請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54012
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 唐牧群(Muh-Chyun Tang) | |
dc.contributor.author | I-An Ou | en |
dc.contributor.author | 歐怡安 | zh_TW |
dc.date.accessioned | 2021-06-16T02:36:31Z | - |
dc.date.available | 2015-07-29 | |
dc.date.copyright | 2015-07-29 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-27 | |
dc.identifier.citation | Alberich, R., Miro-Julia, J, & Rosselló, F. (2002). Marvel Universe looks almost like a real social network. arXiv preprint cond-mat/0202174.
Bloch, P. H., & Richins, M. L. (1983). A theoretical model for the study of product importance perceptions. Journal of Marketing, 47 (3), 69-81. Bonacich, P. (1972). Factoring & weighting approaches to status scores & clique identification. Journal of Mathematical Sociology, 2 (1), 113-120. Borgatti, S. P., & Everett, M. G. (2000). Models of core/periphery structures. Social networks, 21 (4), 375-395. Brooks, L. (1978). Nonanalytic concept formation and memory for instances. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, N.J: Erlbaum. Brucks, M. (1985). The effects of product class knowledge on information search behavior. Journal of consumer research, 12 (1), 1-16. Buldú, J. M., Cano, P., Koppenberger, M., Almendral, J. A., & Boccaletti, S. (2007). The complex network of musical tastes. New Journal of Physics, 9 (6), 172. Cattani, G., & Ferriani, S. (2008). A core/periphery perspective on individual creative performance: Social networks & cinematic achievements in the Hollywood film industry. Organization Science, 19 (6), 824-844. Caves, R. E. (2000). Creative industries: Contracts between art and commerce (No. 20). Cambridge, MA: Harvard University Press Celsi, R. L., & Olson, J. C. (1988). The role of involvement in attention & comprehension processes. Journal of consumer research, 15 (2), 210-224. Clarke, K., & Belk, R. W. (1979). The effects of product involvement & task definition on anticipated consumer effort. Advances in consumer research, 6 (1), 313-318. Cohen, J. B. (1983). Involvement & You-1000 great ideas. Advances in consumer research, 10 (1), 325-328. Engel, J. F., Blackwell, R. D., & Miniard, P. W. (1990). Customer behavior. Hinsdale, IL: Dryden. Flynn, L. R., & Goldsmith, R. E. (1999). A short, reliable measure of subjective knowledge. Journal of Business Research, 46 (1), 57-66. Franke, N., Keinz, P., & Steger, C. J. (2009). Testing the value of customization: when do customers really prefer products tailored to their preferences? Journal of Marketing, 73 (5), 103-121. Fredrica, R. (1979). Consumer food selection & nutrition information. Westport, CO: Greenwood. Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social networks, 1 (3), 215-239. Goldsmith, E., & Goldsmith, R. E. (1997). Gender differences in perceived & real knowledge of financial investments. Psychological Reports, 80 (1), 236-238. Goldstone, R. L., & Kersten, A. (2003). Concepts and Categories. In A. F. Healy & R. W. Proctor (Eds.) Comprehensive handbook of psychology, Volume 4: Experimental psychology. (pp. 591-621). New York, NY: Wiley. Grujić, J. (2008). Movies recommendation networks as bipartite graphs. In Bubak, M., van Albada, G.D., Dongarra, J., & Sloot, P. M. A. (Eds.), Lecture Notes in Computational Science–ICCS 2008: Vol.5102 (pp. 576-583). Portland, United States: Springer. Hanneman, R. A., & Riddle, M. (Eds.). (2005). Introduction to social network methods. Retrieved from http://www.analytictech.com/networks.pdf Howard, J. A., & Sheth, J. N. (1969). The theory of buyer behavior (Vol. 14). New York, NY: Wiley. Krugman, H. E. (1965). The impact of television advertising: Learning without involvement. Public opinion quarterly, 29 (3), 349-356. Kwon, K., Cho, J., & Park, Y. (2009). Influences of customer preference development on the effectiveness of recommendation strategies. Electronic Commerce Research & Applications, 8 (5), 263-275. Laurent, G., & Kapferer, J-N. (1985). Measuring consumer involvement profiles. Journal of Marketing Research (JMR), 22 (1), 41-53. Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological review, 85 (3), 207-238. Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., & Riedl, J. (2003). MovieLens unplugged: experiences with an occasionally connected recommender system. Paper presented at the Proceedings of the 8th international conference on Intelligent user interfacess, Miami, FL. Mittal, B., & Lee, M-S. (1989). A causal model of consumer involvement. Journal of economic psychology, 10 (3), 363-389. Oestreicher-Singer, G., & Sundararajan, A. (2012). Recommendation Networks & the Long Tail of Electronic Commerce. MIS Quarterly, 36 (1), 65-83. Park, C W., & Lessig, V P. (1981). Familiarity & its impact on consumer decision biases & heuristics. Journal of consumer research, 8 (2), 223-231. Park, C W., Mothersbaugh, D. L., & Feick, L. (1994). Consumer knowledge assessment. Journal of consumer research, 21 (1), 71-82. Peter, J.P., & Olson, J. C. (1996). Consumer Behavior and Marketing Strategy (4th ed., pp. 81-117). Chicago, IL: Irwin. Raju, P. S., Lonial, S. C., & Glynn Mangold, W. (1995). Differential effects of subjective knowledge, objective knowledge, & usage experience on decision making: An exploratory investigation. Journal of Consumer Psychology, 4 (2), 153-180. Rao, A. R., & Monroe, K. B. (1988). The moderating effect of prior knowledge on cue utilization in product evaluations. Journal of Consumer Research, 253-264. Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40 (3), 56-58. Rosch, E. (1975). Cognitive reference points. Cognitive psychology, 7(4), 532-547. Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive psychology, 7(4), 573-605. Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In Recommender systems handbook (pp. 257-297). New York, NY: Springer. Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative consumer reviews on the Web. Journal of Interactive Marketing, 21 (4), 76-94. Sherif, M., & Cantril, H. (1947). The psychology of ego-involvements: Social attitudes & identifications. New York, NY: John Wiley & Sons. Simonson, I. (2005). Determinants of customers’ responses to customized offers: conceptual framework & research propositions. Journal of Marketing, 69 (1), 32-45. Slama, M. E., & Tashchian, A. (1985). Selected socioeconomic & demographic characteristics associated with purchasing involvement. Journal of marketing, 49 (1), 72-82. Small, H. (2009). Critical thresholds for co-citation clusters & emergence of the giant component. Journal of Informetrics, 3 (4), 332-340. Smith, E. E., & Medin, D. L. (1981). Categories & concepts. Cambridge, MA: Harvard University Press. Spreng, R. A., & Olshavsky, R. W. (1993). A desires congruency model of consumer satisfaction. Journal of the Academy of Marketing Science, 21 (3), 169-177. Swinyard, W. R. (1993). The effects of mood, involvement, & quality of store experience on shopping intentions. Journal of Consumer Research, 20 (2), 271-280. Tang, M-C. (2014, Jun). The impact of users' preference diversity on recommender system performance. Paper presented at the 16th International Conference Human Interaction, Crete, Greece. Tang, M-C., Ke, Y-L., & Sie, Y-J. (2013, Nov). The estimation of aNobii users' reading diversity using book co-ownership data: a social analytical approach. Paper presented at the SocInfo 2013, Kyoto, Japan. Traylor, M. B. (1981). Product involvement & brand commitment. Journal of Advertising Research, 21 (6), 51-56. Wasserman, S., & Faust, K. (1994). Social Network Analysis. Cambridge, MA: Cambridge University. Wright, P. L. (1973). The cognitive processes mediating acceptance of advertising. Journal of Marketing Research (JMR), 10 (1), 53-62. Zaichkowsky, J. L. (1987). The Emotional Affect of Product Involvement, In Wallendorf , M., & Anderson, B. (Eds.), Lecure Notes in NA - Advances in Consumer Research: Vol. 14 (pp. 32-35).Provo, UT: Association for Consumer Research. 林頌堅﹙民99﹚。以詞語共現網絡分析 探勘資訊傳播學領域的研究主題與關係。圖書資訊學研究,4 (2),123-148. 謝宜瑾﹙民101﹚。從透鏡模式探討影響讀者尋書滿意度之因素-以aNobii為例 (未出版之碩士論文)。國立臺灣大學,臺北市。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54012 | - |
dc.description.abstract | 並非所有顧客看過、消費過的品項皆能代表其偏好,產品代表偏好的程度也不一。對此,本研究提出「閱讀偏好代表性」的概念,藉由援引認知心理學的「範例觀點」,探究是否有少數書籍作品特別能代表讀者的閱讀偏好,為讀者閱讀範疇中具有「偏好代表性」之作品。
本研究的主要目的為衡量個別書籍代表讀者個人閱讀偏好的程度,將讀者收藏在aNobii網路書櫃中的書籍視為其閱讀興趣檔(reading profile),以任兩本書籍被aNobii全體使用者共同擁有的次數,計算任兩本書籍之間的相似度,建立書籍的相似性網絡。並利用社會網絡分析的中心性/核心指標,計算個別書籍作品之中心性/核心度,再與讀者針對所選作品的自評偏好代表性、作品類型知識與涉入進行統計分析,以反映讀者的閱讀偏好。 研究結果顯示,書籍之中心性或核心度與受試者自評之書籍偏好代表性、作品類型知識與涉入呈現顯著正相關,即受試者所選作品中,中心性/核心度越高的作品,其閱讀偏好代表性、作品類型知識與涉入的程度也就越高,表示以社會網絡分析指標判斷具有讀者閱讀代表性之作品的作法具有可行性。 除了討論以中心性/核心度討論具有閱讀偏好代表性的作品外,本研究的另一目標為探討讀者偏好多樣性的調節作用,也就是偏好多樣性較高的讀者,其書櫃相似性網絡可能呈現多個分群或核心,而難以判斷具有閱讀偏好代表性之作品。因此本研究假設閱讀偏好多樣性會影響以書籍的網絡中心性/核心度判斷讀者偏好代表性的效果。結果顯示,偏好多樣性越高的書櫃,其書籍中心性/核心度與讀者的閱讀偏好代表性的相關性較低,多未達顯著顯準;反之,偏好多樣性越低之書櫃的相關程度較高,且達到顯著水準,表示偏好多樣性對於書籍中心性/核心度與偏好代表性之間的關係確實具有調節作用。 | zh_TW |
dc.description.abstract | Not every item that customers browse or buy can represent their desired preferences. An additional problem is that the degree of preference that each item represents can be different.
By using the “exemplar view” theory of cognitive psychology, this study proposes using the concept of “representativeness” to determine whether a few books can represent one’s reading preference. This study’s main aim is to measure the degree to which a book in a user’s online bookshelf is able to represent their preferences by collecting data from aNobii online bookshelves. This data can be used to build a user’s reading profile. A reading profile can be used to generate an item-to-item network by calculating the similarity of each book-to-book pair in a user’s bookshelf. By applying social network analytical (SNA) metrics such as “centrality” and “coreness” to the network one can determine a book’s “representativeness.” Results show that the degree of centrality or coreness of books were significantly correlated to the user’s self-assessed “representativeness.” There was also significant correlation between the social network analytical metrics and the user’s self-assessed “genre knowledge” and “involvement” for books on their bookshelf. It means that it is feasible to use social network analytical metrics to determine how representative a book is of a user’s reading preference. The other objective of this study is to explore the moderated effect of a user’s preference diversity. It is assumed that a user’s preference diversity would affect the correlations between the centrality of books and the user’s self-assessed representativeness. Results show that the correlation between social network analytical metrics and a book’s representativeness is weaker in those who have highly diverse preferences than those who have less diverse preferences. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:36:31Z (GMT). No. of bitstreams: 1 ntu-104-R00126014-1.pdf: 1803945 bytes, checksum: 15abca933428e229cd7a3866e9094f3d (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 II 第一章、緒論 1 第一節、問題陳述 1 第二節、研究目的與問題 6 第三節、名詞解釋 8 第二章 文獻探討 10 第一節、閱讀偏好代表性 10 第二節、產品類型知識與涉入 14 第三節、社會網絡分析 20 第三章 研究設計與實施 24 第一節、研究設計 24 第二節、研究平台與對象 26 第三節、研究流程 29 第四節、資料蒐集 30 第五節、資料分析 33 第四章、研究結果 43 第一節、受試者基本資料分析 44 第二節、書籍評估問卷之信度與效度分析 46 第三節、偏好代表性與作品類型知識及涉入之關係 50 第四節、書籍相似性網絡與最適閾值 52 一、 書籍共現矩陣建立 52 二、 書籍相似性計算 54 三、 最適閾值的選擇 55 第五節、社會網絡分析指標 57 一、 網絡中心性分析 58 二、 核心邊陲結構 58 三、 SPSS統計分析 58 第六節、閱讀偏好多樣性 68 一、 偏好多樣性分析方法 68 二、 偏好多樣性之調節作用 70 第五章、結論與建議 81 第一節、研究結果討論 81 第二節、結論 87 第三節、研究限制與未來建議 89 參考文獻 92 附錄一、aNobii網路書櫃研究同意書 99 附錄二、選書前問卷 100 附錄三、選書評估問卷 104 | |
dc.language.iso | zh-TW | |
dc.title | 運用社會網絡分析法探討讀者之閱讀偏好代表性—以aNobii網路書櫃為例 | zh_TW |
dc.title | Measuring Book Representativeness of aNobii Users’ Reading Profile: A Social Network Analytical Approach | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林頌堅(Sung-Chien Lin),謝吉隆(Ji-Lung Hsieh) | |
dc.subject.keyword | 推薦系統,偏好代表性,網路書櫃,社會網絡分析,中心性,核心度, | zh_TW |
dc.subject.keyword | recommender system,preference representativeness,online bookshelf,social network analysis,centrality,coreness, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-27 | |
dc.contributor.author-college | 文學院 | zh_TW |
dc.contributor.author-dept | 圖書資訊學研究所 | zh_TW |
顯示於系所單位: | 圖書資訊學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。