請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53989完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳逸聰(Yit-Tsong Chen) | |
| dc.contributor.author | Chin-Fu Chang | en |
| dc.contributor.author | 張欽富 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:35:43Z | - |
| dc.date.available | 2018-07-30 | |
| dc.date.copyright | 2015-07-30 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-27 | |
| dc.identifier.citation | 1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
2. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat Mater 2007, 6 (3), 183-191. 3. Mermin, N. D., Crystalline Order in Two Dimensions. Physical Review 1968, 176 (1), 250-254. 4. Wallace, P. R., The Band Theory of Graphite. Physical Review 1947, 71 (9), 622-634. 5. Morgan, A. E.; Somorjai, G. A., Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface. Surface Science 1968, 12 (3), 405-425. 6. May, J. W., Platinum Surface Leed Rings. Surface Science 1969, 17 (1), 267-270. 7. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of Modern Physics 2009, 81 (1), 109-162. 8. Partoens, B.; Peeters, F. M., From graphene to graphite: Electronic structure around theKpoint. Physical Review B 2006, 74 (7). 9. Novoselov, K. S.; Castro Neto, A. H., Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta 2012, T146, 014006. 10. Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C., Production and processing of graphene and 2d crystals. Materials Today 2012, 15 (12), 564-589. 11. Chen, D.; Feng, H.; Li, J., Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 2012, 112 (11), 6027-6053. 12. Ambrosi, A.; Chee, S. Y.; Khezri, B.; Webster, R. D.; Sofer, Z.; Pumera, M., Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew Chem Int Ed Engl 2012, 51 (2), 500-503. 13. Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A., Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B 2004, 108 (52), 19912-19916. 14. Kageshima, H.; Hibino, H.; Tanabe, S., The physics of epitaxial graphene on SiC(0001). J Phys Condens Matter 2012, 24 (31), 314215. 15. Pedersen, H.; Elliott, S. D., Studying chemical vapor deposition processes with theoretical chemistry. Theoretical Chemistry Accounts 2014, 133 (5). 16. Mattevi, C.; Kim, H.; Chhowalla, M., A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21 (10), 3324-3334. 17. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K., A roadmap for graphene. Nature 2012, 490 (7419), 192-200. 18. Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor by CVD. Chemical Physics Letters 2006, 430 (1-3), 56-59. 19. Obraztsov, A. N.; Obraztsova, E. A.; Tyurnina, A. V.; Zolotukhin, A. A., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45 (10), 2017-2021. 20. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324 (5932), 1312-1314. 21. Li, X.; Magnuson, C. W.; Venugopal, A.; An, J.; Suk, J. W.; Han, B.; Borysiak, M.; Cai, W.; Velamakanni, A.; Zhu, Y.; Fu, L.; Vogel, E. M.; Voelkl, E.; Colombo, L.; Ruoff, R. S., Graphene films with large domain size by a two-step chemical vapor deposition process. Nano Lett 2010, 10 (11), 4328-4334. 22. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010, 5 (8), 574-578. 23. Edwards, R. S.; Coleman, K. S., Graphene film growth on polycrystalline metals. Acc Chem Res 2013, 46 (1), 23-30. 24. Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 2008, 93 (11), 113103. 25. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710. 26. Muñoz, R.; Gómez-Aleixandre, C., Review of CVD Synthesis of Graphene. Chemical Vapor Deposition 2013, 19 (10-11-12), 297-322. 27. Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 2009, 9 (12), 4268-4272. 28. Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J., Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 2010, 10 (10), 4128-4133. 29. Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L.; Muller, D. A., Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469 (7330), 389-392. 30. Ruiz-Vargas, C. S.; Zhuang, H. L.; Huang, P. Y.; van der Zande, A. M.; Garg, S.; McEuen, P. L.; Muller, D. A.; Hennig, R. G.; Park, J., Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett 2011, 11 (6), 2259-2263. 31. Yu, Q.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D.; Chung, T. F.; Peng, P.; Guisinger, N. P.; Stach, E. A.; Bao, J.; Pei, S. S.; Chen, Y. P., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 2011, 10 (6), 443-449. 32. Ahmad, M.; An, H.; Kim, Y. S.; Lee, J. H.; Jung, J.; Chun, S. H.; Seo, Y., Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film. Nanotechnology 2012, 23 (28), 285705. 33. Song, H. S.; Li, S. L.; Miyazaki, H.; Sato, S.; Hayashi, K.; Yamada, A.; Yokoyama, N.; Tsukagoshi, K., Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci Rep 2012, 2, 337. 34. Tapasztó, L.; Nemes-Incze, P. t.; Dobrik, G.; Jae Yoo, K.; Hwang, C.; Biró, L. s. P., Mapping the electronic properties of individual graphene grain boundaries. Applied Physics Letters 2012, 100 (5), 053114. 35. Kidambi, P. R.; Ducati, C.; Dlubak, B.; Gardiner, D.; Weatherup, R. S.; Martin, M.-B.; Seneor, P.; Coles, H.; Hofmann, S., The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu. The Journal of Physical Chemistry C 2012, 116 (42), 22492-22501. 36. Li, X.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S., Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 2011, 133 (9), 2816-2819. 37. Chen, S.; Ji, H.; Chou, H.; Li, Q.; Li, H.; Suk, J. W.; Piner, R.; Liao, L.; Cai, W.; Ruoff, R. S., Millimeter-size single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv Mater 2013, 25 (14), 2062-2065. 38. Wang, C.; Chen, W.; Han, C.; Wang, G.; Tang, B.; Tang, C.; Wang, Y.; Zou, W.; Chen, W.; Zhang, X. A.; Qin, S.; Chang, S.; Wang, L., Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Sci Rep 2014, 4, 4537. 39. Chen, C. C.; Kuo, C. J.; Liao, C. D.; Chang, C. F.; Tseng, C. A.; Liu, C. R.; Chen, Y. T., Growth of Large-Area Graphene Single Crystals in Confined Reaction Space with Diffusion-Driven Chemical Vapor Deposition. Chemistry of Materials 2015, just accepted. 40. Reina, A.; Son, H.; Jiao, L.; Fan, B.; Dresselhaus, M. S.; Liu, Z.; Kong, J., Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C 2008, 112 (46), 17741-17744. 41. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 2009, 9 (1), 30-35. 42. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 2009, 9 (12), 4359-4363. 43. Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y., Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett 2011, 11 (2), 767-771. 44. Kedzierski, J.; Pei-Lan, H.; Reina, A.; Jing, K.; Healey, P.; Wyatt, P.; Keast, C., Graphene-on-Insulator Transistors Made Using C on Ni Chemical-Vapor Deposition. IEEE Electron Device Letters 2009, 30 (7), 745-747. 45. Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M., The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Applied Physics Letters 2011, 99 (12), 122108. 46. Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C.; Suenaga, K.; Chiu, P. W., Graphene annealing: how clean can it be? Nano Lett 2012, 12 (1), 414-419. 47. Gong, C.; Floresca, H. C.; Hinojos, D.; McDonnell, S.; Qin, X.; Hao, Y.; Jandhyala, S.; Mordi, G.; Kim, J.; Colombo, L.; Ruoff, R. S.; Kim, M. J.; Cho, K.; Wallace, R. M.; Chabal, Y. J., Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide. The Journal of Physical Chemistry C 2013, 117 (44), 23000-23008. 48. Lin, Y. C.; Jin, C.; Lee, J. C.; Jen, S. F.; Suenaga, K.; Chiu, P. W., Clean transfer of graphene for isolation and suspension. ACS Nano 2011, 5 (3), 2362-2368. 49. Han, Y.; Zhang, L.; Zhang, X.; Ruan, K.; Cui, L.; Wang, Y.; Liao, L.; Wang, Z.; Jie, J., Clean surface transfer of graphene films via an effective sandwich method for organic light-emitting diode applications. J. Mater. Chem. C 2014, 2 (1), 201-207. 50. Choi, W. J.; Chung, Y. J.; Park, S.; Yang, C. S.; Lee, Y. K.; An, K. S.; Lee, Y. S.; Lee, J. O., A simple method for cleaning graphene surfaces with an electrostatic force. Adv Mater 2014, 26 (4), 637-644. 51. Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L. P.; Zhang, Z.; Fu, Q.; Peng, L. M.; Bao, X.; Cheng, H. M., Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 2012, 3, 699. 52. Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P., Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 2011, 5 (12), 9927-9933. 53. de la Rosa, C. s. J. L.; Sun, J.; Lindvall, N.; Cole, M. T.; Nam, Y.; Löffler, M.; Olsson, E.; Teo, K. B. K.; Yurgens, A., Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on Cu. Applied Physics Letters 2013, 102 (2), 022101. 54. Caldwell, J. D.; Anderson, T. J.; Culbertson, J. C.; Jernigan, G. G.; Hobart, K. D.; Kub, F. J.; Tadjer, M. J.; Tedesco, J. L.; Hite, J. K.; Mastro, M. A.; Myers-Ward, R. L.; Eddy, C. R.; Campbell, P. M.; Gaskill, D. K., Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 2010, 4 (2), 1108-1114. 55. Kang, J.; Hwang, S.; Kim, J. H.; Kim, M. H.; Ryu, J.; Seo, S. J.; Hong, B. H.; Kim, M. K.; Choi, J. B., Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano 2012, 6 (6), 5360-5365. 56. Regan, W.; Alem, N.; Aleman, B.; Geng, B. S.; Girit, C.; Maserati, L.; Wang, F.; Crommie, M.; Zettl, A., A direct transfer of layer-area graphene. Applied Physics Letters 2010, 96 (11), 113102. 57. Wang, D. Y.; Huang, I. S.; Ho, P. H.; Li, S. S.; Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C.; Liang, C. T.; Chen, C. W., Clean-lifting transfer of large-area residual-free graphene films. Adv Mater 2013, 25 (32), 4521-4526. 58. Martins, L. G.; Song, Y.; Zeng, T.; Dresselhaus, M. S.; Kong, J.; Araujo, P. T., Direct transfer of graphene onto flexible substrates. Proc Natl Acad Sci U S A 2013, 110 (44), 17762-17767. 59. Lin, W. H.; Chen, T. H.; Chang, J. K.; Taur, J. I.; Lo, Y. Y.; Lee, W. L.; Chang, C. S.; Su, W. B.; Wu, C. I., A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 2014, 8 (2), 1784-1791. 60. Pasternak, I.; Krajewska, A.; Grodecki, K.; Jozwik-Biala, I.; Sobczak, K.; Strupinski, W., Graphene films transfer using marker-frame method. Aip Advances 2014, 4 (9), 097133. 61. Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making graphene visible. Applied Physics Letters 2007, 91 (6), 063124. 62. Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X., Graphene thickness determination using reflection and contrast spectroscopy. Nano Letters 2007, 7 (9), 2758-2763. 63. Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S., Raman spectroscopy in graphene. Physics Reports 2009, 473 (5-6), 51-87. 64. Rao, C. N.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 2009, 48 (42), 7752-7777. 65. Thomsen, C.; Reich, S., Double resonant raman scattering in graphite. Phys Rev Lett 2000, 85 (24), 5214-5217. 66. Bjorkman, T.; Kurasch, S.; Lehtinen, O.; Kotakoski, J.; Yazyev, O. V.; Srivastava, A.; Skakalova, V.; Smet, J. H.; Kaiser, U.; Krasheninnikov, A. V., Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systems. Sci Rep 2013, 3, 3482. 67. Park, J. S.; Reina, A.; Saito, R.; Kong, J.; Dresselhaus, G.; Dresselhaus, M. S., band Raman spectra of single, double and triple layer graphene. Carbon 2009, 47 (5), 1303-1310. 68. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 2006, 97 (18). 69. Cooper, D. R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; Yu, V., Experimental Review of Graphene. ISRN Condensed Matter Physics 2012, 2012, 1-56. 70. Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P., Measurement of Scattering Rate and Minimum Conductivity in Graphene. Physical Review Letters 2007, 99 (24), 246803. 71. Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E., Electronic transport in two-dimensional graphene. Reviews of Modern Physics 2011, 83 (2), 407-470. 72. Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 2008, 3 (4), 206-209. 73. Fratini, S.; Guinea, F., Substrate-limited electron dynamics in graphene. Physical Review B 2008, 77 (19), 195415. 74. Liu, Z.; Bol, A. A.; Haensch, W., Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Nano Lett 2011, 11 (2), 523-528. 75. Yan, Z.; Sun, Z.; Lu, W.; Yao, J.; Zhu, Y.; Tour, J. M., Controlled modulation of electronic properties of graphene by self-assembled monolayers on SiO2 substrates. ACS Nano 2011, 5 (2), 1535-1540. 76. Yokota, K.; Takai, K.; Enoki, T., Carrier control of graphene driven by the proximity effect of functionalized self-assembled monolayers. Nano Lett 2011, 11 (9), 3669-3675. 77. Lee, W. H.; Park, J.; Kim, Y.; Kim, K. S.; Hong, B. H.; Cho, K., Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv Mater 2011, 23 (30), 3460-3464. 78. Lv, H.; Wu, H.; Xiao, K.; Zhu, W.; Xu, H.; Zhang, Z.; Qian, H., Graphene mobility enhancement by organosilane interface engineering. Applied Physics Letters 2013, 102 (18), 183107. 79. Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S., Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5 (7), 6069-6076. 80. Jia, C.; Jiang, J.; Gan, L.; Guo, X., Direct optical characterization of graphene growth and domains on growth substrates. Sci Rep 2012, 2, 707. 81. Luo, Z.; Kim, S.; Kawamoto, N.; Rappe, A. M.; Johnson, A. T., Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. ACS Nano 2011, 5 (11), 9154-9160. 82. Wu, W.; Yu, Q.; Peng, P.; Liu, Z.; Bao, J.; Pei, S. S., Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology 2012, 23 (3), 035603. 83. Nie, S.; Wu, W.; Xing, S.; Yu, Q.; Bao, J.; Pei, S.-s.; McCarty, K. F., Growth from below: bilayer graphene on copper by chemical vapor deposition. New Journal of Physics 2012, 14 (9), 093028. 84. Han, Z.; Kimouche, A.; Kalita, D.; Allain, A.; Arjmandi-Tash, H.; Reserbat-Plantey, A.; Marty, L.; Pairis, S.; Reita, V.; Bendiab, N.; Coraux, J.; Bouchiat, V., Homogeneous Optical and Electronic Properties of Graphene Due to the Suppression of Multilayer Patches During CVD on Copper Foils. Advanced Functional Materials 2014, 24 (7), 964-970. 85. Park, J.; Lee, H., Effect of surface functional groups on nanostructure fabrication using AFM lithography. Materials Science and Engineering: C 2004, 24 (1-2), 311-314. 86. Suk, J. W.; Lee, W. H.; Lee, J.; Chou, H.; Piner, R. D.; Hao, Y.; Akinwande, D.; Ruoff, R. S., Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett 2013, 13 (4), 1462-1467. 87. Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K., Atomic hole doping of graphene. Nano Lett 2008, 8 (12), 4603-4607. 88. Joshi, P.; Romero, H. E.; Neal, A. T.; Toutam, V. K.; Tadigadapa, S. A., Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. J Phys Condens Matter 2010, 22 (33), 334214. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53989 | - |
| dc.description.abstract | 本論文主要分為兩部分,第一部分為合成高品質石墨烯,目標是利用化學氣相沉積法合成出單晶、大面積且具有高比例單層的石墨烯,我們利用石英狹縫做為一侷限空間的石墨烯成長方法,成功地達到大面積單晶石墨烯。然而,此一合成方式易合成出多層的石墨烯,因此我們探討在石墨烯合成過程中,使用不同的石英狹縫高度對合成石墨烯造成之影響,從模擬及合成結果可以發現當狹縫高度改變,氣體流場產生變化,當石英狹縫高度越窄,有效減少了成核點密度,得到之單晶石墨烯大小約為200 μm,但是其內部產生多層堆疊結構;然而當石英狹縫高度為180 μm時,可得到亦約200 μm大小之單晶石墨烯且有效提升單層之比例達99.7%。
此研究的第二部分為石墨烯轉置方法的開發,我們發展了一種石墨烯直接轉置的方法,藉由修飾具有疏水性官能基之自組裝單分子膜於矽基板上,利用石墨烯本身的疏水性質與基板表面產生作用,成功地將石墨烯轉置於矽基板上,再以各類顯微鏡、光譜及電性測量進行分析。從結果發現使用我們所開發的直接轉置方法可以得到較潔淨的石墨烯表面,且測量到的場效載子遷移率可高達4600 cm^2/(V*s),和普遍使用PMMA轉置石墨烯的方法所得到的結果是互相匹比的。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:35:43Z (GMT). No. of bitstreams: 1 ntu-104-R02223170-1.pdf: 5826765 bytes, checksum: 985aad1e9a782c9a88c9fc1092adb8e8 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iii Abstract iv 目錄 vi 圖目錄 x 表目錄 xv 第一章 緒論 1 1.1. 石墨烯基本性質 1 1.1.1. 石墨烯發展背景 2 1.2. 場效電晶體介紹 2 1.3. 自組裝薄膜介紹 3 第二章 文獻回顧 5 2.1. 石墨烯結構與特性7 5 2.2. 石墨烯製備方法 7 2.2.1. 機械剝離法 (micromechanical exfoliation) 7 2.2.2. 液相剝離法 (liquid-phase exfoliation, LPE) 8 2.2.3. 氧化還原法 (reduction from graphene oxide) 9 2.2.4. 碳化矽磊晶成長法 (epitaxial growth) 10 2.2.5. 化學氣相沉積法 (chemical vapor deposition, CVD) 11 2.3. 化學氣相沉積法製備石墨烯 13 2.3.1. 化學氣相沉積法研究進展 13 2.3.2. 化學氣相沉積之成長機制 14 2.3.3. 石墨烯晶界對其性質之影響 17 2.3.4. 降低成核點密度之進展 19 2.4. 化學氣相沉積石墨烯轉置方法 22 2.4.1. 聚合物支撐層轉置法 (polymer supported transfer method) 22 2.4.2. 熱解膠帶轉置法 26 2.4.3. 無聚合物轉置法 27 2.5. 石墨烯檢測方法 30 2.5.1. 光學散射 30 2.5.2. 拉曼光譜 (Raman spectroscopy) 32 2.6. 石墨烯場效電晶體特性 36 2.6.1. 載子傳輸理論 36 2.6.2. 載子傳輸之散射 37 2.6.3. 矽基板表面改質對石墨烯影響 38 2.7. 研究動機與目標 41 第三章 實驗方法與材料 42 3.1. 化學氣相沉積法製備石墨烯 42 3.1.1. 化學氣相沉積法儀器架構 42 3.1.2. 有限元素方法模擬CVD系統流場 44 3.2. 石墨烯轉置方法 45 3.2.1. 聚合物支撐層轉置法 45 3.2.2. 直接轉置法 46 3.3. 檢驗儀器 47 3.3.1. 光學顯微鏡 (optical microscopy, OM) 47 3.3.2. 掃描式電子顯微鏡 (scanning electron microscopy, SEM) 48 3.3.3. 原子力顯微鏡 (atomic force microscopy, AFM) 48 3.3.4. 共軛焦拉曼顯微鏡 (confocal scanning raman microscopy) 48 3.3.5. 接觸角測量儀 (contact angle meter) 49 3.3.6. 電性量測裝置 49 3.4. 石墨烯場效電晶體元件製作 50 3.4.1. 退火處理 50 3.4.2. 元件製作 50 第四章 結果與討論 51 4.1. 石墨烯合成 51 4.1.1. 以石英狹縫進行石墨烯之合成 51 4.1.2. 狹縫高度對石墨烯成長結果之影響 53 4.2. 石墨烯轉置方法開發 58 4.2.1. 化學氣相沉積法製備單層石墨烯薄膜 58 4.2.2. 製備自組裝薄膜於矽基板 60 4.2.3. 藉由疏水作用直接轉置石墨烯方法 64 4.3. 石墨烯品質的鑑定 67 4.3.1. 各類顯微鏡之石墨烯品質鑑定 67 4.3.2. 石墨烯之拉曼光譜分析 70 4.3.3. 石墨烯之電性測量 72 第五章 總結 77 第六章 參考文獻 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 疏水作用 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 化學氣相沉積 | zh_TW |
| dc.subject | 自組裝單分子膜 | zh_TW |
| dc.subject | 石墨烯轉置 | zh_TW |
| dc.subject | graphene | en |
| dc.subject | hydrophobic interaction | en |
| dc.subject | self-assembled monolayer | en |
| dc.subject | graphene transfer | en |
| dc.subject | chemical vapor deposition | en |
| dc.title | 合成高品質化學氣相沉積石墨烯暨利用表面疏水作用直接轉置石墨烯方法之開發 | zh_TW |
| dc.title | Synthesis of High Quality Graphene by Chemical Vapor Deposition and Direct Transfer of Graphene via Hydrophobic Interaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李世琛(Sze-Tsen Lee),陳巧貞(Chiao-Chen Chen) | |
| dc.subject.keyword | 石墨烯,化學氣相沉積,自組裝單分子膜,石墨烯轉置,疏水作用, | zh_TW |
| dc.subject.keyword | graphene,chemical vapor deposition,graphene transfer,self-assembled monolayer,hydrophobic interaction, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 5.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
