請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53931
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇剛毅(Kang-Yi Su) | |
dc.contributor.author | Ting-Yu Cheng | en |
dc.contributor.author | 鄭婷羽 | zh_TW |
dc.date.accessioned | 2021-06-16T02:33:49Z | - |
dc.date.available | 2015-09-25 | |
dc.date.copyright | 2015-09-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2015-07-28 | |
dc.identifier.citation | 1. The burden of overweight and obesity in the Asia-Pacific region. Obes Rev, 2007. 8(3): p. 191-6.
2. Chu, N.F., Prevalence of obesity in Taiwan. Obesity Reviews, 2005. 6(4): p. 271-274. 3. David W Haslam, W.P.T.J., MD, Obesity. The Lancent, 1 October 2005. Volume 366, No. 9492: p. p1197-1209. 4. Mitchell, S. and D. Shaw, The worldwide epidemic of female obesity. Best Practice & Research Clinical Obstetrics & Gynaecology, (0). 5. Low, S., M.C. Chin, and M. Deurenberg-Yap, Review on epidemic of obesity. Ann Acad Med Singapore, 2009. 38(1): p. 57-9. 6. Ferre, P. and F. Foufelle, Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab, 2010. 12 Suppl 2: p. 83-92. 7. Bechmann, L.P., et al., The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol, 2012. 56(4): p. 952-64. 8. Cooper, A.D., Hepatic uptake of chylomicron remnants. J Lipid Res, 1997. 38(11): p. 2173-92. 9. Bedogni, G., et al., Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology, 2005. 42(1): p. 44-52. 10. Browning, J.D., et al., Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology, 2004. 40(6): p. 1387-95. 11. Kleiner, D.E., et al., Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 2005. 41(6): p. 1313-21. 12. Angulo, P., Nonalcoholic fatty liver disease. N Engl J Med, 2002. 346(16): p. 1221-31. 13. Marchesini, G., et al., Nonalcoholic fatty liver disease and the metabolic syndrome. Curr Opin Lipidol, 2005. 16(4): p. 421-7. 14. Musso, G., R. Gambino, and M. Cassader, Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res, 2009. 48(1): p. 1-26. 15. Machado, M., P. Marques-Vidal, and H. Cortez-Pinto, Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol, 2006. 45(4): p. 600-6. 16. Donnelly, K.L., et al., Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest, 2005. 115(5): p. 1343-51. 17. Chen, G., et al., Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A, 2004. 101(31): p. 11245-50. 18. Browning, J.D. and J.D. Horton, Molecular mediators of hepatic steatosis and liver injury. J Clin Invest, 2004. 114(2): p. 147-52. 19. Foufelle, F. and P. Ferré, New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J, 2002. 366(Pt 2): p. 377-91. 20. Ozcan, U., et al., Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science, 2004. 306(5695): p. 457-61. 21. Ozawa, K., et al., The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes, 2005. 54(3): p. 657-63. 22. Ozcan, U., et al., Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 2006. 313(5790): p. 1137-40. 23. Werstuck, G.H., et al., Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest, 2001. 107(10): p. 1263-73. 24. Zeng, L., et al., ATF6 modulates SREBP2-mediated lipogenesis. Embo j, 2004. 23(4): p. 950-8. 25. Szegezdi, E., et al., Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006. 7(9): p. 880-5. 26. Schroder, M. and R.J. Kaufman, ER stress and the unfolded protein response. Mutat Res, 2005. 569(1-2): p. 29-63. 27. Flamment, M., et al., Endoplasmic reticulum stress: a new actor in the development of hepatic steatosis. Curr Opin Lipidol, 2010. 21(3): p. 239-46. 28. Miernyk, J.A., The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. Cell Stress Chaperones, 2001. 6(3): p. 209-18. 29. Venter, J.C., et al., The sequence of the human genome. Science, 2001. 291(5507): p. 1304-51. 30. Gething, M.J., Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol, 1999. 10(5): p. 465-72. 31. Ip, B.C. and X.D. Wang, Non-alcoholic steatohepatitis and hepatocellular carcinoma: implications for lycopene intervention. Nutrients, 2014. 6(1): p. 124-62. 32. Tessari, P., et al., Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis, 2009. 19(4): p. 291-302. 33. Nakagawa, H., et al., ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell, 2014. 26(3): p. 331-43. 34. Fayngerts, S.A., et al., TIPE3 is the transfer protein of lipid second messengers that promote cancer. Cancer Cell, 2014. 26(4): p. 465-78. 35. Arendt, L.M., et al., Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res, 2013. 73(19): p. 6080-93. 36. Li, G., et al., Uncontrolled inflammation induced by AEG-1 promotes gastric cancer and poor prognosis. Cancer Res, 2014. 74(19): p. 5541-52. 37. Basen-Engquist, K. and M. Chang, Obesity and cancer risk: recent review and evidence. Curr Oncol Rep, 2011. 13(1): p. 71-6. 38. Hamed, M.A. and S.A. Ali, Non-viral factors contributing to hepatocellular carcinoma. World J Hepatol, 2013. 5(6): p. 311-22. 39. Giovannucci, E., Insulin, insulin-like growth factors and colon cancer: a review of the evidence. J Nutr, 2001. 131(11 Suppl): p. 3109s-20s. 40. Calle, E.E. and R. Kaaks, Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer, 2004. 4(8): p. 579-91. 41. Roberts, D.L., C. Dive, and A.G. Renehan, Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med, 2010. 61: p. 301-16. 42. Durazzo, M., et al., Focus on therapeutic strategies of nonalcoholic Fatty liver disease. Int J Hepatol, 2012. 2012: p. 464706. 43. Chung, M.Y., et al., Dietary alpha- and gamma-tocopherol supplementation attenuates lipopolysaccharide-induced oxidative stress and inflammatory-related responses in an obese mouse model of nonalcoholic steatohepatitis. J Nutr Biochem, 2010. 21(12): p. 1200-6. 44. Perez-Carreras, M., et al., Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology, 2003. 38(4): p. 999-1007. 45. Yang, S.Q., et al., Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A, 1997. 94(6): p. 2557-62. 46. Tolman, K.G. and A.S. Dalpiaz, Treatment of non-alcoholic fatty liver disease. Ther Clin Risk Manag, 2007. 3(6): p. 1153-63. 47. Zelber-Sagi, S., et al., Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study. J Hepatol, 2007. 47(5): p. 711-7. 48. Bakker-Arkema, R.G., et al., Efficacy and safety of a new HMG-CoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridemia. Jama, 1996. 275(2): p. 128-33. 49. Zimetbaum, P., W.H. Frishman, and S. Kahn, Effects of gemfibrozil and other fibric acid derivatives on blood lipids and lipoproteins. J Clin Pharmacol, 1991. 31(1): p. 25-37. 50. Fruchart, J.C., H.B. Brewer, Jr., and E. Leitersdorf, Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol, 1998. 81(7): p. 912-7. 51. Dowman, J.K., et al., Current therapeutic strategies in non-alcoholic fatty liver disease. Diabetes Obes Metab, 2011. 13(8): p. 692-702. 52. Promrat, K., et al., A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology, 2004. 39(1): p. 188-96. 53. Aithal, G.P., et al., Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology, 2008. 135(4): p. 1176-84. 54. Lirussi, F., et al., Antioxidant supplements for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database Syst Rev, 2007(1): p. Cd004996. 55. Zein, C.O., et al., Pentoxifylline decreases oxidized lipid products in nonalcoholic steatohepatitis: new evidence on the potential therapeutic mechanism. Hepatology, 2012. 56(4): p. 1291-9. 56. Beraza, N., et al., Pharmacological IKK2 inhibition blocks liver steatosis and initiation of non-alcoholic steatohepatitis. Gut, 2008. 57(5): p. 655-63. 57. Witek, R.P., et al., Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology, 2009. 50(5): p. 1421-30. 58. Kammoun Héè, L., GRP78 expression inhibits insulin and ER stress–induced SREBP-1c activation and reduces hepatic steatosis in mice. 2009. 119(5): p. 1201-15. 59. Abraham, V.C., D.L. Taylor, and J.R. Haskins, High content screening applied to large-scale cell biology. Trends Biotechnol, 2004. 22(1): p. 15-22. 60. Lee, S.M., et al., Isolation of human hepatocytes by a two-step collagenase perfusion procedure. J Vis Exp, 2013(79). 61. Shen, L., et al., Isolation and primary culture of rat hepatic cells. J Vis Exp, 2012(64). 62. Erkan, G., et al., Presence and extent of estrogen receptor-alpha expression in patients with simple steatosis and NASH. Pathol Res Pract, 2013. 209(7): p. 429-32. 63. De Gottardi, A., et al., Cannabinoid receptor 1 and 2 agonists increase lipid accumulation in hepatocytes. Liver Int, 2010. 30(10): p. 1482-9. 64. Guo, D., et al., Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des, 2014. 20(15): p. 2619-26. 65. Krycer, J.R., et al., The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol Metab, 2010. 21(5): p. 268-76. 66. Hasan, A., et al., IL-33 is negatively associated with the BMI and confers a protective lipid/metabolic profile in non-diabetic but not diabetic subjects. BMC Immunol, 2014. 15: p. 19. 67. Wood, I.S., B. Wang, and P. Trayhurn, IL-33, a recently identified interleukin-1 gene family member, is expressed in human adipocytes. Biochem Biophys Res Commun, 2009. 384(1): p. 105-9. 68. Chen, Y., et al., Serum programmed cell death protein 5 (PDCD5) levels is upregulated in liver diseases. J Immunoassay Immunochem, 2013. 34(3): p. 294-304. 69. Wang, L., F. Du, and X. Wang, TNF-alpha induces two distinct caspase-8 activation pathways. Cell, 2008. 133(4): p. 693-703. 70. Glund, S., et al., Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes, 2007. 56(6): p. 1630-7. 71. Teruel, T., R. Hernandez, and M. Lorenzo, Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes, 2001. 50(11): p. 2563-71. 72. Harms, M. and P. Seale, Brown and beige fat: development, function and therapeutic potential. Nat Med, 2013. 19(10): p. 1252-1263. 73. Valverde, A.M., et al., Tumor necrosis factor-alpha causes insulin receptor substrate-2-mediated insulin resistance and inhibits insulin-induced adipogenesis in fetal brown adipocytes. Endocrinology, 1998. 139(3): p. 1229-38. 74. Åkesson, L., et al., Dual Effects of Pituitary Adenylate Cyclase-Activating Polypeptide and Isoproterenol on Lipid Metabolism and Signaling in Primary Rat Adipocytes. Endocrinology, 2003. 144(12): p. 5293-5299. 75. Scheller, J., et al., The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011. 1813(5): p. 878-888. 76. Trujillo, M.E., et al., Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J Clin Endocrinol Metab, 2004. 89(11): p. 5577-82. 77. Somani, S.M., R.K. Kutty, and G. Krishna, Eseroline, a metabolite of physostigmine, induces neuronal cell death. Toxicol Appl Pharmacol, 1990. 106(1): p. 28-37. 78. Kaidanovich-Beilin, O. and H. Eldar-Finkelman, Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: molecular characterization in liver and muscle. J Pharmacol Exp Ther, 2006. 316(1): p. 17-24. 79. Zhou, X.Y., et al., Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med, 2004. 10(6): p. 633-7. 80. Vankoningsloo, S., et al., CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes. J Cell Sci, 2006. 119(Pt 7): p. 1266-82. 81. Legry, V., et al., Yin Yang 1 and farnesoid X receptor: a balancing act in non-alcoholic fatty liver disease? Gut, 2014. 63(1): p. 1-2. 82. Tai, C.C., et al., Docosahexaenoic acid enhances hepatic serum amyloid A expression via protein kinase A-dependent mechanism. J Biol Chem, 2009. 284(47): p. 32239-47. 83. Sugarman, E., et al., Identification of Inhibitors of triacylglyceride accumulation in muscle cells: comparing HTS results from 1536-well plate-based and high-content platforms. J Biomol Screen, 2014. 19(1): p. 77-87. 84. McDonough, P.M., et al., Quantification of Lipid Droplets and Associated Proteins in Cellular Models of Obesity via High-Content/High-Throughput Microscopy and Automated Image Analysis. Assay Drug Dev Technol, 2009. 7(5): p. 440-60. 85. Zou, J., et al., Potent inhibitors of lipid droplet formation, in Probe Reports from the NIH Molecular Libraries Program. 2010, National Center for Biotechnology Information (US): Bethesda (MD). 86. Giuliano, K.A., J.R. Haskins, and D.L. Taylor, Advances in high content screening for drug discovery. Assay Drug Dev Technol, 2003. 1(4): p. 565-77. 87. Giese, K., et al., Unravelling novel intracellular pathways in cell-based assays. Drug Discov Today, 2002. 7(3): p. 179-86. 88. Holmes, D.T., P. Long, and J. Frohlich, Dysbetalipoproteinemia and clomipramine. Am J Psychiatry, 2005. 162(7): p. 1384-5. 89. Mumoli, N. and M. Cei, Clomipramine-induced diabetes. Ann Intern Med, 2008. 149(8): p. 595-6. 90. Sugimoto, Y., K. Inoue, and J. Yamada, The tricyclic antidepressant clomipramine increases plasma glucose levels of mice. J Pharmacol Sci, 2003. 93(1): p. 74-9. 91. Colovic, M.B., et al., Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol, 2013. 11(3): p. 315-35. 92. Everett, L.J., et al., Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver. BMC Genomics, 2013. 14: p. 337. 93. Yeh, C.T., et al., Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med, 2012. 186(11): p. 1180-8. 94. Ibáñez, K., et al., Molecular Evidence for the Inverse Comorbidity between Central Nervous System Disorders and Cancers Detected by Transcriptomic Meta-analyses. PLoS Genet, 2014. 10(2): p. e1004173. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53931 | - |
dc.description.abstract | 肥胖為近年來常見且影響健康的問題,容易伴隨著許多疾病的發生,例如糖尿病、心血管疾病以及代謝疾病;而肥胖的形成,少數人是基因所導致,然而大部分的形成可歸因於現代人生活型態的改變,攝取過多養分且缺乏運動所造成。此外,亦有研究指出,肥胖在多種癌症扮演著關鍵的角色,肥胖可使罹患肝癌的機率上升4.5倍,亦參與大腸直腸癌、乳癌、舌咽癌、腎臟癌、胰臟癌等多種癌症的發生。因此,如何有效預防肥胖的產生以及後續治療成為當今重要的議題,其可是透過飲食調控、運動方式,甚至是利用藥物控制體內脂肪的代謝。因此,為了找出能夠有效調節肝臟脂肪代謝的新穎性潛力藥物,本實驗結合高內涵影像分析儀(High content screening)系統、Library of Pharmacologically Active Compounds (LOPAC)藥物化合物以及高脂性細胞培養環境應用於篩選可明顯調控脂肪代謝的新藥。在篩選過程中,培養於高脂性環境下之SK-hep1細胞,其細胞內平均油滴數目為51.8±18.7個,相對於正常環境下之細胞內平均油滴數為8.9±3.5,而在LOPAC1284個藥物化合物中,其中能使細胞內油滴數目相較於未加藥對照組減少超過50%,且細胞存活率達50%以上有66個,細胞存活率達80%以上有30個。而後本實驗利用老鼠初代肝臟細胞做確認,一共挑出五個藥物化合物,且五個藥物對於細胞皆無明顯毒性,而接下來的實驗將著重於探討藥物影響機制以及利用動物模型作確認,篩選出之藥物可供了解脂肪肝相關疾病致病機制,亦可對於肝臟疾病預防治療提供保健策略。 | zh_TW |
dc.description.abstract | Obesity, a common health condition, is also associated with many clinical disease including diabetes, cardiovascular disease and metabolic syndrome. The occurrence may be due to changes in lifestyle introduced in the 21st century which comprise increased consumption of energy dense foods and reduced physical activity. In addition, obesity plays an important role in other disease progression such as hepatocellular carcinoma (HCC) (risk by up to 4.5-fold), colorectal cancer, breast cancer, esophagus cancer, kidney cancer, pancreatic cancer and leukemia. Therefore drugs or diet supplements for metabolic modulation especially lipid biosynthesis may provide a disease prevention or a therapeutic strategy. In order to develop potential novel drug for this issue, we combined high content screening system, LOPAC1280(Library of Pharmacologically Active Compounds) and high fat medium culture system to screening potential drugs which can significantly modulate lipid metabolism or reduce the accumulation of cellular lipid droplets. Up to date, we have already finished screening all of drug library. We found SK-hep1 cells treated with high fat medium exhibited around 51.8±18.7 lipid droplets per cell compared to normal growth medium treatment (8.9±3.5 lipid droplets per cell). Among 1284 screened drug compounds, about 2.3% of them could effectively decrease more than 50% lipid droplet number compared with cells without drug treatment. We further identified 5 compounds that could reduce the accumulation of intracellular lipid droplets by utilizing mice primary hepatocyte culture system. These compounds also showed no cytotoxicity to hepatocyte in MTT assay. In the furture, these drugs need to be further investigated by experimental animal model as well as the underlying mechanism. The drug candidates may not only have benefits for liver protection but also provide a strategy for fatty liver prevention and therapy in health management. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T02:33:49Z (GMT). No. of bitstreams: 1 ntu-104-R02424024-1.pdf: 11148768 bytes, checksum: 56f49928954e3816548987f24db8212a (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 致謝 ii
中文摘要 iv 英文摘要 v 圖次 III 表次 IV 附圖次 V 基因縮寫表 VI 第一章 緒論 1 第一節 前言 1 第二節 肥胖 1 第三節 脂質代謝 2 第四節 非酒精性脂肪肝(NAFLD, Nonalcoholic Fatty Liver Disease) 2 第五節 脂質代謝異常 4 第六節 非酒精性脂肪肝疾病之治療 6 第七節 高內涵細胞影像分析儀(High Content Screening) 8 第八節 小鼠初代肝細胞培養(Primary hepatocyte culture) 8 第二章 研究動機 10 第三章 實驗材料 11 第四章 實驗方法與步驟 13 4.1 細胞培養 13 4.2 高脂性培養基 14 4.3 LOPAC藥物庫 15 4.4 細胞脂質油滴螢光染色 15 4.5 油紅組織染色(Oil red-O stain) 16 4.6 細胞存活實驗(MTT assay) 16 4.7 核醣核酸的萃取(RNA extraction) 16 4.8 基因微陣列分析(Microarray) 17 4.9 小鼠肝細胞初代培養(Primary culture) 17 第五章 實驗結果 19 5.1. 實驗設計 19 5.2 細胞培養條件測試 19 5.2.1 高脂性培養基培養時間 19 5.2.2 高脂性培養基種類 20 5.2.3 細胞株種類 21 5.3 螢光標定脂肪油滴 21 5.3.1 高脂性培養基種類 21 5.3.2 細胞株種類 22 5.4 利用高內涵細胞影像分析儀作定量 23 5.5 高內涵細胞影像分析儀之參數測定 24 5.6 藥物庫分析結果 24 5.7 篩選結果之油紅染色 25 5.8 利用小鼠初代肝細胞驗證挑選出之藥物 26 5.9 藥物毒性測試(MTT assay) 26 5.10 評估潛力藥物之作用方式 27 5.11 評估潛力藥物之作用速度 27 5.12 利用基因微陣列分析與高脂性環境相關之基因 28 5.13 預測潛力藥物的作用途徑 30 第六章 討論 33 第七章 圖表 40 第八章 參考文獻 61 | |
dc.language.iso | zh-TW | |
dc.title | 利用高內涵細胞影像分析儀篩選調控脂肪代謝之肝臟保護藥物 | zh_TW |
dc.title | Novel Potential Drugs Identification for Liver Lipid Metabolism Modulation by High Content Screening | en |
dc.type | Thesis | |
dc.date.schoolyear | 103-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊雅倩(Ya-Chien Yang),林亮音(Liang-In LIN),郭錦樺(Ching-Hua Kuo) | |
dc.subject.keyword | 肥胖,脂肪肝,高內涵影像分析儀,LOPAC1280, | zh_TW |
dc.subject.keyword | Obesity,Nonalcoholic Fatty Liver Disease,High content screening,LOPAC1280, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2015-07-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 10.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。