Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53956
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌(Shih-Huang Tung)
dc.contributor.authorChih-Yang Chengen
dc.contributor.author鄭智洋zh_TW
dc.date.accessioned2021-06-16T02:34:36Z-
dc.date.available2020-07-29
dc.date.copyright2015-07-29
dc.date.issued2015
dc.date.submitted2015-07-28
dc.identifier.citation1. Tung, S.-H.; Huang, Y.-E.; Raghavan, S. R. A new reverse wormlike micellar system: mixtures of bile salt and lecithin in organic liquids. Journal of the American Chemical Society 2006, 128, 5751-5756.
2. Tung, S.-H.; Lee, H.-Y.; Raghavan, S. R. A Facile Route for Creating “Reverse” Vesicles: Insights into “Reverse” Self-Assembly in Organic Liquids. Journal of the American Chemical Society 2008, 130, 8813-8817.
3. Njauw, C.-W.; Cheng, C.-Y.; Ivanov, V. A.; Khokhlov, A. R.; Tung, S.-H. Molecular interactions between lecithin and bile salts/acids in oils and their effects on reverse micellization. Langmuir 2013, 29, 3879-3888.
4. Raghavan, S. R.; Kaler, E. W. Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 2000, 17, 300-306.
5. Elsayed, M. M. A.; Cevc, G. The vesicle-to-micelle transformation of phospholipid-cholate mixed aggregates: a state of the art analysis including membrane curvature effects. Biochimica Et Biophysica Acta-Biomembranes 2011, 1808, 140-153.
6. Madenci, D.; Salonen, A.; Schurtenberger, P.; Pedersen, J. S.; Egelhaaf, S. U. Simple model for the growth behaviour of mixed lecithin-bile salt micelles. Physical Chemistry Chemical Physics 2011, 13, 3171-3178.
7. Schurtenberger, P.; Scartazzini, R.; Luisi, P. L. Viscoelastic properties of polymer-like reverse micelles. Rheol Acta 1989, 28, 372-381.
8. Israelachvili, J. N., Intermolecular and surface forces; 3rd ed.; Academic Press: San Diego, 2011.
9. Lee, H.-Y.; Diehn, K. K.; Ko, S. W.; Tung, S.-H.; Raghavan, S. R. Can simple salts influence self-assembly in oil? Multivalent cations as efficient gelators of lecithin organosols. Langmuir 2010, 26, 13831-13838.
10. Shrestha, L. K.; Yamamoto, M.; Arima, S.; Aramaki, K. Charge-free reverse wormlike micelles in nonaqueous media. Langmuir 2011, 27, 2340-2348.
11. Walter, A.; Vinson, P. K.; Kaplun, A.; Talmon, Y. Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition. Biophysical Journal 1991, 60, 1315-1325.
12. Almog, S.; Kushnir, T.; Nir, S.; Lichtenberg, D. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles. Biochemistry 1986, 25, 2597-2605.
13. Nichols, J. W.; Ozarowski, J. Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid-chromatography. Biochemistry 1990, 29, 4600-4606.
14. Tamesue, N.; Inoue, T.; Juniper, K., Jr. Solubility of cholesterol in bile salt-lecithin model systems. The American Journal of Digestive Diseases 1973, 18, 670-678.
15. Mazer, N. A.; Benedek, G. B.; Carey, M. C. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry 1980, 19, 601-615.
16. Chiruvolu, S.; Warriner, H.; Naranjo, E.; Idziak, S.; Radler, J.; Plano, R.; Zasadzinski, J.; Safinya, C. A phase of liposomes with entangled tubular vesicles. Science 1994, 266, 1222-1225.
17. He, W.; Ladinsky, M. S.; Huey-Tubman, K. E.; Jensen, G. J.; McIntosh, J. R.; Bjorkman, P. J. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 2008, 455, 542-546.
18. Hofmann, A. F.; Small, D. M. Detergent Properties of Bile Salts: Correlation with Physiological Function. Annual Review of Medicine 1967, 18, 333-376.
