請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53948
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 顏瑞泓 | |
dc.contributor.author | Ching-Chun Hsieh | en |
dc.contributor.author | 謝清淳 | zh_TW |
dc.date.accessioned | 2021-06-16T02:34:19Z | - |
dc.date.available | 2020-07-19 | |
dc.date.copyright | 2015-09-02 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-28 | |
dc.identifier.citation | 王一雄。2004年。農藥汙染對作物的影響。植物重要防疫檢疫病害診斷鑑定技術研習會專刊 (三):73-96。 李國欽、李泰林。1983。台灣常用農藥對水源污染之實況調查研究結果總報告,水污染防治所報告。 李達源,陳吉村,洪崑煌。1990。應用模式評估本省八種常用農藥在土壤中之動態。第二屆土壤汙染防治研討會論文集:291-306。 蕭郁樺。2013年。殺菌劑與殺蟲劑的混合施用對藥劑在土壤中降解之影響。國立臺灣大學生物資源暨農學院農業化學系碩士論文。 蕭鈺齡。2008年。苯甲醯尿素類殺蟲劑二福隆、氟芬隆及諾伐隆在土壤的垂直分佈及對不同土層細菌族群的影響。國立臺灣大學生物資源暨農學院農業化學系碩士論文。 行政院農業委員會農業藥物毒物試驗所。2012。植物保護手冊。王喻其、王泰權、陳富翔、蔡勇勝、李宏萍、費文綺。行政院農業委員會農業藥物毒物試驗所。 The United States Environmental Protection Agency. 2015. SCI-GROW Description: http://www.epa.gov/oppefed1/models/water/scigrow_description.htm#comments. Allen, J. W., Wolf, D. C., George, M. H., Hester, S. D., Sun, G., Thai, S.-F., Delker, D. A., Moore, T., Jones, C., Nelson, G., Roop, B. C., Leavitt, S., Winkfield, E., Ward, W. O. Nesnow, S. 2006. Toxicity profiles in mice treated with hepatotumorigenic and non-hepatotumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil. Toxicologic Pathology, 34, 853-862. Bansal, O. P. 2011. Fate of pesticides in the environment. Journal of the Indian Chemical Society, 88, 1525-1532. Barton, H. A., Tang, J., Sey, Y. M., Stanko, J. P., Murrell, R. N., Rockett, J. C. Dix, D. J. 2006. Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes. Xenobiotica, 36, 793-806. Baskaran, S., Kookana, R. S. Naidu, R. 1999. Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates. Pesticide Science, 55, 1222-1228. Berglof, T., Van Dung, T., Kylin, H. Nilsson, I. 2002. Carbendazim sorption-desorption in Vietnamese soils. Chemosphere, 48, 267-273. Binelli, A. Provini, A. 2003. DDT is still a problem in developed countries: the heavy pollution of Lake Maggiore. Chemosphere, 52, 717-723. Bollag, J. M., Myers, C. J. Minard, R. D. 1992. Biological and chemical interactions of pesticides with soil organic-matter. Science of the Total Environment, 123, 205-217. Bromilow, R. H., Evans, A. A. Nicholls, P. H. 1999. Factors affecting degradation rates of five triazole fungicides in two soil types: 1. Laboratory incubations. Pesticide Science, 55, 1129-1134. Brunner, W. Focht, D. D. 1984. Deterministic 3-half-order kinetic-model for microbial-degradation of added carbon substrates in soil. Applied and Environmental Microbiology, 47, 167-172. Buerge, I. J., Poiger, T., Muller, M. D. Buser, H.-R. 2006. Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Environmental Science Technology, 40, 5443-5450. Carson, R. 1962. Silent Spring, Houghton Mifflin Company. Chiba, M. Singh, R. P. 1986. High-performance liquid-chromatographic method for simultaneous determination of benomyl and carbendazim in aqueous-media. Journal of Agricultural and Food Chemistry, 34, 108-112. de Vries, W., McLaughlin, M. J. Groenenberg, J. E. 2011. Transfer functions for solid-solution partitioning of cadmium for Australian soils. Environmental Pollution, 159, 3583-3594. Elbert, A., Overbeck, H., Iwaya, K. Tsuboi, S. 1990. imidacloprid a novel systemic nitromethylene analogue insecticide for crop protection. Flury, M. 1996. Experimental evidence of transport of pesticides through field soils - A review. Journal of Environmental Quality, 25, 25-45. Giles, C. H., Macewan, T. H., Nakhwa, S. N. Smith, D. 1960. Studies in adsorption .11. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, 3973-3993. Goetz, A. K., Ren, H., Schmid, J. E., Blystone, C. R., Thillainadarajah, I., Best, D. S., Nichols, H. P., Strader, L. F., Wolf, D. C., Narotsky, M. G., Rockett, J. C. Dix, D. J. 2007. Disruption of testosterone homeostasis as a mode of action for the reproductive toxicity of triazole fungicides in the male rat. Toxicological Sciences, 95, 227-239. Goldman, J. M., Rehnberg, G. L., Cooper, R. L., Gray, L. E., Hein, J. F. McElroy, W. K. 1989. Effects of the benomyl metabolite, carbendazim, on the hypothalamic-pituitary reproductive axis in the male-rat. Toxicology, 57, 173-182. Hiller, E., Khun, M., Zemanova, L., Jurkovic, L. Bartal, M. 2006. Laboratory study of retention and release of weak acid herbicide MCPA by soils and sediments and leaching potential of MCPA. Plant Soil and Environment, 52, 550-558. Holtman, M. A. Kobayashi, D. Y. 1997. Identification of Rhodococccus erythropolis isolates capable of degrading the fungicide carbendazim. Applied Microbiology and Biotechnology, 47, 578-582. IglesiasJimenez, E., Poveda, E., SanchezMartin, M. J. SanchezCamazano, M. 1997. Effect of the nature of exogenous organic matter on pesticide sorption by the soil. Archives of Environmental Contamination and Toxicology, 33, 117-124. Iwasa, T., Motoyama, N., Ambrose, J. T. Roe, R. M. 2004. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection, 23, 371-378. Jo, Y. K., Chang, S. W., Boehm, M. Jung, G. 2008. Rapid Development of Fungicide Resistance by Sclerotinia homoeocarpa on Turfgrass. Phytopathology, 98, 1297-1304. Kapoor, U., Srivastava, M. K. Srivastava, L. P. 2011. Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats. Food and Chemical Toxicology, 49, 3086-3089. Karpouzas, D. G., Pantelelis, I., Menkissoglu-Spiroudia, U., Golia, E. Tsiropoulos, N. G. 2007. Leaching of the organophosphorus nematicide fosthiazate. Chemosphere, 68, 1359-1364. Kathy Flanders, J. E., Charles Ray, Stephen F. Enloe, Austin Hagan, Brenda Ortiz, Tim Reed, Ron Smith, Edward Sikora, Michael G. Patterson, Ayanava Majumdar, Dennis P. Delaney, Sonja B. Thomas 2014. 2014-2015 alabama pest management handbook, volume 1, Alabama A M University and Auburn University. Lim, J. Miller, M. G. 1997. Role of testis exposure levels in the insensitivity of prepubertal rats to carbendazim-induced testicular toxicity. Fundamental and Applied Toxicology, 37, 158-167. Lu, S. Y., Liao, J. W., Kuo, M. L., Hwang, J. S. Ueng, T. H. 2006. Antagonistic and synergistic effects of carbendazim and flutamide exposures in utero on reproductive and developmental toxicity in rats. Journal of Food and Drug Analysis, 14, 120-132. MacBean, C. Council, B. C. P. 2012. The pesticide manual: A world compendium, BCPC. Markelewicz, R. J., Hall, S. J. Boekelheide, K. 2004. 2,5-hexanedione and carbendazim coexposure synergistically disrupts rat spermatogenesis despite opposing molecular effects on microtubules. Toxicological Sciences, 80, 92-100. Mazellier, P., Leroy, E. Legube, B. 2002. Photochemical behavior of the fungicide carbendazim in dilute aqueous solution. Journal of Photochemistry and Photobiology a-Chemistry, 153, 221-227. Mortland, M. M., Shaobai, S. Boyd, S. A. 1986. Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays and Clay Minerals, 34, 581-585. Nauen, R., Ebbinghaus-Kintscher, U. Schmuck, R. 2001. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera : Apidae). Pest Management Science, 57, 577-586. Oi, M. 1999. Time-dependent sorption of imidacloprid in two different soils. Journal of Agricultural and Food Chemistry, 47, 327-332. Olea, N., Pazos, P. Exposito, J. 1998. Inadvertent exposure to xenoestrogens. European Journal of Cancer Prevention, 7, S17-S23. Peck, D. C., Olmstead, D. Morales, A. 2008. Application timing and efficacy of alternatives for the insecticidal control of Tipula paludosa Meigen (Diptera : Tipulidae), a new invasive pest of turf in the northeastern United States. Pest Management Science, 64, 989-1000. Pereira, A. S., Cerejeira, M. J. Daam, M. A. 2014. Comparing ecotoxicological standards of plant protection products potentially toxic to groundwater life with their measured and modelled concentrations. Ecotoxicology and Environmental Safety, 102, 152-159. service, n. e. d. s. s. c. 1987. soil mechanics level 1 module 3-USDA textural soil classification study guide. In., united states department of agriculture soil conservation service. Simkins, S. Alexander, M. 1984. Models for mineralization kinetics with the variables of substrate concentration and population-density. Applied and Environmental Microbiology, 47, 1299-1306. Soto, A. M., Chung, K. L. Sonnenschein, C. 1994. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environmental Health Perspectives, 102, 380-383. Spark, K. M. Swift, R. S. 2002. Effect of soil composition and dissolved organic matter on pesticide sorption. Science of the Total Environment, 298, 147-161. Sun, Q.Y., Xu, H.M., Cao, Y.B., Zhang, W.N., Wu, Q.Y., Zhang, D.Z., Zhang, J., Zhao, H.Q. Jiang, Y.Y. 2007. Synthesis of novel triazole derivatives as inhibitors of cytochrome P450 14 alpha-demethylase (CYP51). European Journal of Medicinal Chemistry, 42, 1226-1233. Tomizawa, M. Casida, J. E. 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. In: Annual Review of Entomology. Volume 48. eds M. R. Berenbaum, R. T. Carde G. E. Robinson), pp. 339-364. Vanden Bossche, H., Willemsens, G., Roels, I., Bellens, D., Moereels, H., Coene, M. C., Le Jeune, L., Lauwers, W. Janssen, P. A. J. 1990. R-76713 and enantiomers selective nonsteroidal inhibitors of the cytochrome p450-dependent estrogen synthesis. Biochemical Pharmacology, 40, 1707-1718. Wagenet, R. J., Hutson, J. L. Biggar, J. W. 1989. Simulating the fate of a volatile pesticide in unsaturated soil - a case-study with dbcp. Journal of Environmental Quality, 18, 78-84. Yen, J. H., Hsiao, F. L. Wang, Y. S. 1997. Assessment of the insecticide carbofuran's potential to contaminate groundwater through soils in the subtropics. Ecotoxicology and Environmental Safety, 38, 260-265. Yen, J. H., Tsai, C. C., Su, C. C. Wang, Y. S. 2001. Environmental dissipation of fungicide triphenyltin acetate and its potential as a groundwater contaminant. Ecotoxicology and Environmental Safety, 49, 164-170. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53948 | - |
dc.description.abstract | 臺灣開發完成之高爾夫球場約六十座,占全國土地面積的百分之二以上。高爾夫球場為使草坪健康生長,為因應各種病蟲害,長久以來業者除依官方公布之19種農藥外無其他合法藥劑可供使用,常有錯誤使用情形,因此針對高爾夫球場使用之農藥其流布情形及對環境污染風險進行評估有其必要性。本研究分成兩部分,第一部分為進行高爾夫球場施用農藥流布調查及分析,其三座高爾夫球場流布調查結果檢出56種農藥,顯示高爾夫球場施用之農藥種類及品項繁多。第二部分為利用流布調查結果搭配美國草坪推薦用藥,挑選出殺菌劑貝芬替 (Carbendazim)、普克利 (Propiconazole) 及三泰芬 (Triadimefon) 及殺蟲劑益達胺 (Imidacloprid) 進行土壤管柱試驗及數學模式模擬農藥之移動。降解試驗結果顯示,四種農藥其半衰期 (Half life, t1/2),貝芬替為 49.6 天、普克利為 27.7天、三泰芬為 22.8 天,益達胺為 32.3天,其降解情形與前人文獻相比有較短之趨勢。而由四種農藥之等溫吸附曲線可知,四種農藥在高爾夫球場砂土中吸附能力低,與土壤有機質及黏粒含量低有關。農藥在土壤的移動性與降解及吸附有關,且為主要影響因子,而普克利被土壤吸持能力高於其他三種農藥,土壤管柱試驗中普克利在管柱剖面的移動性最低。以數學模式模擬四種農藥於土壤中之移動情形,GWP (Groundwater pollution potential model) 結果為普克利抵達地下水層時間最長,顯示普克利移動至地下水層潛能為最低,污染地下水的風險亦最低;而SCI-CROW模式結果顯示貝芬替抵達地下水濃度最高,具汙染地下水的風險。由上述結果可知,由於高爾夫球場土壤性質為砂質土壤,且有機質含量低導致農藥在土壤中移動性高,故需更審慎評估農藥施用於高爾夫球場流布風險。 | zh_TW |
dc.description.abstract | There are approximately sixty completed constructed golf course in Taiwan and it is about 2% of total Taiwan area. To keep lawn healthy, the golf courses have to deal with varieties of pests. The golf course has been used official announcement 19 pesticides for a long time. Thus it’s necessary for evaluating the fate of pesticides of golf course and its surrounding environment, and make a risk assessment. There are two parts in the study, first of all we investigated and analyzed the pesticides golf course used. We detected 56 pesticides in three golf course, it suggested the golf course application of varieties of pesticides. Second, according to the report and United States lawn recommendation, select three fungicides carbendazim, propiconazole, triadimefon, and insecticide imidacloprid. Then carry on the soil column tests and modeling the movement of four pesticides. The result of degradation test shown four pesticides half life (t1/2): carbendazim was 49.6 days, propiconazole was 27.7 days, triadimefon was 22.8 days, imidacloprid was 32.3 days. And compared to other study the half life in this study was shorter. The adsorption isotherms of four pesticides shown that the soil in this study have low retention capacity, and it related to low soil organic matter and clay content. Degradation and adsorption are the major factor effect the mobility of pesticide. The soil retention capacity of propiconazole was higher than others, and lowest mobility in soil column. In mathematical models and simulate the movement of four pesticides, groundwater pollution potential model (GWP) shown that propiconazole take the longest time to reach the groundwater, also has the lowest risk potential to contaminate groundwater. SCI-CROW models shown that carbendazim has the highest concentration while reach groundwater, and with the risk of contamination. According to above results, due to the golf course soil texture and low organic matter content, it make high mobility of pesticides. Therefore it need to take more cautious to assessment the fate of pesticides applied to the golf course. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:34:19Z (GMT). No. of bitstreams: 1 ntu-104-R02623012-1.pdf: 1338412 bytes, checksum: b5c0b4ab07ccedfe3edd90fdf0dd58ff (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 摘要 I Abstract II 一、前言 1 (一) 農藥使用的重要性、消退及移動 1 (二) 臺灣高爾夫球場用藥現況 4 (三) 研究使用農藥簡介 6 1. 殺菌劑貝芬替 6 2. 殺菌劑普克利及三泰芬 6 3. 殺蟲劑益達胺 7 (四) 研究使用模式簡介 12 二、研究目的 13 三、材料與方法 14 (一) 實驗材料及儀器設備 14 1. 土壤樣品及採樣地點 14 2. 試劑 14 3. 儀器設備 14 (二) 土壤基本性質分析 16 1. 土壤粒徑分析 (Soil particle size) 16 2. 土壤質地 (Soil texture) 16 3. 土壤pH值 16 4. 土壤有機質含量 (Soil organic matter, OM) 16 5. 陽離子交換容量 (Cation exchange capacity, CEC) 17 6. 土壤田間容水量 (Field capacity; -1/3 bar water content) 17 7. 飽和容水量 (Maximum water holding capacity, W.H.C.) 17 (三) 高爾夫球場之農藥流布調查與分析 20 1. 土壤及植物樣品前處理 20 2. 水樣前處理 20 3. 藥劑篩選策略 20 (四) 殺菌劑及殺蟲劑殘量分析 22 1. 儲備標準溶液與檢量線配置 22 2. 農藥之萃取與回收率檢測 22 (五) 土壤管柱之移動試驗 27 1. 土壤管柱設置 27 2. 藥劑添加及淋洗試驗 27 (六) 高爾夫球場土壤之降解試驗 29 1. 藥劑在土壤中的消退動力描述 29 2. 前置孵育 29 3. 藥劑添加 29 4. 藥劑處理 29 (七) 高爾夫球場土壤之吸附試驗 32 (八) 模擬農藥在土壤中之移動 33 1. BAM 模式 33 2. GWP 模式 33 3. SCI-GROW模式 34 四、結果與討論 35 (一) 高爾夫球場施用農藥之流布調查 35 (二) 四種農藥在土壤中之降解 43 (三) 四種農藥在土壤中之吸附 46 (四) 四種農藥在土壤管柱中之垂直移動 49 (五) 模擬四種農藥在土壤中之移動行為 53 五、結論 61 六、參考文獻 62 | |
dc.language.iso | zh-TW | |
dc.title | 四種農藥於高爾夫球場土壤中其消退及移動之研究 | zh_TW |
dc.title | Study on the Dissipation and Movement of Four Pesticides in the Golf Course Soil | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王一雄,費雯綺,袁紹英,何明勳 | |
dc.subject.keyword | 高爾夫球場,貝芬替,普克利,三泰芬,益達胺,淋洗,模擬, | zh_TW |
dc.subject.keyword | Golf course,Carbendazim,Propiconazole,Triadimefon,Imidacloprid,Leaching,Modeling, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-28 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。