請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53963
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊杉(Chiun-Shan Chen) | |
dc.contributor.author | Kuan-Po Lin | en |
dc.contributor.author | 林冠伯 | zh_TW |
dc.date.accessioned | 2021-06-16T02:34:50Z | - |
dc.date.available | 2020-07-29 | |
dc.date.copyright | 2015-07-29 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-28 | |
dc.identifier.citation | 1. Feng, G. and W.D. Nix, Indentation size effect in MgO. Scripta Materialia, 2004. 51(6): p. 599-603.
2. Li, X. and B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications. Materials Characterization, 2002. 48(1): p. 11-36. 3. Mook, W.M., et al., Compression of freestanding gold nanostructures: from stochastic yield to predictable flow. Nanotechnology, 2010. 21(5): p. 055701. 4. Fischer-Cripps, A.C., Nanoindentation. 2011. 5. Pharr, G.M., Measurement of mechanical properties by ultra-low load indentation. Materials Science and Engineering: A, 1998. 253(1–2): p. 151-159. 6. Pethicai, J., R. Hutchings, and W. Oliver, Hardness measurement at penetration depths as small as 20 nm. Philosophical Magazine A, 1983. 48(4): p. 593-606. 7. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992. 7(06): p. 1564-1583. 8. Oliver, W.C. and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004. 19(1): p. 3-20. 9. Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388. 10. Li, X., et al., Nanoindentation of Silver Nanowires. Nano Letters, 2003. 3(11): p. 1495-1498. 11. Turner, C.H., et al., The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. Journal of Biomechanics, 1999. 32(4): p. 437-441. 12. Zhu, T. and J. Li, Ultra-strength materials. Progress in Materials Science, 2010. 55(7): p. 710-757. 13. Shan, Z.W., et al., Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater, 2008. 7(2): p. 115-119. 14. Greer, J.R., Bridging the gap between computational and experimental length scales: A review on nanoscale plasticity. Rev. Adv. Mater. Sci, 2006. 13(1): p. 59-70. 15. Ashby, M.F., Deformation of Plastically Non-Homogeneous Materials. Philosophical Magazine, 1970. 21(170): p. 399. 16. Nye, J.F., Some geometrical relations in dislocated crystals. Acta Metallurgica, 1953. 1(2): p. 153-162. 17. Nix, W.D. and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998. 46(3): p. 411-425. 18. Tymiak, N.I., et al., Plastic strain and strain gradients at very small indentation depths. Acta Materialia, 2001. 49(6): p. 1021-1034. 19. Baker, S.P., R.P. Vinci, and T. Arias, Elastic and anelastic behavior of materials in small dimensions. Mrs Bulletin, 2002. 27(1): p. 26-29. 20. Elmustafa, A.A. and D.S. Stone, Indentation size effect in polycrystalline F.C.C. metals. Acta Materialia, 2002. 50(14): p. 3641-3650. 21. Gerberich, W.W., et al., Interpretations of indentation size effects. Journal of Applied Mechanics-Transactions of the Asme, 2002. 69(4): p. 433-442. 22. Choi, Y., et al., Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. Journal of Applied Physics, 2003. 94(9): p. 6050-6058. 23. Elmustafa, A.A. and D.S. Stone, Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 2003. 51(2): p. 357-381. 24. Peng, Z., J. Gong, and H. Miao, On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data. Journal of the European Ceramic Society, 2004. 24(8): p. 2193-2201. 25. Durst, K., B. Backes, and M. Göken, Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scripta Materialia, 2005. 52(11): p. 1093-1097. 26. Soer, W.A., K.E. Aifantis, and J.T.M. De Hosson, Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Materialia, 2005. 53(17): p. 4665-4676. 27. Yang, B. and H. Vehoff, Grain size effects on the mechanical properties of nanonickel examined by nanoindentation. Materials Science and Engineering A, 2005. 400-401(1-2 SUPPL.): p. 467-470. 28. Lilleodden, E.T. and W.D. Nix, Microstructural length-scale effects in the nanoindentation behavior of thin gold films. Acta Materialia, 2006. 54(6): p. 1583-1593. 29. Wang, J.L., et al., Size effect in contact compression of nano- and microscale pyramid structures. Acta Materialia, 2006. 54(15): p. 3973-3982. 30. Abu Al-Rub, R.K., Prediction of micro and nanoindentation size effect from conical or pyramidal indentation. Mechanics of Materials, 2007. 39(8): p. 787-802. 31. Durst, K., M. Goken, and G.M. Pharr, Indentation size effect in spherical and pyramidal indentations. Journal of Physics D-Applied Physics, 2008. 41(7). 32. Demir, E., et al., Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Materialia, 2009. 57(2): p. 559-569. 33. Qiao, X.G., M.J. Starink, and N. Gao, The influence of indenter tip rounding on the indentation size effect. Acta Materialia, 2010. 58(10): p. 3690-3700. 34. Swadener, J.G., E.P. George, and G.M. Pharr, The correlation of the indentation size effect measured with indenters of various shapes. Journal of the Mechanics and Physics of Solids, 2002. 50(4): p. 681-694. 35. Stelmashenko, N.A., et al., Microindentations on W and Mo oriented single crystals: An STM study. Acta Metallurgica et Materialia, 1993. 41(10): p. 2855-2865. 36. McElhaney, K.W., J.J. Vlassak, and W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. Journal of Materials Research, 1998. 13(05): p. 1300-1306. 37. Durst, K., et al., Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Materialia, 2006. 54(9): p. 2547-2555. 38. Huang, Y., et al., A nano-indentation model for spherical indenters. Modelling and Simulation in Materials Science and Engineering, 2007. 15(1): p. S255. 39. Li, X., et al., Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, 2010. 464(7290): p. 877-80. 40. Kallman, J.S., et al., Molecular dynamics of silicon indentation. Phys Rev B Condens Matter, 1993. 47(13): p. 7705-7709. 41. Horstemeyer, M.F., M.I. Baskes, and S.J. Plimpton, Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 2001. 49(20): p. 4363-4374. 42. Liang, H.Y., et al., Crystalline plasticity on copper (001), (110), and (111) surfaces during nanoindentation. Cmes-Computer Modeling in Engineering & Sciences, 2004. 6(1): p. 105-114. 43. Lee, Y., et al., Atomistic simulations of incipient plasticity under Al(1 1 1) nanoindentation. Mechanics of Materials, 2005. 37(10): p. 1035-1048. 44. Yamakov, V., et al., Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Materialia, 2001. 49(14): p. 2713-2722. 45. Gannepalli, A. and S.K. Mallapragada, Atomistic studies of defect nucleation during nanoindentation of Au(001). Physical Review B, 2002. 66(10): p. 1041031-1041039. 46. Lilleodden, E.T., et al., Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. Journal of the Mechanics and Physics of Solids, 2003. 51(5): p. 901-920. 47. Nair, A.K., et al., Size effects in indentation response of thin films at the nanoscale: A molecular dynamics study. International Journal of Plasticity, 2008. 24(11): p. 2016-2031. 48. Gao, Y., et al., Comparative simulation study of the structure of the plastic zone produced by nanoindentation. Journal of the Mechanics and Physics of Solids, 2015. 75(0): p. 58-75. 49. Honeycutt, J.D. and H.C. Andersen, Molecular-Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters. Journal of Physical Chemistry, 1987. 91(19): p. 4950-4963. 50. Kelchner, C.L., S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998. 58(17): p. 11085-11088. 51. Ackland, G.J. and A.P. Jones, Applications of local crystal structure measures in experiment and simulation. Physical Review B, 2006. 73(5). 52. Stukowski, A. and K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in Materials Science and Engineering, 2010. 18(8). 53. Shewchuk, J.R., Triangle A two dimensional Quality Mesh Generator and Delauuay Triangulator. https://www.cs.cmu.edu/~quake/triangle.html. 54. Taylor, G.I., Plastic Strain in Metals. Journal of the Institute of Metals, 1938. 62: p. 307-324. 55. Honeycutt, J.D. and H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. The Journal of Physical Chemistry, 1987. 91(19): p. 4950-4963. 56. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. 1988, New York: McGraw-Hill. 57. Steve Plimpton, Aidan Thompson, and P. Crozier, LAMMPS, Molecular Dynamics Simulator. 2011. 58. Baskes, M.I., Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 1992. 46(5): p. 2727-2742. 59. Foiles, S.M., M.I. Baskes, and M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 1986. 33(12): p. 7983-7991. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53963 | - |
dc.description.abstract | 壓痕試驗為微觀及奈米尺度中最為普遍之材料強度檢測方式,當壓痕深度小至微米尺度時,硬度會隨著壓痕深度降低而升高,這種現象稱之為「壓痕尺寸效應」,Nix and Gao以幾何必要差排理論成功的解釋在微米尺度壓痕試驗的尺寸效應,但是在將其理論應用至奈米尺度時,硬度的預測則有高估的情形。近年來,許多研究紛紛針對此現象提出不同的看法,嘗試利用其他變數修正並解釋壓痕尺寸效應在奈米尺度下的行為。本研究將提出一在原子尺度模擬下量測差排密度的方法,並利用Taylor dislocation theory將其與原子尺度模擬下直接量測之硬度相對照,並利用原子尺度模擬探討相關機制與奈米壓痕尺寸效應。
本研究以半徑20 Å至60 Å的球形壓痕探針檢測FCC單晶鎳、單晶銅、單晶金之奈米薄膜。模擬結果顯示利用本研究所提出之方法量測之幾何必要差排密度在模型大小設置足夠的情況下表現良好。本研究發現利用各尺寸之球型壓痕探針所得到之幾何差排密度遠小於Swadener等人之理論模型,此結果與Feng等人所提出的結果一致。利用幾何必要差排密度所推導得到的硬度與原子尺度模擬下量測的硬度相差不遠,而原子尺度模擬下量測的硬度亦與壓痕探針之半徑開根號成反比,成功驗證奈米尺度下應變梯度塑性理論與幾何必要差排密度尺寸效應。 | zh_TW |
dc.description.abstract | Indentation experiment is one of the most useful method to probe the strength of materials that are manufactured at micro or nano scales. When indentation depth decrease to micro meters, the hardness increase as the indentation depth decrease. It is known as the indentation size effect. Nix and Gao present a theoretical model to explain the indentation size effect in microindentation. However, it overestimate the hardness in nanoindentation. For years, many studies tried to explain and modify Nix and Gao model for nanoindentation with free parameters. In this study, a method is presented to measure the dislocation density directly in atomistic simulation, and using the Taylor dislocation theory to compare with the hardness from atomistic simulation. Atomistic simulation were conducted to elucidate the relationship between size effect and the geometrically necessary dislocation density.
In this study, spherical indenters with their radius from 20Å to 60Å was exploited to examine the FCC single crystal thin film of nickel, copper and gold. Indentation experiments methods of measuring dislocation density and hardness also works well in atomistic simulation. Geometrically necessary dislocation density measuring by our method works well in simulation if the size of the model is large enough to ignore the boundary effects. In present work, diverse radius of spherical indenter indicated that the geometry necessary dislocation density is much smaller than the theory proposed by Swadener et al., which is in agreement of the findings of Feng[1]. Hardness derived by dislocation density is close to the hardness directly computed from atomistic simulation. Hardness directly from simulation is inversely proportion to the square root of indenter radius which is agreed with the theory of strain gradient plasticity. It can be concluded that the strain gradient plasticity of size effect and geometric necessary dislocation density were valid at atomistic scale. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:34:50Z (GMT). No. of bitstreams: 1 ntu-104-R02521607-1.pdf: 6725460 bytes, checksum: 46809917dcaf511bff4b57b3c5ad1c08 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審訂書 I
Acknowledgement II 中文摘要 III Abstract IV Table of Contents VI List of Figures IX List of Tables XII Chapter 1. Introduction 1 1.1. Background and Motivation 1 1.2. Objectives of the Thesis 4 1.3. Organization of the Thesis 4 Chapter 2. Methodology 6 2.1. Equilibrium State 6 2.2. Indenter Repulsive Potential 7 2.3. Hardness 8 2.3.1. Determination of Hardness with Atomistic Information 9 2.3.2. Determination of Hardness with Oliver-Pharr Method 10 2.4. Taylor Dislocation Theory 13 2.5. Dislocation Extraction 13 2.6. Dislocation Density 16 2.6.1. Dislocation Density-Length/Volume 16 2.6.2. Dislocation Density-Number/Surface Area 20 Chapter 3. Simulation Details 21 3.1. Simulation Program 21 3.2. Simulation System Setup 21 3.3. Simulation Process 24 3.3.1. Indentation Process 24 3.3.2. Retraction Process 24 3.4. Hardness 24 3.4.1. Hardness Determined from Atomistic Information 25 3.4.2. Hardness Determined from Oliver-Pharr Method 28 3.5. Dislocation Density 30 3.5.1. Dislocation Density Determined by Length/Volume 30 3.5.2. Dislocation Density Determined by Number/Surface Area 36 3.6. Summary 37 Chapter 4. Results and Discussions 39 4.1. Indentation Process 39 4.2. Indentation Size Effect-Dislocation Density 45 4.3. Indentation Size Effect-Hardness 47 Chapter 5. Conclusions and Future Work 52 5.1. Conclusions 52 5.2. Future Work 54 References 55 | |
dc.language.iso | en | |
dc.title | 以原子尺度模擬探討幾何必要差排與奈米壓痕尺寸效應 | zh_TW |
dc.title | Atomistic Study for Geometrically Necessary Dislocation and Nanoindentation Size Effects | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張守一(Shou-Yi Chang),顏鴻威(Hung-Wei Yen) | |
dc.subject.keyword | 壓痕尺寸效應,應變梯度塑性理論,幾何必要差排, | zh_TW |
dc.subject.keyword | Nanoindentation size effect,Strain gradient plasticity,geometrically necessary dislocation density, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 6.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。