19. Carey, M. C.; Small, D. M. The characteristics of mixed micellar solutions with particular reference to bile. The American Journal of Medicine 1970, 49, 590-608.
20. Coello, A.; Meijide, F.; Nunez, E. R.; Tato, J. V. Aggregation behavior of bile salts in aqueous solution. Journal of Pharmaceutical Sciences 1996, 85, 9-15.
21. Cohen, D. E.; Thurston, G. M.; Chamberlin, R. A.; Benedek, G. B.; Carey, M. C. Laser Light Scattering Evidence for a Common Wormlike Growth Structure of Mixed Micelles in Bile Salt− and Straight-Chain Detergent−Phosphatidylcholine Aqueous Systems:  Relevance to the Micellar Structure of Bile. Biochemistry 1998, 37, 14798-14814.
22. Hjelm, R. P.; Thiyagarajan, P.; Alkan-Onyuksel, H. Organization of phosphatidylcholine and bile salt in rodlike mixed micelles. The Journal of Physical Chemistry 1992, 96, 8653-8661.
23. Hofmann, A. F.; Small, D. M. Detergent properties of bile salts - correlation with physiological function. Annual Review of Medicine 1967, 18, 333-376.
24. Coello, A.; Meijide, F.; Núñez, E. R.; Tato, J. V. Aggregation behavior of bile salts in aqueous solution. J. Pharm. Sci. 1996, 85, 9-15.
25. Carey, M. C.; Small, D. M. Characteristics of mixed micellar solutions with particular reference to bile. American Journal of Medicine 1970, 49, 590-608.
26. Fahey, D. A.; Carey, M. C.; Donovan, J. M. Bile acid/phosphatidylcholine interactions in mixed monomolecular layers - differences in condensation effects but not interfacial orientation between hydrophobic and hydrophilic bile-acid species. Biochemistry 1995, 34, 10886-10897.
27. Heuman, D. M. Distribution of mixtures of bile salt taurine conjugates between lecithin-cholesterol vesicles and aqueous media: an empirical model. Journal of Lipid Research 1997, 38, 1217-1228.
28. Ollila, F.; Slotte, J. P. A thermodynamic study of bile salt interactions with phosphatidylcholine and sphingomyelin unilamellar vesicles. Langmuir 2001, 17, 2835-2840.
29. Kupetz, E.; Preu, L.; Kunick, C.; Bunjes, H. Parenteral formulation of an antileishmanial drug candidate – Tackling poor solubility, chemical instability, and polymorphism. European Journal of Pharmaceutics and Biopharmaceutics 2013, 85, 511-520.
30. Gheriani-Gruszka, N.; Almog, S.; Biltonen, R. L.; Lichtenberg, D. Hydrolysis of phosphatidylcholine in phosphatidylcholine-cholate mixtures by porcine pancreatic phospholipase A2. Journal of Biological Chemistry 1988, 263, 11808-11813.
31. Hammad, M. A.; Müller, B. W. Increasing drug solubility by means of bile salt–phosphatidylcholine-based mixed micelles. European Journal of Pharmaceutics and Biopharmaceutics 1998, 46, 361-367.
32. Chen, Y.; Lu, Y.; Chen, J.; Lai, J.; Sun, J.; Hu, F.; Wu, W. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. International Journal of Pharmaceutics 2009, 376, 153-160.
33. Egelhaaf, S. U.; Schurtenberger, P. Shape transformations in the lecithin-bile salt system: from cylinders to vesicles. The Journal of Physical Chemistry 1994, 98, 8560-8573.
34. Meyuhas, D.; Bor, A.; Pinchuk, I.; Kaplun, A.; Talmon, Y.; Kozlov, M. M.; Lichtenberg, D. Effect of ionic strength on the self-assembly in mixtures of phosphatidylcholine and sodium cholate. Journal of Colloid and Interface Science 1997, 188, 351-362.
35. Nichols, J. W.; Ozarowski, J. Sizing of lecithin-bile salt mixed micelles by size-exclusion high-performance liquid chromatography. Biochemistry 1990, 29, 4600-4606.
36. Shchipunov, Y. A. Lecithin organogel - a micellar system with unique properties. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2001, 183, 541-554.
37. Dreiss, C. A. Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3, 956-970.
38. Lo Nostro, P.; Ninham, B. W. Hofmeister phenomena: an update on ion specificity in biology. Chemical Reviews 2012, 112, 2286-2322.
39. Lee, T.; Chen, J. G. Biomimetic gallstone formation: crystallization of calcium carbonate by the evolving taurocholate−lecithin−cholesterol complex lipid system. Crystal Growth & Design 2009, 9, 3737-3748.
40. Admirand, W. H.; Small, D. M. The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest 1968, 47, 1043-52.
41. Raut, S.; Bhadoriya, S. S.; Uplanchiwar, V.; Mishra, V.; Gahane, A.; Jain, S. K. Lecithin organogel: a unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharmaceutica Sinica B 2012, 2, 8-15.
42. Elnaggar, Y. S. R.; El-Refaie, W. M.; El-Massik, M. A.; Abdallah, O. Y. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. Journal of Controlled Release 2014, 180, 10-24.
43. Jeng, U.-S.; Su, C. H.; Su, C.-J.; Liao, K.-F.; Chuang, W.-T.; Lai, Y.-H.; Chang, J.-W.; Chen, Y.-J.; Huang, Y.-S.; Lee, M.-T.; Yu, K.-L.; Lin, J.-M.; Liu, D.-G.; Chang, C.-F.; Liu, C.-Y.; Chang, C.-H.; Liang, K. S. A small/wide-angle X-ray scattering instrument for structural characterization of air-liquid interfaces, thin films and bulk specimens. Journal of Applied Crystallography 2010, 43, 110-121.
44. Kline, S. Reduction and analysis of SANS and USANS data using IGOR Pro. Journal of Applied Crystallography 2006, 39, 895-900.
45. Pedersen, J. S. Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Advances in Colloid and Interface Science 1997, 70, 171-210.
46. Pedersen, J. S.; Schurtenberger, P. Scattering functions of semiflexible polymers with and without excluded volume effects. Macromolecules 1996, 29, 7602-7612.
47. Chen, W.-R.; Butler, P. D.; Magid, L. J. Incorporating intermicellar interactions in the fitting of SANS data from cationic wormlike micelles. Langmuir 2006, 22, 6539-6548.
48. Livsey, I. Neutron scattering from concentric cylinders. Intraparticle interference function and radius of gyration. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1987, 83, 1445-1452.
49. Small, D. M.; Admirand, W. Solubility of bile salts. Nature 1969, 221, 265-267.
50. Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A. Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimetry. Langmuir 2000, 16, 5267-5275.
51. Evans, D. F.; Wennerstrom, H., The colloidal domain: where physics, chemistry, biology, and technology meet; 2nd ed.; Wiley-VCH: New York, 1999.
52. Kunz, W.; Henle, J.; Ninham, B. W. Zur Lehre von der Wirkung der Salze (about the science of the effect of salts): Franz Hofmeister's historical papers. Current Opinion in Colloid & Interface Science 2004, 9, 19-37.
53. Hofmann, A. F.; Mysels, K. J. Bile acid solubility and precipitation in vitro and in vivo: the role of conjugation, pH, and Ca2+ ions. Journal of Lipid Research 1992, 33, 617-26.
54. Gunnarsson, G.; Joensson, B.; Wennerstroem, H. Surfactant association into micelles. An electrostatic approach. The Journal of Physical Chemistry 1980, 84, 3114-3121.
55. Akutsu, H.; Seelig, J. Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry 1981, 20, 7366-7373.
56. Schurtenberger, P.; Mazer, N.; Kaenzig, W. Micelle to vesicle transition in aqueous solutions of bile salt and lecithin. The Journal of Physical Chemistry 1985, 89, 1042-1049.
