請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53955完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭景暉(Jiang-Huei Jeng) | |
| dc.contributor.author | Tzu-Ying Sun | en |
| dc.contributor.author | 孫慈霙 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:34:34Z | - |
| dc.date.available | 2018-09-24 | |
| dc.date.copyright | 2015-09-24 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-28 | |
| dc.identifier.citation | Abraham RT (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes & development 15(17):2177-2196.
Arner ESJ, Holmgren A (2000). Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102-6109. Asada T, Nagase S, Nishimoto K, Koseki S (2009). Simulation study of interactions and reactivities between NADH cytochrome b5 reductase and cytochrome b5. Journal of Molecular Liquids 147(1-2):139-144. Asher G, Lotem J, Sachs L, Shaul Y (2004). p53-dependent apoptosis and NAD(P)H:quinone oxidoreductase 1. Methods in enzymology 382:278-293. Atsumi T, Murata J, Kamiyanagi I, Fujisawa S, Ueha T (1998). Cytotoxicity of photosensitizers camphorquinone and 9-fluorenone with visible light irradiation on a human submandibular-duct cell line in vitro. Arch Oral Biol 43(1):73-81. Atsumi T, Iwakura I, Fujisawa S, Ueha T (2001). The production of reactive oxygen species by irradiated camphorquinone-related photosensitizers and their effect on cytotoxicity. Archives of Oral Biology 46:391-401. Bakkenist CJ, Kastan MB (2003). DNA damage activates ATM throughvintermolecular autophosphorylation and dimer dissociation. Nature 421:499-506. Bartek J, Lukas J (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421-429. Bock KW (2012). Ah receptor- and Nrf2-gene battery members: modulators of quinone-mediated oxidative and endoplasmic reticulum stress. Biochemical pharmacology 83(7):833-838. Bodor C, Matolcsy A, Bernath M (2007). Elevated expression of Cu, Zn-SOD and Mn-SOD mRNA in inflamed dental pulp tissue. International endodontic journal 40(2):128-132. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000). Role of quinones in toxicology. Chemical research in toxicology 13(3):135-160. Cadenas E, Hochstein P, Ernster L (1992). Pro-and antioxidant function of quinone and quinone reductase in mammalian cells. Advances in enzymology and related areas of molecular biology 65:97-146. Carrier F, Smith ML, Bae I, Kilpatricm KE, Lansing TJ, Chen CY et al. (1994). Characterization of human Gadd45, a p53-regulated protein. The Journal of Biological Chemist 269(51):32672-32677. Celli CM, Tran N, Knox R, Jaiswal AK (2006). NRH:quinone oxidoreductase 2 (NQO2) catalyzes metabolic activation of quinones and anti-tumor drugs. Biochemical pharmacology 72(3):366-376. Chen S, Wu K, Knox R (2000). Structure-function studies of DT-diaphorase (NQO1) and NRH: Quinone oxidoreductase (NQO2). Free radical biology & medicine 29(Nos.3/4):276-284. Danielson PB (2002). The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Current Drug Metabolism 3:561-597. Denison MS, Nagy SR (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annual review of pharmacology and toxicology 43:309-334. Dinkova-Kostova AT, Talalay P (2010). NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Archives of biochemistry and biophysics 501(1):116-123. Engelmann J, Volk J, Leyhausen G, Geurtsen W (2005). ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone. Journal of biomedical materials research Part B, Applied biomaterials 75(2):272-276. Ernster L, Danielson L, Ljunggren M (1962). DT diaphorase. I. Purification from the soluble fraction of rat-liver cytoplasm, and properties. Biochimica et biophysica acta 58:171-188. Esposito P, Varvara G, Caputi S, Perinetti G (2003). Catalase activity in human healthy and inflamed dental pulps. International endodontic journal 36(9):599-603. Forman HJ, Zhang H, Rinna A (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular aspects of medicine 30(1-2):1-12. Foster CE, Bianchet MA, Talalay P, Faig M, Amzel LM (2000). Structures of mammalian cytosolic quinone reductases. Free radical biology & medicine 29(3-4):241-245. Gaikwad NW, Yang L, Rogan EG, Cavalieri EL (2009). Evidence for NQO2-mediated reduction of the carcinogenic estrogen ortho-quinones. Free radical biology & medicine 46(2):253-262. Genestra M (2007). Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cellular Signalling 19:1807-1819. Geurtsen W, Lehmann F, Spahl W, Leyhausen G (1998a). Cytotoxicity of 35 dental resin composite monomers/additives in permanent 3T3 and three human primary fibroblast cultures. Journal of biomedical materials research 41:474-480. Geurtsen W, Spahl W, Leyhausen G (1998b). Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers. Journal of dental research 77(12):2012-2019. Geurtsen W, Spahl W, Leyhausen G (1999a). Variability of cytotoxicity and leaching of substances from four light-curing pit and fissure sealants. Journal of biomedical materials research 44(1):73-77. Geurtsen W, Spahl W, Muller K, Leyhausen G (1999b). Aqueous extracts from dentin adhesives contain cytotoxic chemicals. Journal of biomedical materials research 48(6):772-777. Giudice A, Arra C, Turco MC (2010). Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods in molecular biology 647:37-74. Han D, Hanawa N, Saberi B, Kaplowitz N (2006). Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. American journal of physiology Gastrointestinal and liver physiology 291(1):G1-7. Hansson J, Edgren MR, Egyhazi S, Hao X-Y, Mannervik B, Ringborg U (1996). Increased cisplatin sensitivity of human fibroblasts from a subject with inherent glutathione deficiency Acta Oncologica 35(6):683-690. Hayes JD, Flanagan JU, Jowsey IR (2005). Glutathione transferases. Annual review of pharmacology and toxicology 45:51-88. Hubbard PA, Shen AL, Paschke R, Kasper CB, Kim JJ (2001). NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer. The Journal of biological chemistry 276(31):29163-29170. Ikemura K, Endo T (2010). A review of the development of radical photopolymerization initiators used for designing light-curing dental adhesives and resin composites. Dental Materials Journal 29(5):481-501. Iyanagi T, Yamazaki I (1970). One-Electron-Transfer Reactions in Biochemical Systems. V. Difference in the mechanism of Quinone Reduction by the NADH Dehydrogenase and the NAD(P)H Dehydrogenase (DT-Diaphorase) Biochimica et Biophysica acta. 216:282-294 Iyanagi T, Watanabe S, Anan KF (1984). One- electron oxidat ion-reduction properties of hepatic NADH-cytochrome b5 reductase. Biochemistry 23(7). 1418-1425 Jaiswal AK (2000). Regulation of genes encoding NAD(P)H:Quinone oxidoreductases. Free radical biology & medicine 29(Nos.3/4): 254-262 Jan CM, Nomura Y, Urabe H, Okazaki M, Shintan H (2001). The relationship between leachability of polymerization initiator and degree of conversion of visible light-cured resin. Journal of biomedical materials research Part B, Applied biomaterials 58:42-46. Jesse J. Kwiek TAJH, and Johannes Rudolph (2004). Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry 43:4538-4547. Johnson DG, Walker CL (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol 39:259-312. Jones DP (2006). Redefining oxdiatve stress. Antioxid Redox Signal 8: 1865-1879 Kaneko Y, Watanabe N, Morisaki H, Akita H, Fujimoto A, Tominaga K et al. (1999). Cell cycle-dependent and ATM-independent expression of human Chk1 kinase. Oncogene 18:3673-3681. Kastan MB, Bartek J (2004). Cell-cycle checkpoints and cancer. Nature 432(18):316-323. Kensler TW, Wakabayashi N, Biswal S (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual review of pharmacology and toxicology 47:89-116. Lamb DC, Waterman MR (2013). Unusual properties of the cytochrome P450 superfamily. Philosophical transactions of the Royal Society of London Series B, Biological sciences 368(1612):20120434. Lee S, Pagoria D, Raigrodski A, Geurtsen W (2007). Effects of combinations of ROS scavengers on oxidative DNA damage caused by visible-light-activated camphorquinone/N,N-dimethyl-p-toluidine. Journal of biomedical materials research Part B, Applied biomaterials 83(2):391-399. Lee SK, Min KS, Youngho K, Jeong GS, Lee SH, Lee HJ et al. (2008). Mechanical stress activates proinflammatory cytokines and antioxidant defense enzymes in human dental pulp cells. Journal of endodontics 34(11):1364-1369. Lefeuvre M, Bourd K, Loriot MA, Goldberg M, Beaune P, Perianin A et al. (2004). TEGDMA modulates glutathione transferase P1 activity in gingival fibroblasts. Journal of dental research 83(12):914-919. Li YC, Huang FM, Lee SS, Lin RH, Chang YC (2007). Protective effects of antioxidants on micronuclei induced by camphorquinone/N,N-dimethyl-p-toluidine employing in vitro mammalian test system. Journal of biomedical materials research Part B, Applied biomaterials 82(1):23-28. Liu S, Shiotani B, Lahiri M, Marechal A, Tse A, Leung CC et al. (2011). ATR autophosphorylation as a molecular switch for checkpoint activation. Molecular cell 43(2):192-202. Long DJ, 2nd, Jaiswal AK (2000a). Mouse NRH:quinone oxidoreductase (NQO2): cloning of cDNA and gene- and tissue-specific expression. Gene 252(1-2):107-117. Long DJ, 2nd , Jaiswal AK (2000b). NRH:quinone oxidoreductase2 (NQO2). Chemico-biological interactions 129:99-112. Lu SC (2009). Regulation of glutathione synthesis. Molecular aspects of medicine 30(1-2):42-59. Lukas J, Lukas C, Bartek J (2004). Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA repair 3(8-9):997-1007. Lukas L, Bartkova J, Latella L, Falck J, Mailand N, Schroeder T et al. (2001). DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Research 61:4990-4993. Masuki K, Nomula Y, Bhawal U (2007). Apoptotic and necrotic influence of dental resin polymerization initiators in human gingival fibroblast culstures. Dental materials : official publication of the Academy of Dental Materials 26(6):861-869. Michelsen VB, Moe G, Skalevik R, Jensen E, Lygre H (2007). Quantification of organic eluates from polymerized resin-based dental restorative materials by use of GC/MS. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 850(1-2):83-91. Monk TJ, Jones DC (2002). The Metabolism and Toxicity of Quinones, Quinonimines, Quinone Methides, and Quinone-Thioethers. Current drug metabolism 3:425-438. Monks TJ, Hanzlik RP, Cohen GM, Ross D, Graham DG (1992). Quinone chemistry and toxicity. Toxicology and Applied Pharmacology 112(2-16. Mustacich D, Powis G (2000). Thioredoxin reductase. Biochem J 346:1-8. Nordberg J, Arn´ er ESJ (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free radical biology & medicine 31(11):1287-1312. O'brien PJ (1991). Molecular mechanisms of quinone cytotoxicity. Chemico-biological interactions 80:1-41. Pagoria D, Lee A, Geurtsen W (2005). The effect of camphorquinone (CQ) and CQ-related photosensitizers on the generation of reactive oxygen species and the production of oxidative DNA damage. Biomaterials 26(19):4091-4099 Pietenpol JA, Stewart ZA (2002). Cell cycle checkpoint signaling: Cell cycle arrestversus apoptosis. Toxicology 181-182:475-481. Powis G, Appel PL (1980). Relationship of the single-electron reduction potential of quinones to their reduction by flavoproteins. Biochemical pharmacology 29:2567-2572. Powis G (1987). Metabolism and reactions of quinoid anticancer agents. Pharmac Ther 35:57-162. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D (2000). NAD(P)H:quinone oxidoreductase 1 (NQO1):chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chemico-biological interactions 129:77-97. Ross D, Siegel D (2004). NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods in enzymology 382:115-144. Rowlandsar JC, Gustafssonb JA (1997). Aryl hydrocarbon receptor-mediated signal transduction Critical Reviews in Toxicology 27(2):109-134. Shackelford RE, Kaufmann WK, Paules RS (2000). Oxidative stress and cell cycle checkpoint function. Free Radical Biology & Medicine 28(9):1387-1404. Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ et al. (2004). NAD(P)H:quinone oxidoreductase 1: Role as a superoxide scavenger. Mol Pharmacol 65(5):1238-1247. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J et al. (2005). The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nature cell biology 7(2):195-201. Spahl W, Budzikiewicz H, Geurtsen W (1998). Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass sepectrometry. Journal of Dentistry 26(2):137-145. Taira M, Urabe H, Hirose T, Wakasa K, Yamaki M (1988). Analysis of photo-initiators in visible-light-cured dental composite resins. Journal of dental research 67(1):24-28. Taylor WR, Stark GR (2001). Regulation of the G2/M transition by p53. Oncogene 20:1803-1815. Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M, Nahara Y (2003). ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. Biomaterials 24(12):2097-2103. Varvara G, Traini T, Esposito P, Caputi S, Perinetti G (2005). Copper-zinc superoxide dismutase activity in healthy and inflamed human dental pulp. International endodontic journal 38(3):195-199. Vasieva O (2011). The many faces of glutathione transferase pi. Current molecular medicine 11(2):129-139. Vella F, Ferry G, Delagrange P, Boutin JA (2005). NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochemical pharmacology 71(1-2):1-12. Vermeulen K, R. VBD, Berneman ZN (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36:131-149. Volk J, Ziemann C, Leyhausen G, Geurtsen W (2009). Non-irradiated campherquinone induces DNA damage in human gingival fibroblasts. Dental materials : official publication of the Academy of Dental Materials 25(12):1556-1563. Wang W, Jaiswal AK (2004). Sp3 repression of polymorphic human NRH:quinone oxidoreductase 2 gene promoter. Free radical biology & medicine 37(8):1231-1243. Wang W, Jaiswal AK (2006). Nuclear factor Nrf2 and antioxidant response element regulate NRH:quinone oxidoreductase 2 (NQO2) gene expression and antioxidant induction. Free radical biology & medicine 40(7):1119-1130. Wessels M, Leyhausen G, Volk J, Geurtsen W (2014). Oxidative stress is responsible for genotoxicity of camphorquinone in primary human gingival fibroblasts. Clinical oral investigations 18(6):1705-1710. Winter K, Pagoria D, Geurtsen W (2005). The effect of antioxidants on oxidative DNA damage induced by visible-light-irradiated camphorquinone/ N,N-dimethyl-p-toluidine. Biomaterials 26(26):5321-5329 Wu MZ (2011) Cytotoxicity of camphorquinone on human dental pulp cells. Master thesis, National Taiwan University (Instructor: Jiiang-Huei Jeng) Zelko IN, Mariani TJ, Folz RJ (2002). Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free radical biology & medicine 33(3):337-349. Zhao Q, Yang XL, Holtzclaw WD, Talalay P (1997). Unexpected genetic and structural relationships of a long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase). Proceedings of the National Academy of Sciences of the United States of America 94(5):1669-1674. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53955 | - |
| dc.description.abstract | 目的:樟腦醌為目前最常使用於牙科樹脂材料的光啟始劑。本研究目的著重在各種參與醌類代謝的酵素,是否會表現在人類牙髓細胞;若有,這些酵素是否會被樟腦醌誘發,並且影響其對於牙髓細胞的毒性。此外,已知樟腦醌的毒性會造成人類牙髓細胞的細胞週期停留在G2/M階段,因此我們也探討上游調控的蛋白質之表現是否會改變。
實驗方法:將人類牙髓細胞取出培養,並暴露於不同濃度(0.1-3 mM)的樟腦醌下24小時,以免疫螢光染色來觀察調控細胞週期的上游蛋白質的分布與表現。此外,以反轉錄聚合酶連鎖反應(RT-PCR)及西方點墨法(Western blot)來評估醌類代謝酵素於牙髓細胞的表現及隨著樟腦醌的濃度上升是否會有對應的變化,包含了醌類還原酵素(quinone reduction enzymes)、穀胱甘肽轉換酵素(glutathione-S-transferase)、及抗氧化酵素。最後探討這些解毒酵素的產生是否會經由AhR及Nrf2這兩個轉錄因子的途徑來調節。 實驗結果:人類牙髓細胞在暴露24小時的樟腦醌之後,會表現調控細胞週期的上游蛋白質,包含p-ATM、p-Chk2、p-p53,及較下游的p21、GADD45α,並且隨著樟腦醌的濃度增加而有上升的情形。而在醌類還原酵素的方面,NQO1、NQO2皆有隨著樟腦醌濃度上升而表現,而在2-3 mM時些微下降;而GST-p1則是沒有什麼改變。至於抗氧化酵素,CuZnSOD、MnSOD、catalase、GPx1也會隨著樟腦醌濃度上升而增加,並且也在2-3 mM時些許減少。最後,AhR及Nrf2這兩個轉錄因子在1-2 mM樟腦醌都有顯著的增加。 結論:樟腦醌會引發p-ATM、p-Chk2、p-p53、p21、GADD45α等調控細胞週期的上游調控蛋白質表現,導致人類牙髓細胞之細胞週期停頓在G2/M階段。而NQO1、NQO2醌類還原酵素隨著樟腦醌的濃度而表現上升,顯示它們可能是被樟腦醌的醌類結構所誘發,進而去降低樟腦醌的毒性。而抗氧化酵素CuZnSOD、MnSOD、catalase、GPx的表現增加可歸因於樟腦醌所產生的活性氧,並具將其代謝分解的功能。最後,這些解毒酵素的表現,因AhR及Nrf2這兩個轉錄因子的表現上升,顯示可能是由這兩條路徑來調控。本研究發現樟腦醌會誘發牙髓細胞表現多種解毒酵素,而這些酵素的表現可能會影響到患者以含樟腦醌的樹酯材料填補後的預後。 | zh_TW |
| dc.description.abstract | Aim: Camphorquinone (CQ) is one of the most commonly used photoinitiators in current light-curing resin-based materials. The purposes of this study focused on the various enzymes which take part in the metabolism of quinones, and their expression in human dental pulp cells. The hypothesis was that those enzymes may be induced in response to exposure CQ, and further modulate the toxicity of CQ. Besides, since the toxicity of CQ resulted in cell cycle arrest at G2/M phase, with a concomitant inhibition of CDK1 (cdc2), cyclin B1, and cdc25C, the role and activation of upstream checkpoints proteins was also evaluated.
Materials and methods: Primary-cultured human dental pulp cells were treated with different concentrations (0.1-3 mM) of CQ for 24 hours. The expression and distribution of upstream cell cycle checkpoint proteins, including ATM, Chk1, Chk2, p53, p21, GADD45α, were evaluated through immunofluorescence. The enzymes involved in quinone metabolism were screened by reverse transcription polymerase chain reaction (RT-PCR) for mRNA expression and by western blotting for protein alterations. Those enzymes can be classified into one-electron reduction enzymes of quinone (cytochrome P450 oxidoredutase, cytochrome b5 reduatases, thioredoxin reductase, etc.), two-electron reduction enzymes of quinone (NQOs), glutathione-S-transferases, and antioxidant enzymes (SODs, catalase, GPx). Besides, evaluation of AhR and Nrf2 expression by RT-PCR and western blot can further clarify if the induction of those enzymes is via AhR or Nrf2 pathways. Results: Human dental pulp cells exposed to CQ for 24 hours up-regulated the p-ATM and p-Chk2 through 0.25-2 mM of CQ, while the subsequent p-p53 was mildly increased. The downstream p21 elevation from 0.5-2 mM of CQ and GADD45α boosted at 1-2 mM of CQ simultaneously contributed to the G2/M cell cycle arrest. As for quinone metabolizing enzymes, two-electron quinone reduction enzymes NQO1 and NQO2, were enhanced from low concentration until 2-3 mM of CQ, whereas GST-p1 remained unchanged. Speaking to antioxidant enzymes, the expression of CuZnSOD, MnSOD, catalase, and GPx1 all increased from 0.1-1 mM of CQ and started to decline at 2-3 mM of CQ. At last, those detoxifying enzymes expression can be modulated by AhR and Nrf2 pathways, which specifically enhanced at 1-2 mM of CQ exposure. Conclusions: Human dental pulp cells exposed to increased concentrations of CQ will stimulate p-ATM, p-Chk2, p-p53, p21, and GADD45α expression, which consequently lead to G2/M cell cycle arrest. As for two-electron quinone reduction enzymes NQO1 and NQO2, the enhanced expression from low concentration of CQ in human dental pulp cells indicated that they may serve as a defense mechanism against the quinone structure of CQ. Speaking to CQ-generated ROS, the corresponding expression of CuZnSOD, MnSOD, catalase, and GPx1 may reduce the oxidative stress on human dental pulp cells. At last, those antioxidant and detoxifying enzymes expression can be modulated by AhR and Nrf2 pathways. In conclusion, exposure to CQ of human dental pulp cells induced multiple detoxifying enzymes expression. Difference in enzyme expression of dental pulp may potentially affect the treatment outcome of operative restoration in patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:34:34Z (GMT). No. of bitstreams: 1 ntu-104-R01422007-1.pdf: 3677816 bytes, checksum: 81d355fe9878e6093f0a67e301055219 (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 中文摘要 ii
Abstract iv Chapter I. Literature Review 1 1. Introduction 1 1.1 Camphorquinone (CQ) 1 1.2 Toxicity of CQ 2 2. Quinone metabolism and the toxicity 4 2.1 Quinones as oxidants 4 2.2 Quinones as electrophils 9 2.3 Antioxidant enzymes 11 3. Cell cycle control 11 3.1 Cell cycle regulatory and inhibitory proteins 12 3.2 Cell cycle checkpoints 13 3.2.1 The G1 checkpoint 14 3.2.2 The S phase checkpoint 14 3.2.3 The G2/M checkpoint 15 Chapter II. The Purpose of the Study 16 Chapter III. Materials and Methods 17 3.1 Materials 17 3.2 Culture of human dental pulp cells 17 3.3 Immunofluorescent (IF) observation 18 3.4 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 19 3.4.1 Total RNA Isolation 19 3.4.2 RNA quantification 21 3.4.3 Reverse transcription (RT) 21 3.4.4 Polymerase chain reaction (PCR) 22 3.5 Western Blot 23 3.5.1 Protein extraction 23 3.5.2 Protein quantification 23 3.5.3 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 24 3.5.4 Western Blot 25 3.6 Statistical analysis 26 Chapter IV. Results 27 4.1 Expression of upstream cell cycle checkpoint proteins at G2/M phase 27 4.1.1 p-ATM, p-Chk1/p-Chk2 27 4.1.2 p-p53, p21, GADD45α 28 4.2 Expression of quinone reduction enzymes 28 4.2.1 Expression of one-electron reduction enzymes of quinones 28 4.2.2 Expression of two-electron reduction enzymes of quinones 29 4.3 Expression of GSTs 29 4.4 Expression of antioxidant enzymes 29 4.5 Expression of AhR and Nrf2 30 Chapter V. Discussion 31 5.1 CQ-induced expression of cell cycle regulatory proteins at G2/M checkpoint 31 5.2 CQ-induced expression of one-electron reduction enzymes of quinones: POR, CYB5R1, TrxR1 33 5.3 CQ-induced expression of two-electron reduction enzymes of quinones: NQO1 and NQO2 34 5.4 CQ-induced expression of GSTs 35 5.5 CQ-induced expression of antioxidant enzymes 35 5.6 CQ-induced expression of AhR and Nrf2 36 Chapter VI. Conclusions 38 References 40 Appendix App.1. Structure of camphorquinone 48 App.2. Photoinitiation process of CQ with tertiary amine 48 App.3. Redox cycle of quinones 49 App.4. Cell cycle with the regulatory and inhibitory proteins 49 App.5a. Activation of ATM 50 App.5b. Activation of ATR 50 App.6. Cell cycle checkpoints 51 App.7a. Activation of Nrf2 52 App.7b. Activation of AhR 52 Tables Table 1. PCR primer sequences 53 Table 2. Protocol of Western Blot protein extraction buffer 54 Table 3. Protocol for SDS-PAGE 54 Table 4a. Protocol for Western Blot SDS-PAGE running buffer 55 Table 4b. Protocol for Western Blot SDS-PAGE transfer buffer 55 Table 4c. Protocol for Western Blot Tween TBS 55 Table 5. Western blot primary antibodies 56 Figures Fig.1a. Effects of CQ on expression of p-ATM in human dental pulp cells (100X) 57 Fig.1a.(cont.) 58 Fig.1b. Effects of CQ on expression of p-ATM in human dental pulp cells (400X) 59 Fig.1b.(cont.) 60 Fig.2a. Effects of CQ on expression of p-Chk2 in human dental pulp cells (100X) 61 Fig.2a.(cont.) 62 Fig.2b. Effects of CQ on expression of p-Chk2 in human dental pulp cells (400X) 63 Fig.2b.(cont.) 64 Fig.3a. Effects of CQ on expression of p-Chk1 in human dental pulp cells (100X) 65 Fig.3a.(cont.) 66 Fig.3b. Effects of CQ on expression of p-Chk1 in human dental pulp cells (400X) 67 Fig.3b.(cont.) 68 Fig.4a. Effects of CQ on expression of p-p53 in human dental pulp cells (100X) 69 Fig.4a.(cont.) 70 Fig.4b. Effects of CQ on expression of p-p53 in human dental pulp cells (400X) 71 Fig.4b.(cont.). 72 Fig.5a. Effects of CQ on expression of p21 in human dental pulp cells (100X) 73 Fig.5a.(cont.) 74 Fig.5b. Effects of CQ on expression of p21 in human dental pulp cells (400X) 75 Fig.5b.(cont.) 76 Fig.6a. Effects of CQ on expression of GADD45α in human dental pulp cells (100X) 77 Fig.6a.(cont.) 78 Fig.6b. Effects of CQ on expression of GADD45α in human dental pulp cells (400X) 79 Fig.6b.(cont.) 80 Fig.7. Effects of CQ on protein expression of one-electron reduction enzymes of quinones in human dental pulp cells 81 Fig.8a. Effects of CQ on gene expression of two-electron reduction enzymes of quinones in human dental pulp cells 82 Fig.8b. Effects of CQ on protein expression of two-electron reduction enzymes of quinones in human dental pulp cells 82 Fig.9a. Effects of CQ on gene expression of GST-p1 in human dental pulp cells 83 Fig.9b.Effects of CQ on protein expression of GST-p1 in human dental pulp cells 83 Fig.10a. Effects of CQ on gene expression of antioxidant enzymes in human dental pulp cells 84 Fig.10b. Effects of CQ on protein expression of antioxidant enzymes in human dental pulp cells 84 Fig.11a. Effects of CQ on gene expression of AhR and Nrf2 in human dental pulp cells 85 Fig.11b.Effects of CQ on protein expression of AhR in human dental pulp cells 85 | |
| dc.language.iso | en | |
| dc.subject | 抗氧化酵素 | zh_TW |
| dc.subject | 樟腦? | zh_TW |
| dc.subject | 人類牙髓細胞 | zh_TW |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | ?類代謝酵素 | zh_TW |
| dc.subject | NQO | en |
| dc.subject | camphorquinone | en |
| dc.subject | human dental pulp cells | en |
| dc.subject | cell cycle | en |
| dc.title | 樟腦醌的毒性對於人類牙髓細胞不同代謝酵素表現的影響 | zh_TW |
| dc.title | Effect of camphorquinone on the expression of various metabolic enzymes in human dental pulp cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張曉華(Hsiao-Hua Chang) | |
| dc.contributor.oralexamcommittee | 張美姬(Mei-Chi Chang),張育超(Yu-Chao Chang),黃富美(Fu-Mei Huang) | |
| dc.subject.keyword | 樟腦?,人類牙髓細胞,細胞週期,?類代謝酵素,抗氧化酵素, | zh_TW |
| dc.subject.keyword | camphorquinone,human dental pulp cells,cell cycle,NQO, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-28 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 3.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
