請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54007完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李公哲(Kung-Cheh Li) | |
| dc.contributor.author | Ssu-Chia Tseng | en |
| dc.contributor.author | 曾思嘉 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:36:21Z | - |
| dc.date.available | 2018-07-30 | |
| dc.date.copyright | 2015-07-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-27 | |
| dc.identifier.citation | Agency for Toxic Substances and Disease Registry (2007), Toxicological Profile for Arsenic(Update).
Akin I., Arslan G., Tor A., Ersoz M., Cengeloglu Y. (2012), “Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud” , Journal of Hazardous Materials, Vol. 236-256, pp. 62-68. Anderson M. A., Cudero A. L., and Palma J. (2010), 'Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?,' Electrochimica Acta, vol. 55, pp. 3845-3856. Baskana M. B., and Palab A. (2010), “A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate”Desalination, Vol. 254(1-3), pp. 42-48. Buschmann J., Kappeler A., Lindauer U., Kistler D., Berg M., and Sigg L., “Arsenite and Arsenate Binding to Dissolved Humic Acids: Influence of pH, Type of Humic Acid, and Aluminum”, Environ. Sci. Technol., 2006, 40 (19), pp 6015–6020 Donia A. M., Atia A. A., Mabrouk D. H. (2011), “Fast kinetic and efficient removal of As(V) from aqueous solution using anion exchange resins” , Journal of Hazardous Materials , Vol. 191(1-3), pp. 1-7. Environmental Protection Agency (2011), “Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring Final Rule”, Federal Register. Farmer J. C. , Bahowick S. M., Harrar J. E., Fix D. V., Martinelli R. E., Vu A. K., and Carroll K.L. (1997), “Electrosorption of Chromium Ions on Carbon Aerogel Electrodes as a Means of Remediating Ground Water” , Energy Fuels, Vol. 11(2), pp. 337-347. Figoli A., Cassano A., Criscuoli A., Mozumder M. S. I., Uddin M. T., Islam M. A., Drioli E. (2010), “Influence of operating parameters on the arsenic removal by nanofiltration”, Water Research, Vol. 44(1), pp. 97-104. Freundlich H. (1907), “Ueber die Adsorption in Loesungen” , Zeitschrift für. Physikalische Chemie, Vol. 57, pp.385-470. Gabelich C. J., Tran T. D. (2002), “Electrosorption of inorganic salts from aqueous solution using carbon aerogels” , Environmental Science & Technology , Vol. 36(13), pp. 3010-3019. Ganzi G. C., Wood J. H., and Griffin C. S. (1992), “Water Purification and Recycling Using the CDI Process” , Environmental Progress, Vol. 11(1), pp. 49-53. Gao Y., Li H. B., Cheng Z.J. (2008), “Electrosorption of Cupric ions from Solution by Carbon Nanotubes and Nanofibres Film Electrodes Grown on Graphite Substrates”, IEEE International Nanoelectronics Conference, pp. 242-247 Goessler W., Rudorfer A., Mackey E. A., Becker P. R., and Irgolic K. J. (1998), “Determination of Arsenic Compounds in Marine Mammals with High-performance Liquid Chromatography and an Inductively Coupled Plasma Mass Spectrometer as Element-speci®c Detector ” , Applied organomeallic chemistry, Vol. 12, pp.491-501. Gomes J. A. G., Daida P., Kesmez M., Weir M., Morenoa H., Parga J. R., Irwin G., Whinney H. M., Grady T., Peterson E., Cocke D. L. (2007), “Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products” , Journal of Hazardous Materials, Vol. 139(2), pp.220-231. Grafe M., Eick M. J., Grossl P. R. (2001), “Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon” , Soil Sci Soc Am J, Vol. 65, pp. 1680-1687. Guan X., Du J., Meng X., Sun Y., Sun B., Hu Q. (2012), “Application of titanium dioxide in arsenic removal from water: A review” , Journal of Hazardous Materials, Vol. 215-216, pp. 1-16. Hering J. G., Chen P. Y., Wilkie J. A., and Elimelech M. (1997), ”Arsenic Removal from Drinking Water during Coagulation” , Journal of Environmental Engineering, Vol. 123(8), pp. 800–807. Hou C. H., Liang C., Yiacoumi S., Dai S., Tsouris C. (2006), “Electrosorption capacitance of nanostructured carbon-based materials”, Journal of Colloid and Interface Science, Vol. 302(1), pp. 54-61. Huang S. Y., Fan C. S., Hou C. H. (2014), “Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization” , Journal of Hazardous Materials, Vol. 278(15), pp. 8-15. Huang, C. C. and Su Y. J. (2010), “Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths” Journal of Hazardous Materials, Vol. 175(1-3), pp. 477-483. Humplik T., Lee J., Hern S. C. O., Fellman B. A., Baig M. A., Hassan S. F., Atieh M. A., Rahman F., Laoui T., Karnik R. and Wang E. N. (2011), “Nanostructured materials for water desalination” , Nanotechnology, Vol. 22, pp. 1-19. Kang M., Kawasaki M., Tamada S., Kamei T., Magara Y. (2000), “Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes” , Desalination, Vol. 131, pp. 293-298. Kobya M., Gebologlu U., Ulu F., Oncel S., Demirbas E. (2011), “Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes” , Electrochimica Acta, Vol. 56, pp. 5060-5070. Lagergren S. (1989), “Zur theorie der sogenanntan adsorption gloster stoffe” , K. Sven. Vetenskapsakademiens. Handl., Vol. 24, pp. 1-39. Langmuir I. (1916), “Adsorption of Gasese by Solid”, J. Am. Chem. Soc, Vol. 38(10), pp. 2267. Lee H., Choi W. (2002), “Photocatalytic oxidation of arsenite in TiO 2 suspension: kineticsand mechanisms” , Environ. Sci. Technol, Vol. 36, pp. 3872–3878. Lee J. H., Bae W. S., Choi J. H. (2010), “Electrode reactions and adsorption desorption performance related to the applied potential in a capacitive deionization process” , Desalination, Vol. 258, pp. 159-163. Li H. B., Zou L., et al. (2010), “Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization” , Separation and Purification Technology, Vol. 75(1), pp. 8-14 Maya A. S. C., Mathieu P., Dia A., Guenet H., Vantelon D., Davranche M., Gruau G., Delhaye T. (2015), “Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences” Science of The Total Environment, Vol. 515–516, pp. 118-128. Mossad M., and Zou L. (2013), “A study of the capacitive deionisation performance under various operational conditions”, Journal of Hazardous Materials, Vol. 213-214, pp. 491-497. Mossad M., Zhang W., Zou L. (2012), “Using capacitive deionisation for inland brackish groundwater desalination in a remote location” , Desalination, Vol. 308, pp. 154-160. Nagy G., and Korom I. (1983), “Spale Hautsymptome der Arsenvergifturg aut Grund der Arsenendemic in Bugac—Alsomonostor” , Z. Hautkr, Vol. 58, pp. 961–964. Nikolaidis N. P., Dobbs G. M., Lackovic J. A. (2003), “Arsenic removal by zero-valent iron: field, laboratory and modeling studies” Water Research, Vol. 37(6), pp. 1417-1425. Oda H., Nakagawa Y. (2003), “ Removal of ionic substances from dilute solution using activated carbon electrodes” , Carbon, Vol. 41(5), pp. 1037-1047. Oren Y. (2008), “Capacitive Deionization (CDI) for Desalination and Water Treatment - Past, Present and Future (A Review)“ Desalination, Vol. 228, pp. 10-29. Rana P., Mohan N. et al. (2004), “Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes” , Water Research, Vol. 38, pp. 2811-2820. Seo S. J., Jeon H. (2010), “Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications” , Water Research, Vol. 44(7), pp. 2267-2275. Smedley P. L., Kinniburgh D. G. (2002), “ A review of the source, behavior and distribution of arsenic in natural waters” , Applied Geochemistry, Vol. 17, pp. 517-568. Stern O. (1924), Z. Electrochem, 30, pp. 508. Takahashi Y., Minai Y., Ambe S., Makide Y., Ambe F. (1999), “Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique”, Geochim Cosmochim Acta, Vol. 63, pp. 815-836. Tamaki S., and Frankenberger W. T. (1992). Environmental biochemistry of arsenic” , Reviews of Environmental Contamination and Toxicology, Vol. 124, pp. 79–110. Tong M., Yuan S., Zhang P., Liao P., Alshawabkeh A. N., Xie X., and Wang Y. (2014), “Electrochemically Induced Oxidative Precipitation of Fe(II) for As(III) Oxidation and Removal in Synthetic Groundwater”, Environ. Sci. Technol, Vol. 48(9), pp. 5145-5153. Walker G. M., Weatherley L.R. (1999), “Biological activated carbon treatment of industrial wastewater in stirred tank reactors” , Chemical Engineering Journa, Vol. 75, pp. 201-206. Wang S., and Mulligan C. N. (2006), “Effect of natural organic matter on arsenic release from soils and sediments into groundwater” , Environmental Geochemistry and Health, Vol. 28, pp. 197-214. World Health Organization (1971), International Standards for Drinking Water, WHO, Geneva. Xu P., Drewes J. E. (2008), “Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology” , Water Research, Vol. 42(10-11), pp. 2605-2617. Yang H., Lin W. Y., Rajeshwar K. (1999), “Homogeneous and heterogeneous photo-catalytic reactions involving As(III) and As(V) species in aqueous media” , J.Photochem. Photobiol, Vol. 123, pp. 137–143. Ying T. Y., Yang K. L., Yiacoumi S., Tsouris C. (2002), “Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel”, J. Colloid Interface Sci, Vol. 250, pp. 18-27. Zhan Y. K., Li H. B., et al. (2010), “Regeneration of carbon nanotube and nanofibre composite film electrode for electrical removal of cupric ions” , Water Science and Technology, Vol. 61(6), pp. 1427-1432. Zhao X., Zhang B. F., Liu H. J., Qu J. H. (2010), “Removal of arsenite by simultaneous electro-oxidation and electro-coagulation process” , Journal of Hazardous Materials, Vol. 184(1-3), pp. 472-476. 行政院環境保護署(2014),土壤及地下水污染整治網,http://sgw.epa.gov.tw/public/0401.asp。 行政院環境保護署(2014),全國環境水質監測資訊網,http://wq.epa.gov.tw/WQEPA/Code/?Languages=。 李明翰(2009),碳氣凝膠電容系統對水中重金屬離子競爭吸附之研究,國立中央大學碩士論文。 林財富(1999),供飲用地下水簡易除砷方法之發展,行政院環境保護署。 游鎮烽、王尚禮(2011),利用磁性奈米鐵氧磁體尖晶石移除水體砷污染之研究,行政院環境保護署。 黃承業(2012),以電容去離子技術去除無機鹽類之電吸附行為研究,碩士班論文,東海大學環境科學與工程學系碩士班。 黃詩晴(2014),製備多壁奈米碳管/幾丁聚醣複合式電極以電吸附方式移除苯胺之研究,碩士班論文,東海大學環境科學與工程學系碩士班。 廖仲洲(2006),利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討,國立中央大學碩士論文。 劉乃綾(2014),奈米孔洞碳材的電容特性與電吸附行為之比較分析,碩士班論文,東海大學環境科學與工程學系碩士班。 鄭喬薇(2007),碳氣凝膠電容吸附水中重金屬,國立中央大學碩士論文,國立中央大學環境工程研究所。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/54007 | - |
| dc.description.abstract | 砷的毒害是一種全球性的地下水污染問題,而台灣現有之地下水質砷污染來源包含地質關係而造成之西南沿海與宜蘭地區地下水,以及人為導致之土壤污染列管場址,因土壤中砷傳輸至地下水體,導致地下水中砷濃度超過地下水污染管制標準,若農業及漁業用水引用當地地下水做為水源,將造成生物或人體的潛在危害性。
電容去離子技術(Capacitive Deionization, CDI)為一種節能、清淨、無需使用化學藥劑,且不產生二次污染物之新穎電化學處理技術,其原理是利用外加電場的控制與奈米孔洞碳電極的高比表面積,基於電荷分離機制,先以外部供電方式充電,在處理水體中產生電場,利用庫倫作用力將水中離子電吸附於電極表面上,在奈米孔洞間形成電雙層,進而產出乾淨水體。於本研究試驗結果顯示,CDI系統藉由電場的施加與活性碳電極本身的多孔性與高比表面積,可對於水中低濃度(0.2 mg/L)的砷具有良好的移除效果,且當施加1.2 V電壓於CDI系統中,五價砷(H2AsO4-)可直接被電吸附在活性碳電極上而被去除,三價砷(H3AsO30)則是會因電場作用,被氧化成五價砷型態再被電吸附去除。而砷在不同離子強度與天然有機物的干擾下,仍具有部分去除效果,顯示活性碳電極之CDI系統對於砷有一定的選擇性。而經電吸附過後的活性碳電極以SEM與XPS進行分析,由SEM掃描結果可觀察到電極表面結構中,並無明顯晶體被發現;而XPS之全圖譜分析與單元素分析結果,亦無偵測到砷的波鋒,顯示在CDI系統中,砷並不以電沉積之方式被去除,而是以電吸附反應為主。 | zh_TW |
| dc.description.abstract | Capacitive deionization (CDI), or referred to electrosorption process, has been regarded as a novel water purification technology, which has many advantages including low operating pressure, low energy consumption, no secondary waste, and easy regeneration. The mechanism behind CDI to remove ionic species from water is based on the charge separation, in which nanoporous carbon electrodes are charged and discharged to store and to release large quantities of ions, respectively.
In this study, CDI process can electrostatically separate low concentration (0.2 mg/L) arsenic from aqueous solutions. Furthermore, arsenate (As(V)) can be directly removed by electrosorption at 1.2 V because of its negative charge. The results indicate that the mechanism of arsenite (As(III)) removal in CDI system could be involved with the oxidation of As(III) to As(V) which can be removed by electrosorption. In the competitive experiments, although, the presence of sodium chloride and nature organic matter (NOM) obviously interfered with the electrosorption behavior of arsenic, there was still electrosorption capacity for arsenic. Notably, the CDI system still showed good electrosorption selectivity of As. The surface of activated carbon was investigated with SEM and XPS. As evidenced, there was no visible electrodeposition of arsenic on the electrode surface, demonstrating that arsenic was removed by electrosorption. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:36:21Z (GMT). No. of bitstreams: 1 ntu-104-R02541110-1.pdf: 3086076 bytes, checksum: 49840543fd382d01f97b1551d3875d94 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 圖目錄 VI 表目錄 IX 第一章 研究緣起與目的 1 1.1研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 砷的危害 3 2.2 砷的分布 4 2.3砷的型態 6 2.4 砷的處理技術 8 2.4.1 薄膜法 8 2.4.2 吸附劑吸附法 9 2.4.3 化學沉澱法 11 2.4.4 電混凝法 12 2.5 電容去離子程序 13 2.5.1 電容去離子技術原理 13 2.5.2 電容去離子技術現況 16 2.6電容去離子技術除砷之假設與優勢 18 2.7 本團隊研究成果 20 第三章 實驗材料、設備與方法 22 3.1 實驗材料與設備 22 3.1.1 實驗材料與藥品 22 3.1.2 實驗設備與儀器 23 3.2 實驗方法與流程 24 3.2.1 實驗架構與裝置 24 3.2.2活性碳電極製備 26 3.2.3 目標濃度選定與配製 27 3.3 活性碳電極電容特性分析 27 3.3.1 循環伏安法 29 3.3.2 定電流充放電 31 3.3.3 電化學阻抗譜 32 3.4 砷之定量與物種分析 33 3.4.1 感應耦合電漿原子發射光譜 33 3.4.2 砷型態分析 33 3.4.3 活性碳電極表面分析 34 3.5 分析計算式 35 3.5.1去除效率與電吸附容量 35 3.5.2等溫吸附模式 36 3.5.3 擬一階吸附動力模式 38 3.5.4電吸附之能源消耗 39 第四章 結果與討論 40 4.1 活性碳電容特性分析 40 4.2 背景試驗 42 4.3 電吸附行為 44 4.3.1 施加電壓之影響 44 4.3.2 動力學分析與等溫吸附分析 50 4.3.3 砷之型態轉換與移除機制探討 58 4.4 氯化鈉之影響 61 4.5 有機物質之影響 64 4.6 連續式試驗 67 4.7 電極表面分析 72 第五章 結論與建議 75 5.1 結論 75 5.2 建議 77 第六章 參考文獻 78 附錄一 實驗pH與ORP數據 84 附錄二 導電度 91 附錄三 檢量線與方法偵測極限 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 活性碳電極 | zh_TW |
| dc.subject | 砷 | zh_TW |
| dc.subject | 電吸附 | zh_TW |
| dc.subject | 電容去離子技術 | zh_TW |
| dc.subject | Activated carbon electrodes | en |
| dc.subject | Capacitive deionization (CDI) | en |
| dc.subject | Electrosorption | en |
| dc.subject | Arsenic | en |
| dc.title | 以電容去離子技術移除水中砷之機制研究 | zh_TW |
| dc.title | Study on the mechanism of arsenic removal from aqueous solution by capacitive deionization technology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 侯嘉洪(Chia-Hung Hou) | |
| dc.contributor.oralexamcommittee | 席行正(Hsing-Cheng Hsi),劉雅瑄(Ya-Hsuan Liou) | |
| dc.subject.keyword | 電容去離子技術,電吸附,砷,活性碳電極, | zh_TW |
| dc.subject.keyword | Capacitive deionization (CDI),Electrosorption,Arsenic,Activated carbon electrodes, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