57. Glatter, O. The interpretation of real-space information from small-angle scattering experiments. Journal of Applied Crystallography 1979, 12, 166-175.
58. Brunner-Popela, J.; Glatter, O. Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. Journal of Applied Crystallography 1997, 30, 431-442.
59. Varade, D.; Ushiyama, K.; Shrestha, L. K.; Aramaki, K. Wormlike micelles in Tween-80/CmEO3 mixed nonionic surfactant systems in aqueous media. Journal of Colloid and Interface Science 2007, 312, 489-497.
60. May, A.; Pasc, A.; Stébé, M. J.; Gutiérrez, J. M.; Porras, M.; Blin, J. L. Tailored jeffamine molecular tools for ordering mesoporous silica. Langmuir 2012, 28, 9816-9824.
61. Shrestha, L. K.; Shrestha, R. G.; Aramaki, K.; Yoshikawa, G.; Ariga, K. Demonstration of solvent-induced one-dimensional nonionic reverse micelle growth. J. Phys. Chem. Lett. 2013, 4, 2585-2590.
62. Zangi, R.; Berne, B. J. Aggregation and dispersion of small hydrophobic particles in aqueous electrolyte solutions. The Journal of Physical Chemistry B 2006, 110, 22736-22741.
63. Carey, M. C.; Small, D. M. Micellar properties of dihydroxy and trihydroxy bile salts: effects of counterion and temperature. Journal of Colloid and Interface Science 1969, 31, 382-396.
64. Sangeetha, N. M.; Maitra, U. Supramolecular gels: Functions and uses. Chemical Society Reviews 2005, 34, 821-836.
65. Aggeli, A.; Bell, M.; Boden, N.; Keen, J. N.; Knowles, P. F.; McLeish, T. C. B.; Pitkeathly, M.; Radford, S. E. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric [beta]-sheet tapes. Nature 1997, 386, 259-262.
66. Estroff, L. A.; Hamilton, A. D. Water Gelation by Small Organic Molecules. Chemical Reviews 2004, 104, 1201-1218.
67. Terech, P.; Weiss, R. G. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chemical Reviews 1997, 97, 3133-3160.
68. Osada, Y.; Gong, J.-P. Soft and Wet Materials: Polymer Gels. Advanced Materials 1998, 10, 827-837.
69. Munialo, C. D.; Martin, A. H.; van der Linden, E.; de Jongh, H. H. J. Fibril Formation from Pea Protein and Subsequent Gel Formation. Journal of Agricultural and Food Chemistry 2014, 62, 2418-2427.
70. van Herpt, J. T.; Stuart, M. C. A.; Browne, W. R.; Feringa, B. L. Mechanically Induced Gel Formation. Langmuir 2013, 29, 8763-8767.
71. Ichinose, W.; Miyagawa, M.; Yamaguchi, M. Reversible Shrinkage of Self-Assembled Two-Component Organogels by Lithium Salts: Synthesis of Gelation Property and Lithium Salt Response Using Bidomain Helicene Oligomer. Chemistry of Materials 2013, 25, 4036-4043.
72. Ye, F.; Chen, S.; Tang, G.; Ma, M.; Wang, X. Self-assembled nanofibrillar gel network toughened PMMA nanocomposite by in situ thermal polymerization of MMA gel. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 480, 1-10.
73. Abdel-Rahem, R.; Hoffmann, H. The distinction of viscoelastic phases from entangled wormlike micelles and of densely packed multilamellar vesicles on the basis of rheological measurements. Rheol Acta 2006, 45, 781-792.
74. Gradzielski, M. The rheology of vesicle and disk systems — Relations between macroscopic behaviour and microstructure. Current Opinion in Colloid & Interface Science 2011, 16, 13-17.
75. Gradzielski, M.; Bergmeier, M.; Müller, M.; Hoffmann, H. Novel Gel Phase:  A Cubic Phase of Densely Packed Monodisperse, Unilamellar Vesicles. The Journal of Physical Chemistry B 1997, 101, 1719-1722.
76. Long, P.; Hao, J. A gel state from densely packed multilamellar vesicles in the crystalline state. Soft Matter 2010, 6, 4350-4356.
77. Goetz, R. J.; El-Aasser, M. S. Dilute phase behavior of cetyl alcohol, sodium lauryl sulfate, and water. Langmuir 1990, 6, 132-136.
78. Menger, F. M.; Peresypkin, A. V. Strings of Vesicles:  Flow Behavior in an Unusual Type of Aqueous Gel. Journal of the American Chemical Society 2003, 125, 5340-5345.
79. Brandl, M.; Drechsler, M.; Bachmann, D.; Tardi, C.; Schmidtgen, M.; Bauer, K.-H. Preparation and characterization of semi-solid phospholipid dispersions and dilutions thereof. International Journal of Pharmaceutics 1998, 170, 187-199.
80. Shinto, K.; Hoffmann, H.; Watanabe, K.; Teshigawara, T. Hydrogels from diacylphosphatidylcholine. Colloid and Polymer Science 2012, 290, 91-95.
81. Hjelm, R. P.; Alkan, M. H.; Thiyagarajan, P. Small-Angle Neutron Scattering Studies of Mixed Bile Salt-Lecithin Colloids. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 1990, 180, 155-164.
82. Hauser, H.; Phillips, M. C.; Levine, B. A.; Williams, R. J. P. Conformation of the lecithin polar group in charged vesicles. Nature 1976, 261, 390-394.
83. Müller, K. Structural Aspects of Bile Salt-Lecithin Mixed Micelles. Hepatology 1984, 4, 134S-137S.
84. Zimmerer, R. O.; Lindenbaum, S. Enthalpy of bile salt-lecithin mixed micelle formation. Journal of Pharmaceutical Sciences 1979, 68, 581-585.
85. Claffey, W. J.; Holzbach, R. T. Dimorphism in bile salt/lecithin mixed micelles. Biochemistry 1981, 20, 415-418.
86. Nawroth, T.; Buch, P.; Buch, K.; Langguth, P.; Schweins, R. Liposome Formation from Bile Salt–Lipid Micelles in the Digestion and Drug Delivery Model FaSSIFmod Estimated by Combined Time-Resolved Neutron and Dynamic Light Scattering. Molecular Pharmaceutics 2011, 8, 2162-2172.
87. Cheng, C.-Y.; Oh, H.; Wang, T.-Y.; Raghavan, S. R.; Tung, S.-H. Mixtures of Lecithin and Bile Salt Can Form Highly Viscous Wormlike Micellar Solutions in Water. Langmuir 2014, 30, 10221-10230.
88. Arleth, L.; Bauer, R.; Øgendal, L. H.; Egelhaaf, S. U.; Schurtenberger, P.; Pedersen, J. S. Growth Behavior of Mixed Wormlike Micelles:  a Small-Angle Scattering Study of the Lecithin−Bile Salt System. Langmuir 2003, 19, 4096-4104.
89. Mazer, N. A.; Carey, M. C.; Kwasnick, R. F.; Benedek, G. B. Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry 1979, 18, 3064-3075.
90. Pedersen, J. S.; Egelhaaf, S. U.; Schurtenberger, P. Formation of Polymerlike Mixed Micelles and Vesicles in Lecithin-Bile Salt Solutions: A Small-Angle Neutron-Scattering Study. The Journal of Physical Chemistry 1995, 99, 1299-1305.
91. Reinhold, J. G.; Ferguson, L. K.; Hunsberger, A., Jr. The composition of human gallbladder bile and its relationship to cholelithiasis. The Journal of Clinical Investigation 1937, 16, 367-382.
92. Mackay, C.; Crook, J. N.; Smith, D. C.; McAllister, R. A. The composition of hepatic and gallbladder bile in patients with gallstones. Gut 1972, 13, 759-762.
93. Foldvari, M.; Gesztes, A.; Mezei, M. Dermal drug delivery by liposome encapsulation: Clinical and electron microscopic studies. Journal of Microencapsulation 1990, 7, 479-489.
94. Fresta, M.; Puglisi, G. Application of liposomes as potential cutaneous drug delivery systems. in vitro and in vivo investigation with radioactively labelled vesicles. Journal of Drug Targeting 1996, 4, 95-101.
95. Nallet, F.; Laversanne, R.; Roux, D. Modelling X-ray or neutron scattering spectra of lyotropic lamellar phases : interplay between form and structure factors. J. Phys. II France 1993, 3, 487-502.
96. Berghausen, J.; Zipfel, J.; Lindner, P.; Richtering, W. Influence of Water-Soluble Polymers on the Shear-Induced Structure Formation in Lyotropic Lamellar Phases. The Journal of Physical Chemistry B 2001, 105, 11081-11088.
97. Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399-409.
98. Thyse, E. L.; Akdogan, G.; Olivier, E. J.; O’Connell, J. H.; Neethling, J. H.; Taskinen, P.; Eksteen, J. J. 3D insights into nickel converter matte phases: Direct observations via TEM and FIB SEM tomography. Minerals Engineering 2013, 52, 2-7.
99. Thielbeer, F.; Donaldson, K.; Bradley, M. Zeta Potential Mediated Reaction Monitoring on Nano and Microparticles. Bioconjugate Chemistry 2011, 22, 144-150.
100. Kraemer, E. O.; Dexter, S. T. The Light-Scattering Capacity (Tyndall Effect) and Colloidal Behavior of Gelatine Sols and Gels. The Journal of Physical Chemistry 1926, 31, 764-782.
101. Wu, J.; Dai, L. L. Apparent Microrheology of Oil−Water Interfaces by Single-Particle Tracking. Langmuir 2007, 23, 4324-4331.
102. Martin, F. J.; MacDonald, R. C. Phospholipid exchange between bilayer membrane vesicles. Biochemistry 1976, 15, 321-327.
103. Nichols, J. W.; Pagano, R. E. Kinetics of soluble lipid monomer diffusion between vesicles. Biochemistry 1981, 20, 2783-2789.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53956-
dc.description.abstract生物界面活性劑在水溶液中的自組裝行為與生理機制有直接相關性,所以一直是很重要的研究議題。最常見的兩種生物界面活性劑是卵磷脂與膽鹽,這兩種介面活性劑都會出現在消化系統當中。卵磷脂與膽鹽由於其多樣的結構以及能夠分別在高極性以及低極性溶劑內自組裝而眾所皆知。在本篇論文內,我們著重於卵磷脂與膽鹽的自組裝結構在水溶液中的形成及其對流變性質的影響。我們發展出兩種控制該混合物於水溶液中自組裝結構及流變性質的方法 (a) 增加電解質濃度 (b) 提高卵磷脂濃度。因為我們的系統是在水溶液內,所以預期這些研究能夠大幅提升於藥物輸送與控制釋放等應用的可能性。
第一部分我們報導一個在水溶液中形成卵磷脂與膽鹽混合物蠕蟲狀微胞的方法,且這些蠕蟲狀微胞具有足夠的長度使溶液黏度提升一千倍。該蟲狀微胞能更進一步的互相糾纏而使溶液具有黏彈性質。在水溶液中,具有較高溶解度的膽鹽能夠與較低溶解度的卵磷脂頭基相互鍵結。在本系統中卵磷脂與膽鹽的莫爾比例對於形成的自組裝形狀及大小扮演關鍵的角色。在一些特定的比例下,卵磷脂與膽鹽於水溶液中的混合物能夠被一些鹽類(如氯化鈉、氯化鈣等)誘導形成長且柔軟的蠕蟲狀微胞。我們使用流變儀、X光與中子散射及冷凍穿透式電子顯微鏡研究流變行為及自組裝結構,並且提出基於有效分子幾何形狀及離子強度誘導形成各種自組裝結構及流變性質的機制。
在第二部分我們討論卵磷脂濃度對其與膽鹽混合物於純水中自組裝結構的影響。我們發現卵磷脂與膽鹽於純水中以低比例混合時能形成一種特殊的水凝膠。此凝膠能形成的最低重量百分濃度為15%。動態流變測試能確認該水溶液的固體性質。我們也使用低溫穿透式電子顯微鏡及小角度X光及中子散射技術去研究自組裝結構,並且由各種證據得知該水凝膠是由澎潤的多層囊泡(脂質體)形成,而非常見的柱狀分子形成的網狀結構。脂質體澎潤現象的機制能被基於卵磷脂層狀結構中穿插膽鹽而形成的表面強排斥力清楚解釋。除了水凝膠之外,還能經由提高混合比例形成一系列的不同流變性質的流體,包括黏彈體、類凝膠及低黏度流體。上述豐富的流變性質溶液是由於不同的卵磷脂與膽鹽混合莫爾比例造成有效分子幾何形狀的改變,進而使層狀結構轉變成柱狀結構最後形成球狀結構。
關鍵字:卵磷脂、膽鹽、自組裝、黏彈體、凝膠
zh_TW
dc.description.abstractSelf-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Lecithin and bile salts are well known for their diversity of structure and ability to self-assemble in both polar and non-polar solvents. In this thesis, we focus on controlling micellar structures and rheological properties of the mixtures in water. We seek to obtain methods to control self-assembled structure and then to influence rheological properties. Two controlling methods are studied: (a) increasing electrolyte concentration in solution; (b) increasing concentration of lecithin in pure water. While our focus is self-assembly in water, we note that controlling rheological property of aqueous solution can largely enhance possibility for applications such as drug delivery and controlled release.
In first part, we report a route for forming lecithin/bile salts wormlike micelles in water that are long enough to enhance the viscosity by more than three orders of magnitude. The wormlike micelles can even entangle into transient network and transform the solutions into viscoelastic fluids. In water, highly soluble bile salt molecules bind the headgroup of lecithin and stabilize the low-water-soluble lecithin. The molar ratio of bile salt to lecithin plays a key role in determining the shape and size of micellar structures. At a specific molar ratio and sufficient ionic strength that is tuned by the addition of electrolytes, such as NaCl and CaCl2, the mixed micelles grow longitudinally into long, flexible chains. We utilize rheology, cryogenic transmission electron microscopy and small-angle neutron and X-ray scattering technologies to study the rheological properties and self-assembly structures, and we propose a mechanism based on the change of molecular geometry caused by the insertion of bile salts and the addition of electrolytes to explain the micellar self-assembly.
In the second part, we discuss the effect of lecithin concentration on self-assembly of the mixtures of lecithin/bile salts in water. We reveal an unusual biological hydrogel formed by mixing bile salts and lecithin at low bile salt/lecithin molar ratios in water. The gel can be prepared at a total lipid concentration as low as ~ 15 wt%. The solid-like property of the solutions was confirmed by dynamic rheological measurements. We used cryo-TEM and SAXS/SANS techniques to probe the self-assembled structure and clearly evidence that the gel is made up of jammed swollen multilamellar vesicles (liposomes), instead of typical fibrous networks found in conventional gels. A mechanism based on the strong repulsion between bilayers due to the incorporation of negatively charged bile salts is proposed to explain the swelling of the liposomes. In addition to gel, a series of phases, including viscoelastic, gel-like, and low-viscosity fluids, can be created by increasing the bile salt/lecithin molar ratio. Such a variety of phase behaviors are caused by the transformation of bilayers to cylindrical and spheroidal micelles upon the change of the effective molecular geometry with the bile salt/lecithin molar ratio.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:34:36Z (GMT). No. of bitstreams: 1
ntu-104-F99549033-1.pdf: 7875643 bytes, checksum: 8800459129696cfcbb49b153b2c5f75e (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝誌 I
Abstract II
摘要 V
Table of Contents VI
List of Figures IX
List of Tables XIII
1. Introduction and Overview 1
1.1. Problem Description and Motivation 1
1.2. Our Approach 3
1.2.1 Viscoelastic Fluids 5
1.2.2 Solid-like Fluids 6
1.3. Significance of Work 6
2. Background 8
2.1. Self-assembly of Amphiphilic Molecules 8
2.2. Self-assembly of Lecithin in Organic Solvent 11
2.3. Self-assembly of Lecithin and Bile Salts in Water 12
2.4. Biomolecular Amphiphiles: Lipids and Bile Salts 13
2.5. Characterization Techniques 16
2.5.1 Rheology 16
2.5.2 Small Angle Neutron and X-ray Scattering (SANS and SAXS) 18
2.5.3 Indirect Fourier Transform (IFT) of SANS and SAXS Data. 21
2.5.4 Cryogenic Transmission Electron Microscopy 22
3. Highly Viscous Wormlike Micellar Aqueous Solutions Formed by the Mixtures of Lecithin and Bile Salt 23
3.1. Introduction 23
3.2. Experiments 28
3.2.1. Materials. 28
3.2.2. Sample Preparation. 28
3.2.3. Rheology. 29
3.2.4. Cryogenic Transmission Electron Microscopy (Cryo-TEM). 29
3.2.5. Small Angle Neutron and X-ray Scattering (SANS and SAXS). 30
3.2.6. SANS and SAXS Modeling. 30
3.3. Results and Discussions 33
3.3.1 Phase Behavior and Rheology. 33
3.3.2 SANS, SAXS, and Cryo-TEM Data. 42
3.3.4 Mechanism. 49
3.4. Conclusions 55
4. Biological Hydrogels Formed by Swollen Multilamellar Liposomes 56
4.1. Introduction 56
4.2. Experimental Section 60
4.2.1. Materials. 60
4.2.2. Sample Preparation. 61
4.2.3. Rheological Studies. 61
4.2.4. Small Angle X-ray and Neutron Scattering (SAXS and SANS). 62
4.2.5. SANS Modeling. 62
4.2.6. Cryogenic Transmission Electron Microscopy (Cryo-TEM). 63
4.2.7. Zeta Potential. 64
4.3. Result and Discussion 64
4.3.1. Phase Behavior and Rheological Property. 64
4.3.2. Cryogenic Transmission Electron Microscopy (Cryo-TEM). 69
4.3.3. Small Angle X-ray and Neutron Scattering (SAXS and SANS). 74
4.3.4. Mechanism. 81
4.4. Conclusion 86
5. Conclusion and Future Work 88
5.1. Conclusions 88
5.2. Future Work 90
5.2.1. Encapsulation of Model Compounds by Hydrogels Formed by Swollen Vesicles 90
5.2.2. Drug Delivery Using Lecithin/Bile Salt Worms 91
References 93
dc.language.isoen
dc.title卵磷脂與膽鹽於水溶液中自組裝結構與流變性質研究zh_TW
dc.titleSelf-assembled Structures and Rheological Properties of Lecithin/Bile Salt Mixtures in Aqueous Solutionen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree博士
dc.contributor.oralexamcommittee廖文彬(Wen-Bin Liau),邱文英(Wen-Yen Chiu),謝之真(Chih-Chen Hsieh),黃仲仁(Jung-Ren Huang),陳儀帆(Yi-Fan Chen)
dc.subject.keyword卵磷脂,膽鹽,自組裝,黏彈體,凝膠,zh_TW
dc.subject.keywordLecithin,Bile Salt,Self-assembly,Viscoelastic Fluid,Gel,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2015-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
7.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved