L, Mebis J, Fayard E, Wendling O, Haby C, Geboes K, Auwerx J (2005) Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation. Proceedings of the National Academy of Sciences of the United States of America 102:2058-2062.
Shah PK (2007) Inhibition of CETP as a novel therapeutic strategy for reducing the risk of atherosclerotic disease. European heart journal 28:5-12.
Shi D, Gu W (2012) Dual Roles of MDM2 in the Regulation of p53: Ubiquitination Dependent and Ubiquitination Independent Mechanisms of MDM2 Repression of p53 Activity. Genes & cancer 3:240-248.
Sirianni R, Seely JB, Attia G, Stocco DM, Carr BR, Pezzi V, Rainey WE (2002) Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. The Journal of endocrinology 174:R13-17.
Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Molecular and cellular biology 15:1265-1273.
Tao T, Shi H, Guan Y, Huang D, Chen Y, Lane DP, Chen J, Peng J (2013) Def defines a conserved nucleolar pathway that leads p53 to proteasome-independent degradation. Cell research 23:620-634.
Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. The EMBO journal 19:94-102.
Tucker W. Anderson CW, and William S. Brooks (2010) The E3 Ubiquitin Ligase NARF Promotes Colony Formation in vitro and Exhibits Enhanced Expression Levels in Glioblastoma Multiforme in vivo In: Department of Biology Freed-Hardeman University.
Uldrijan S, Pannekoek WJ, Vousden KH (2007) An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. The EMBO journal 26:102-112.
Wang ZN, Bassett M, Rainey WE (2001) Liver receptor homologue-1 is expressed in the adrenal and can regulate transcription of 11 beta-hydroxylase. Journal of molecular endocrinology 27:255-258.
Xu L, Glass CK, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Current opinion in genetics & development 9:140-147.
Yamada M, Ohnishi J, Ohkawara B, Iemura S, Satoh K, Hyodo-Miura J, Kawachi K, Natsume T, Shibuya H (2006) NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). The Journal of biological chemistry 281:20749-20760.
Yang FM, Lin YC, Hu MC (2011) Identification of two functional nuclear localization signals mediating nuclear import of liver receptor homologue-1. Cellular and molecular life sciences : CMLS 68:1241-1253.
Yazawa T, Inaoka Y, Okada R, Mizutani T, Yamazaki Y, Usami Y, Kuribayashi M, Orisaka M, Umezawa A, Miyamoto K (2010) PPAR-gamma coactivator-1alpha regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1. Molecular endocrinology 24:485-496.
Zhou YX, Chen SS, Wu TF, Ding DD, Chen XH, Chen JM, Su ZP, Li B, Chen GL, Xie XS, Dai YF, Wei YX, Du ZW (2012) A novel gene RNF138 expressed in human gliomas and its function in the glioma cell line U251. Analytical cellular pathology 35:167-178.
王裕方 (2015) 探討CDK9調控核受器LRH-1的分子機制. In: 生理學研究所: 臺灣大學.
許閔茹 (2013) 利用酵母菌雙砸蕉樹找尋在小鼠肝中與LRH-1有交互作用的蛋白質. In: 生理學研究所: 國立台灣大學.
黃守賢 (2010) mLRH-1泛素化作用之探討. In: 生理學研究所: 臺灣大學.
潘建廷 (2005) LRH-1 抗體製備及LRH-1調控CYP11A1之研究. In: 生理學研究所: 臺灣大學.
戴予辰 (2008) PIASy抑制人類腎上腺細胞類固醇荷爾蒙生成基因的表現. In: 生理學研究所: 臺灣大學.
謝祥燦 (2007) LRH-1 特性及其轉錄活性受PIASy調控之研究. In: 生理學研究所: 臺灣大學.
 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54020-
dc.description.abstractLiver receptor homolog-1 (LRH-1;NR5A2) 隸屬於孤兒核受器,主要表現在肝臟、腸道、胰臟以及卵巢。LRH-1對於細胞增生、發育、膽固醇運輸、膽酸恆定以及固醇類荷爾蒙的生成等扮演重要的角色。LRH-1為轉錄因子會和輔因子產生交互作用,進而調控下游基因的表現。本論文發現LRH-1會調控E3連接酶RNF138 (RING finger protein 138) 蛋白質量,並與RNF138有交互作用。當RNF138與LRH-1同時轉染於HEK293T中,會使RNF138蛋白質的量降低,並且具有劑量依賴性。利用蛋白質衰減測定,發現LRH-1可降低RNF138蛋白質的穩定性;若給予蛋白酶體抑制劑MG132,會部分抑制LRH-1對RNF138蛋白質的影響。這些結果顯示,LRH-1可能會促進RNF138經由蛋白酶體路徑而降解。
GST pull down的分析顯示,LRH-1以DNA binding domain (DBD) 與RFN138的N端進行交互作用。有研究指出,核受器的DBD可能具有潛在的RING finger結構。我們以點突變破壞LRH-1位於DBD的潛在環狀結構 (loop),這些突變在失去轉錄活性的情況下,仍能使RNF138蛋白質量下降,說明LRH-1的DBD可能不具有E3連接酶活性,且調控RNF138蛋白質量的作用與其轉錄活性無關。位了確認LRH-1調控RNF138蛋白質量的重要區段,建構出不同的LRH-1片段,發現單獨的LBD片段能降低RNF138蛋白質的量。綜合結果顯示,LRH-1會降低RNF138蛋白質的穩定性,而此作用與其轉錄活性無關,反而是LBD在LRH-1的功能中扮演重要角色。
zh_TW
dc.description.abstractLiver receptor homolog-1 (LRH-1, NR5A2) is an orphan nuclear receptor, is predominantly expressed in the liver, intestine, pancrease and ovaries. LRH-1 regulates the expression of genes involved in development, metabolism, steroidogenesis and cancinogenesis. We found that LRH-1 reduced the protein level of RNF138 (RING finger protein), and they had interaction in vitro. By protein turnover assay, we found that LRH-1 decreased RNF138 protein stability. In addition, LRH-1 mediated RNF138 protien levels were inhibited by the proteasome inhibitor MG132. These results indicates that LRH-1 may promote RNF138 degradation through proteasome pathway.
The GST pull-down experiments showed that LRH-1 interacted with RNF138 N-terminus by DNA binding domain (DBD). It has been reported that the DBD of nuclear receptors has potential RING finger structure. We destroyed the potential loop structure in DBD of LRH-1 by site mutagenesis. These mutants lose the transcriptional activity, but still could reduce RNF138 protein level. It suggested that LRH-1 DBD may not have E3 ligase activity and LRH-1-mediated RNF138 protein reduction was independent of its transactivity. To identify the region responsible for LRH-1 function, a series of LRH-1 truncation constructs were generated. We found that the ligand binding domain (LBD) alone could reduce RNF138 protein level. Together, these results suggested that LRH-1 can reduce RNF138 protein stability that is independent of LRH-1 transcriptional activity and LBD plays an important role in LRH-1-mediated function.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:36:49Z (GMT). No. of bitstreams: 1
ntu-104-R02441003-1.pdf: 1735096 bytes, checksum: 541e6ab1c047dd67e25908dda34275bf (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
致謝 I
目錄 II
表次 IV
圖次 IV
中文摘要 V
Abstract VI
第一章 序論 1
一、 LRH-1簡介 1
1. LRH-1之生理功能 1
2. LRH-1之蛋白質結構 2
二、 泛素 (ubiquitin)-蛋白酶體 (proteasome)系統 3
1. 泛素修飾之作用機轉 3
2. 泛素之鍵結種類與功能 4
三、 RNF138簡介 5
1. RNF138之蛋白質結構 5
2. RNF138之生理功能 5
四、 Wnt signaling 6
五、 研究目的 8
第二章 材料與方法 9
一、 細胞培養 9
二、 質體 9
三、 暫時性轉染法 (Transient transfection) 16
四、 西方墨點法 (Western blot) 分析 17
五、 冷光酶活性分析 (Luciferase assay) 19
六、 GST沉澱法 (GST pull down) 19
七、 蛋白質半衰期測定 (protein half-life) 測定 20
第三章 結果 22
一、 LRH-1影響RNF138蛋白質的量 22
二、 LRH-1影響RNF138蛋白質降解 22
三、 RNF138受LRH-1調控的重要區段分析 23
四、 LRH-1與RNF138蛋白質之間的交互作用 23
五、 LRH-1調控RNF138蛋白質量的重要區段分析 24
第四章 討論 26
一、 LRH-1降低RNF138蛋白質穩定性的路徑 26
二、 LRH-1 DBD的潛在性RING finger結構 27
三、 DBD與LBD對於LRH-1調控RNF138蛋白質量所扮演的角色 28
參考文獻 30

 
表次
表一、LRH-1片段對RNF138蛋白質的影響 36
圖次
圖一、LRH-1降低RNF138蛋白質量 37
圖二、LRH-1降低RNF138蛋白質量具有劑量依賴性 38
圖三、LRH-1使RNF138蛋白質穩定性降低 39
圖四、LRH-1使RNF138蛋白質降解路徑分析 40
圖五、LRH-1對不同片段RNF138蛋白質量的影響 41
圖六、LRH-1對RNF138 K158R蛋白質量的影響 42
圖七、LRH-1與不同片段RNF138蛋白質之間的交互作用 43
圖八、不同片段LRH-1與RNF138蛋白質之間的交互作用 44
圖九、LRH-1與RNF138蛋白質之間的交互作用 45
圖十、LRH-1點突變對RNF138蛋白質量的影響 46
圖十一、LRH-1的轉錄活性分析 47
圖十二、LRH-1片段對RNF138蛋白量的影響 48
圖十三、LRH-1單一片段對RNF138蛋白量的影響 49
圖十四、LRH-1促進RNF138蛋白質降解機制假設模型 50
dc.language.isozh-TW
dc.subjectRNF138zh_TW
dc.subjectLRH-1zh_TW
dc.subject泛素-蛋白?體路徑zh_TW
dc.subjectLRH-1zh_TW
dc.subjectRNF138zh_TW
dc.subject泛素-蛋白?體路徑zh_TW
dc.subjectRNF138en
dc.subjectLRH-1en
dc.subjectUbiquitin-proteasome pathwayen
dc.subjectRNF138en
dc.subjectLRH-1en
dc.subjectUbiquitin-proteasome pathwayen
dc.titleLRH-1調控RNF138蛋白質穩定性zh_TW
dc.titleLiver receptor homolog-1 regulates RING finger protein 138 protein stabilityen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞華,湯志永,徐立中
dc.subject.keywordLRH-1,RNF138,泛素-蛋白?體路徑,zh_TW
dc.subject.keywordLRH-1,RNF138,Ubiquitin-proteasome pathway,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2015-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved