Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53953
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林守德(Shou-De Lin)
dc.contributor.authorYu-Yang Huangen
dc.contributor.author黃宇陽zh_TW
dc.date.accessioned2021-06-16T02:34:29Z-
dc.date.available2018-07-29
dc.date.copyright2015-07-29
dc.date.issued2015
dc.date.submitted2015-07-28
dc.identifier.citationY. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, pp. 30–37, Aug. 2009.
M. J. Pazzani and D. Billsus, “The adaptive web,” ch. Content-based Recommendation Systems, pp. 325–341, Berlin, Heidelberg: Springer-Verlag, 2007.
Z. Deng, M. Yan, J. Sang, and C. Xu, “Twitter is faster: Personalized time-aware video recommendation from twitter to youtube,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 11, pp. 31:1–31:23, Jan. 2015.
S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. on Knowl. and Data Eng., vol. 22, pp. 1345–1359, Oct. 2010.
S. D. Roy, T. Mei, W. Zeng, and S. Li, “Socialtransfer: Cross-domain transfer learning from social streams for media applications,” in Proceedings of the 20th ACM international Conference on Multimedia, MM ’12, (New York, NY, USA), pp. 649–658, ACM, 2012.
W. Pan, N. N. Liu, E. W. Xiang, and Q. Yang, “Transfer learning to predict missing ratings via heterogeneous user feedbacks,” in IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pp. 2318–2323, 2011.
B. Li, Q. Yang, and X. Xue, “Can movies and books collaborate?: Cross-domain collaborative filtering for sparsity reduction,” in Proceedings of the 21st International Joint Conference on Artifical Intelligence, IJCAI’09, (San Francisco, CA, USA), pp. 2052–2057, Morgan Kaufmann Publishers Inc., 2009.
Y. Shi, M. Larson, and A. Hanjalic, “Tags as bridges between domains: Improving recommendation with tag-induced cross-domain collaborative filtering,” in Proceedings of the 19th International Conference on User Modeling, Adaption, and Personalization, UMAP’11, (Berlin, Heidelberg), pp. 305–316, Springer-Verlag, 2011.
R. Salakhutdinov and A. Mnih, “Probabilistic matrix factorization,” in Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007, pp. 1257–1264, 2007.
D. Agarwal and B.-C. Chen, “flda: Matrix factorization through latent dirichlet allocation,” in Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM ’10, (New York, NY, USA), pp. 91–100, ACM, 2010.
H. Shan and A. Banerjee, “Generalized probabilistic matrix factorizations for collaborative filtering,” in Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM ’10, (Washington, DC, USA), pp. 1025–1030, IEEE Computer Society, 2010.
C. Wang and D. M. Blei, “Collaborative topic modeling for recommending scientific articles,” in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, (New York, NY, USA), pp. 448–456, ACM, 2011.
D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.
J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework for performing collaborative filtering,” in Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’99, (New York, NY, USA), pp. 230–237, ACM, 1999.
L. Wu, E. Chen, Q. Liu, L. Xu, T. Bao, and L. Zhang, “Leveraging tagging for neighborhood-aware probabilistic matrix factorization,” in Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, (New York, NY, USA), pp. 1854–1858, ACM, 2012.
A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em algorithm,” Journal of the royal statistical society. Series B (methodological), pp. 1–38, 1977.
J. Blömer and K. Bujna, “Simple methods for initializing the EM algorithm for gaussian mixture models,” CoRR, vol. abs/1312.5946, 2013.
D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, (Philadelphia, PA, USA), pp. 1027–1035, Society for Industrial and Applied Mathematics, 2007.
J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston, and D. Sampath, “The youtube video recommendation system,” in Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, (New York, NY, USA), pp. 293–296, ACM, 2010.
R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. M. Lukose, M. Scholz, and Q. Yang, “One-class collaborative filtering,” in Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy, pp. 502–511, 2008.
L. Hong and B. D. Davison, “Empirical study of topic modeling in twitter,” in Proceedings of the First Workshop on Social Media Analytics, SOMA ’10, (New York, NY, USA), pp. 80–88, ACM, 2010.
D. Blei and J. Lafferty, “Topic models,” in Text Mining: Theory and Applications, Taylor and Francis, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53953-
dc.description.abstract本論文嘗試使用跨網站使用者興趣傳遞解決推薦系統中的冷啟動問題。一般來說,推薦系統使用評分和文字兩種資訊將感興趣的物品推薦給使用者。然而使用這兩種資訊時皆可能遇到所謂的「冷啟動問題」,也就是當使用者過往對物品的評分記錄不多,或甚至無任何記錄時,推薦系統將無法對使用者進行有效的推薦。常用於解決冷啟動問題的方法是引入輔助資料。現今許多使用者都同時活躍於多個社群網站,同時這些網站之間彼此也多有連接帳戶的機制。假設能夠從相互連接的其他網站中獲取資料,就能夠利用這些輔助資料解決新進用戶的冷啟動問題。然而上述的「跨網站興趣傳遞」策略中隱含著一個重大的難點,即不同網站之間往往並不具有相同的物品評分機制,或相同的文字資料結構。本論文的優勢在於能利用不具特定結構的一般文字,將一網站的資訊帶到另一網站的推薦系統之中。確切來說,本論文使用主題模型從一網站抽取關於使用者的特徵向量,以計算使用者之間的相似度。並修改機率型矩陣分解模型,利用相似度計算最近鄰居,將最近鄰居的隱含向量收集起來,形成一組「最近鄰居虛擬樣本」。利用這組加有權重的虛擬樣本,便得以估計冷啟動用戶隱含向量的機率分配,進而對此用戶形成推薦清單。在實驗部分使用一組現實生活中的跨網站資料集驗證此方法的有效性,和過往提出的模型相比,本論文提出的方法尤其在冷啟動問題嚴重的狀況下,取得相當程度的優勢。zh_TW
dc.description.abstractIn this work, we attempt to transfer user interests across websites for cold-start recommendation. Both rating-based and text-based recommender systems may suffer from the cold-start problem. One effective way to ease the cold-start problem is to introduce auxiliary data. Users nowadays hold multiple accounts across websites. If data can be obtained via the account linking mechanism, there will be an abundant supply of auxiliary data. Although this cross-site approach can be exploited to solve the cold-start problem, it is often the case that we have to deal with heterogeneous data when transferring knowledge across websites. In this work, we make use of unstructured auxiliary text to solve the cold-start problem. In particular, we extract topic vectors from source-domain text, and use the similarity scores between users to construct 'nearest-neighbor pseudo data', a set of weighted (pseudo) samples which can be used to estimate the unknown parameters of the distribution over the user latent factors in the target domain. The inference process and model structure of the probabilistic matrix factorization has been modified to utilize this pseudo dataset. Improvement over previous methods, especially for the cold-start users, has been demonstrated with experiments on a real-world cross-website dataset.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:34:29Z (GMT). No. of bitstreams: 1
ntu-104-R02922050-1.pdf: 1102347 bytes, checksum: 4ce2c7452a9d55fa69d723c95008fe6f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents摘要 iii
Abstract iv
1 Introduction 1
1.1 Cold-Start Problem in Recommender Systems 1
1.2 Cross-Site User Interests Transfer 2
1.3 Nearest-Neighbor Pseudo Data 3
1.4 Contributions 4
2 Related Work 6
2.1 Matrix Factorization (MF) 6
2.2 Probabilistic Matrix Factorization (PMF) 7
2.3 Collaborative Topic Regression (CTR) 9
2.4 Nearest-Neighbor Method 10
3 Methodology 12
3.1 CTR-Based Transfer Model 12
3.2 Nearest Neighbor Pseudo Data (NNPD) Framework 13
3.3 Simple Example: Unknown Mean 15
3.4 More Generalized Models 20
4 Experiment 24
4.1 Dataset and Statistics 24
4.2 Evaluation and Scenario 26
4.3 Baseline Methods 26
4.4 Proposed Hypotheses 27
4.5 Pairwise User Similarity Matrices 27
4.6 In-Matrix Prediction 29
4.7 Out-of-Matrix Prediction 35
5 Conclusion 38
Bibliography 40
dc.language.isoen
dc.subject矩陣分解zh_TW
dc.subject冷啟動推薦zh_TW
dc.subject協同過濾zh_TW
dc.subject轉移學習zh_TW
dc.subject最近鄰居法zh_TW
dc.subjectTransfer learningen
dc.subjectCollaborative filteringen
dc.subjectCold-start problemen
dc.subjectMatrix factorizationen
dc.subjectNeighborhood methodsen
dc.title以跨網站使用者興趣傳遞輔助冷啟動推薦系統zh_TW
dc.titleImproving Cold-Start Recommendation with a Cross-Site User Interest Transfer Modelen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信希,鄭卜壬,蔡宗翰,駱宏毅
dc.subject.keyword冷啟動推薦,協同過濾,轉移學習,最近鄰居法,矩陣分解,zh_TW
dc.subject.keywordCold-start problem,Collaborative filtering,Transfer learning,Neighborhood methods,Matrix factorization,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2015-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
1.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved