Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 文學院
  3. 圖書資訊學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53926
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳雪華(Hsueh-Hua Chen)
dc.contributor.authorYi-Yun Chengen
dc.contributor.author鄭依芸zh_TW
dc.date.accessioned2021-06-16T02:33:39Z-
dc.date.available2016-08-03
dc.date.copyright2015-08-03
dc.date.issued2015
dc.date.submitted2015-07-28
dc.identifier.citation5 stars open data. (2012). Retrieved from http://5stardata.info/
Albertoni, R., De Martino, M., Di Franco, S., De Santis, V., & Plini, P. (2014). EARTh: An Environmental Application Reference Thesaurus in the Linked Open Data cloud. Semantic Web, 5(2), 165–171.
Almeida, M. (2013). Revisiting ontologies: a necessary clarification. Journal of the American Society for Information Science and Technology, 64(8), 1682-1693.
ANSI/NISO. (2005). Z39.19 Guidelines for the construction, format, and management of monolingual controlled vocabularies.
ArcGIS Resources (n.d.). Three fundamental representations of geographic information layers. Retrieved from: http://resources.arcgis.com/en/help/getting-started/articles/026n0000000n000000.htm
Arnold, P., & Rahm, E. (2013). Semantic enrichment of ontology mappings: a linguistic-based approach. Advances in Databases and Information Systems, 42-55. Retrieved from: http://link.springer.com/chapter/10.1007/978-3-642-40683-6_4
Berners-Lee, T. (2006). Linked data-design issues. Retrieved from http://www.w3.org/DesignIssues/LinkedData.html
Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American, 284(5), 28-37.
Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The Story So Far. International Journal on Semantic Web and Information Systems, 5(3), 1–22. doi: http://doi.org/10.4018/jswis.2009081901
Bizer, C., Heath, T., Idehen, K., & Berners-Lee, T. (2008). Linked data on the web. Proceedings of the 17th international conference on World Wide Web, ACM, 1265-1266. Retrieved from http://dl.acm.org/citation.cfm?id=1367760
Bratt, S. (2007). Semantic web, and other technologies to watch. World Wide Web Consortium, 2, 8.Retrieved from: http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(1)
Chan, L., & Zeng, M. L. (2006). Metadata interoperability and standardization: a study of methodology part I. D-Lib magazine, 12(6), Retrieved from: http://www.dlib.org/dlib/june06/chan/06chan.html
Chua, W. W. K., & Kim, J. (2012). BOAT: Automatic alignment of biomedical ontologies using term informativeness and candidate selection. Journal of Biomedical Informatics, 45(2), 337–349. doi:http://doi.org/10.1016/j.jbi.2011.11.010
Contreras, J., Corcho, O., & Gómez-Pérez, A. (2009). Six Challenges for the Semantic Web. Retrieved from: http://www.citeulike.org/group/2118/article/4303142
Cote, P. (n.d.).Geographic data resources: formats for geographic data. Harvard University Graduate School of Design. Retrieved from: http://www.gsd.harvard.edu/gis/manual/data_structures/
Delliska, B. (2007). Thesaurus and domain ontology of geoinformatics. Transactions in GIS, 11(4), 637-651.
DiGiuseppe, N., Pouchard, L., & Noy, N. (2014). SWEET知識本體 coverage for earth system sciences. Earth Science Informatics, 1-16.
Ding, Y., & Foo, S. (2002). Ontology research and development. Part 2—a review of ontology mapping and evolving. Journal of Information Science, 28(5), 375–388. doi: http://doi.org/10.1177/016555150202800503
Falconer. (2010). OntoGraf. Retrieved from: http://protegewiki.stanford.edu/wiki/OntoGraf
Feigenbaum, L., Herman, I., Hongsermeier, T., Neumann, E., & Stephens, S. (2007). The semantic web in action. Scientific American, 297(6), 90-97.
Fu, B., Brennan, R., & O’Sullivan, D. (2009). Cross-lingual ontology mapping–an investigation of the impact of machine translation. The Semantic Web , 1-15. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-10871-6_1
Fu, B., Brennan, R., & O’Sullivan, D. (2010). Cross-Lingual Ontology Mapping and Its Use on the Multilingual Semantic Web. MSW, 571, 13-20.
Giaretta, P., & Guarino, N. (1995). Ontologies and knowledge bases towards a terminological clarification. Towards very large knowledge bases: knowledge building & knowledge sharing, 25.
Gokhale, P., Deokattey, S., & Bhanumurthy, K. (2011). Ontology development methods. DESIDOC Journal of Library & Information Technology, 31(2).
Gracia, J., Montiel-Ponsoda, E., Cimiano, P., Gómez-Pérez, A., Buitelaar, P., & McCrae, J. (2012). Challenges for the multilingual Web of Data. Web Semantics: Science, Services and Agents on the World Wide Web, 11, 63–71. doi: http://doi.org/10.1016/j.websem.2011.09.001
Gruber, T. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5, 199-220.
Guarino (1998). Formal ontology and information systems. Proceedings of FOIS, 3-15. Retrieved from: http://uosis.mif.vu.lt/~donatas/Vadovavimas/Temos/OntologiskaiTeisingasKoncepcinisModeliavimas/papildoma/Guarino98-Formal%20Ontology%20and%20Information%20Systems.pdf
Hart, G. (2013). Linked data a geographic perspective. Boca Raton: CRC Press.
Heath, T. (n.d.). Linked data: connect distribute data across the web. Retrieved from: http://linkeddata.org/home
Hodge, G. (2000). Systems of knowledge organization for digital libraries: beyond traditional authority files. Washington, D. C.: The Digital Library Fedration. Retrieved from: http://www.clir.org/pubs/reports/pub91/pub91.pdf
Horridge, M. (2010). OWLViz. Retrieved from: http://protegewiki.stanford.edu/wiki/OWLViz
Jung, J. J. (2011). Exploiting multi-agent platform for indirect alignment between multilingual ontologies: A case study on tourism business. Expert Systems with Applications, 38(5), 5774–5780. doi: http://doi.org/10.1016/j.eswa.2010.10.055
Kempf, A., Ritze, D., Eckert, K., & Zapilko, B. (2014). New Ways of Mapping Knowledge Organization Systems: Using a Semi-Automatic Matching Procedure for Building up Vocabulary Crosswalks. Knowledge Organization, 41(1), 66-75.
King, B., & Reinold, K. (2008). Finding the concept, not just the word: a librarian’s guide to ontologies and semantics. Oxford: Chandos.
Liang, A. C., & Sini, M. (2006). Mapping AGROVOC and the Chinese Agricultural Thesaurus: definitions, tools, procedures. New Review of Hypermedia and Multimedia, 12(1), 51–62.
Liang, A., Sini, M., Chun, C., Sijing, L., Wenlin, L., Chunpei, H., & Keizer, J. (2005). The mapping schema from Chinese Agricultural Thesaurus to AGROVOC. Retrieved from http://eprints.rclis.org/handle/10760/15692
Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., ... & Sycara, K. (2004). OWL-S: Semantic markup for web services. W3C member submission, 22, 2007-04.
Martino, M., & Albertoni, R. (2010). A multilingual/multicultural semantic-based approach to improve Data Sharing in a SDI for Nature Conservation. International Journal of Spatial Data Infrastructures Research, 6(0), 206-233. doi: 10.2902/ijsdir.v6i0.202
McGuinness, D., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C recommendation, 10(10), 2004. Retrieved from: http://www.w3.org/TR/owl-features/
Miles, A., & Bechhofer, S. (2009). SKOS Simple Knowledge Organization System Namespace Document : HTML Variant. W3C. Retrieved from: http://www.w3.org/2009/08/skos-reference/skos.html
National Aeronautics and Space Adminstration. (n.d.). SWEET Overview. Retrieved from: https://sweet.jpl.nasa.gov/
National Geographic (n.d.). GIS(Geographic Information System). Retrieved from: http://education.nationalgeographic.com/education/encyclopedia/geographic-information-system-gis/?ar_a=1
Ngai, G., Carpuat, M., & Fung, P. (2002). Identifying concepts across languages: A first step towards a corpus-based approach to automatic ontology alignment. In Proceedings of the 19th international conference on Computational linguistics, 1, 1-7. Retrieved from http://dl.acm.org/citation.cfm?id=1072390
Noy, N., & McGuinness, D. (2001). Ontology development 101: a guide to creating your first ontology. Retrieved from: http://protege.stanford.edu/publications/ontology_development/ontology101.pdf
Pattuelli, M. C. (2011). Modeling a domain ontology for cultural heritage resources: A user‐centered approach. Journal of the American Society for Information Science and Technology, 62(2), 314-342.
Pazienza, M. T., & Stellato, A. (2005). Linguistically motivated Ontology Mapping for the Semantic Web. In SWAP. Retrieved from http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-166/26.pdf
Peters, W., Montiel-Ponsoda, E., Aguado de Cea, G., & Gómez-Pérez, A. (2007). Localizing ontologies in OWL. Retrieved from: http://oa.upm.es/5195/
Protégé. (n.d. ). Webprotégé release notes. Retrieved from: http://protegewiki.stanford.edu/wiki/WebProtegeReleaseNotes
Qin, J., & Paling, S. (2001). Converting a controlled vocabulary into an ontology: the case of GEM. Information Research: an International Electronic Journal, 6(2).
Raskin, R. G. (2010, December). SWEET 2.1 ontologies. Paper presented at the AGU Fall Meeting Abstracts.
Raskin, R., & Pan, M. (2003). Semantic web for earth and environmental terminology (SWEET). The Proceedings of the Workshop on Semantic Web Technologies for Searching and Retrieving Scientific Data.
Raskin, R., & Pan, M. (2005). Knowledge representation in the semantic web for Earth and environmental terminology (SWEET). Computers & geosciences, 31(9), 1119-1125.
Rector, A. (2015). Pizzas in 10 Minutes: A Quick Demonstration of Handy Shortcuts and Features. Retrieved from: http://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes#Install_the_appropriate_plugins
Schmachtenberg, M., Bizer, C., & Paulheim, H. (2014). State of the LOD Cloud 2014. Retrieved from http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
Schmachtenberg, M., Bizer, C., Jentzsch, A., & Cyganiak, R. (2014). Linking Open Data cloud diagram 2014. Retrieved from http://lod-cloud.net/
Semy, S. K., Pulvermacher, M. K., & Obrst, L. J. (2004). Toward the use of an upper ontology for US government and US military domains: An evaluation (No. MTR-04B0000063).
Shadbolt, N., Hall, W., & Berners-Lee, T. (2006). The semantic web revisited. Intelligent Systems, IEEE, 21(3), 96-101.
Shvaiko, P., & Euzenat, J. (2013). Ontology Matching: State of the Art and Future Challenges. IEEE Transactions on Knowledge and Data Engineering, 25(1), 158–176. doi: http://doi.org/10.1109/TKDE.2011.253
Smith, M., Welty, C., & McGuinness, D. (2004) OWL glossary. W3C recommendation, 10(10), 2004. Retrieved from: http://www.w3.org/TR/owl-guide/#OWLGlossary
Soergel, D. (1999). The rise of ontologies or the reinvention of classification. Journal of the American Society for Information Science, 50(12), 1119-1120.
Tripathi, A., & Babaie, H. A. (2008). Developing a modular hydrogeology ontology by extending the SWEET upper-level ontologies. Computers & Geosciences, 34(9), 1022-1033.
Tudhope, D., Koch, T., & Herry, R. (2006). Terminology services and technologies: JISC state-of-the-art review. Retrieved form: http://www.ukoln.ac.uk/terminology/JISC-review2006.html
Tudorache, T., Vendetti, J., & Noy, N. F. (2008). Web-Protégé–Protégé going Web. Stanford Center for Biomedical Informatics Research, Stanford University, CA, US.
Vickery, B. (1997). Ontologies. Journal of Information Science, 23(4), 227-286.
W3C Working Group. (2014). Best practices for publishing linked data. Retrieved from http://travesia.mcu.es/portalnb/jspui/handle/10421/7479
W3C. (2015). Large Triple Stores. Retrieved from http://www.w3.org/wiki/LargeTripleStores
W3C. (n.d.). Linked Data. Retrieved from http://www.w3.org/standards/semanticweb/data
Wang, S., Englebienne, G., & Schlobach, S. (2008). Learning Concept Mappings from Instance Similarity. Proceedings of the 7th International Conference on The Semantic Web, 339-355. Berlin, Heidelberg: Springer-Verlag. doi:http://doi.org/10.1007/978-3-540-88564-1_22
Wielinga, B., Schreiber, A., Wielemaker, J., & Sandberg, J. (2001). From thesaurus to ontology. Proceedings of the 1st international conference on Knowledge capture. 194-201.
Yu, Liyang. (2011). A developer's guide to the semantic web. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg.
Yue, P., Di, L., Yang, W., Yu, G., & Zhao, P. (2007). Semantics-based automatic composition of geospatial Web service chains. Computers & Geosciences, 33(5), 649-665.
Zeng, M. (2008). Knowledge organization systems. Knowledge Organization, 35(2). Retrieved from: http://nkos.slis.kent.edu/KOS_taxonomy.htm
Zeng, M., & Chan, L. (2004). Trends and issues in establishing interoperability among knowledge organization systems. Journal of the American Society for Information Science and Technology, 55(5), 377-395.
吳育美、曾品方(2012)。知識本體在水質感測網之應用。大學圖書館,16(1),107-134。
孫志鴻(2014)。智慧決策雲與智慧城市。取自: http://210.65.11.4/makoci-web-1.0/docs/intro/04.%E6%99%BA%E6%85%A7%E6%B1%BA%E7%AD%96%E9%9B%B2%E8%88%87%E6%99%BA%E6%85%A7%E5%9F%8E%E5%B8%82.pdf
張如瑩、黃居仁(2004)。 中央研究院中英雙語知識本體詞網(Sinica BOW): 結合詞網, 知識本體, 與領域標記的詞彙知識庫。ROCLING XVI: Conference on Computational Linguistics and Speech Processing,(9), 2-3 . 取自: http://www.iis.sinica.edu.tw/Conference/ROCLING04/camera-ready/P91288.68900954.pdf
陳淑君、凌苡家(2014年12月)。建構數位藝術史的知識本體:對應方法研究。第五屆數位典藏與數位人文國際研討會論文集,267-292。
黃文琪、蔣禮芸、秦韻涵(2012)。從研究人員觀點探討資料庋用系統:以地理資訊應用領域為例。載於陳雪華、陳光華(編著),e-Research學術圖書館創新服務(95-118頁)。臺北市:臺大出版中心。
劉威麟(1997)。GIS專題:地理資訊系統簡介。中研院計算中心通訊,13(25)。取自http://www.ascc.sinica.edu.tw/nl/86/1325/05.txt
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53926-
dc.description.abstract知識本體作為語意網的核心元素之一,是知識組織系統工具中結構最為嚴謹、可以呈現物件間複雜關係、且可以供機器所讀取的工具。在巨量資料時代下,知識本體愈漸重要,在地裡空間資訊領域更是如此;由於需要和世界上其他各國不同語言的知識本體進行互通,「跨語言」知識本體的建置也逐漸開始發展,但是目前對於跨語言知識本體的建置方法上,尚未能有一詳細實務架構與操作流程可以依循,基於此,本研究之目的乃探索建構中英文跨語言知識本體的建置方法及實作流程的可行性,期望該方法能夠作為日後國內跨語言知識本體建置之參考架構。
本研究採用三階段的研究設計,首先擬就知識本體之建置方法、及知識本體對應方法進行文獻探討;第二階段將國際間地理空間資訊具代表性的知識本體SWEET知識本體和國內的國家教育院學術名詞網做中英文語言對應的處理,藉此發展一跨語言的知識本體之雛形架構。第三階段經由中英文知識本體間之對應實作,探索此知識本體之可行性。
本研究藉由上述之研究設計,將知識本體建置方法歸納為「從無到有」、「以知識組織系統為基礎的方法」以及「沿用現有知識本體」三種方法;不同語言間知識本體對應的方法則區分為「人工處理」和「自動或半自動化處理」兩種方式。
在第二階段中英文對照的過程中,本研究運用「以知識組織系統為基礎」以及「沿用現有知識本體」的方法,採用半自動化的方式,研究結果模擬出中英文對照的架構及詳細操作步驟。在中英對照的結果中,以Microsoft Access作為輔助工具,成功對照到80.66%完全等同的詞彙。
在第三階段的知識本體實作結果中,本研究亦研擬出實作的「中間轉換檔」架構以及轉製成知識本體.owl檔案於Protégé軟體中實作的詳細操作步驟,並且運用SKOS語言的屬性豐富中文同義詞、近義詞、相關詞之間的關係。本階段最後以簡單查詢中英文類別的方式,確立本研究知識本體中間轉換檔確實可作為後續參考之實務架構。
zh_TW
dc.description.abstractOntologies, as the fundamental building blocks for the Semantic Web, are the highest-level classification scheme in the family of knowledge organization systems. With the emergence of big data, ontologies are keys to unraveling the information explosion problems, especially in the geospatial information domain. Under the big data situation, other language cultures, not limited to English, are also in a pressing need to construct ontologies. Many tries to be interoperable with ontologies written in other languages, but what lacks are a successful cross-lingual ontology mapping method, and a detailed mapping model for others to follow. The purpose of this study thus is to investigate such methodology for constructing a cross-lingual ontology, in hoping that the model and constructing steps can be recognized as the de-facto practice for future research.
By using a three-phase design methodology, this study begins by reviewing literature on building ontologies and ontology mapping methods. In phase two, we try to map the geospatial information ontology—SWEET ontology—with the termlists from National Academy of Educational Research in Taiwan. In phase three, we model the mapped English/Chinese ontology in Protégé software to explore the prospect of this method.
The results in phase one suggests that there are mainly three types of ontology building methods— starting from scratch, KOS-based, and using existing ontologies. As to ontology mapping methods, we divide them by either manual-processing or automatic/semi-automatic processing methods. In phases two and three, we propose a cross-lingual ontology mapping model and provide an actual step-to-step guide to produce a “switch” for connecting ontologies in different formats and languages. We have also used SKOS relationships to Chinese terms in our ontology to express synonyms and related terms. The semi-automatic mapping result from English to Chinese shows 80.66% accuracy on the exact-match terms; and the search process for the Chinese and English classes in Protégé have proven the feasibility of the practice in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:33:39Z (GMT). No. of bitstreams: 1
ntu-104-R02126002-1.pdf: 13806043 bytes, checksum: 743f3f9b2bdfd38c88988d33a7b6887f (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents謝 辭 i
摘 要 iii
Abstract v
目次 vii
圖次 ix
表次 xi
第一章 緒 論 1
第一節 研究動機 1
第二節 研究目的 4
第三節 研究問題 4
第四節 研究範圍與限制 5
第五節 名詞解釋 7
第二章 文獻分析 9
第一節 語意網 9
第二節 鏈結資料 15
第三節 知識本體 21
第四節 國內外知識本體建置相關研究 37
第五節 地理空間資訊的知識本體 59
第六節 小結 65
第三章 研究設計與實施 68
第一節 研究對象 68
第二節 研究方法與步驟 68
第三節 研究步驟 76
第四章 研究結果 77
第一節 知識本體中英文對應架構與整體流程 77
第二節 知識本體中英文對應詳細操作步驟 79
第三節 知識本體中英文對應統計結果 116
第四節 知識本體實作整體架構與流程 122
第五節 知識本體實作詳細步驟 126
第六節 知識本體中間轉換檔建置結果 173
第五章 結論與建議 184
第一節 結論 184
第二節 建議 191
第三節 後續研究建議 195
參考文獻 199
附錄一 國家教育研究院學術名詞詞典地理學檔案舉隅 209
附錄二 sweetAll.owl 210
附錄三 phenEnvirImpact.owl 219
附錄四 phenEnvirImpact.xlsx 227
附錄五 Protégé論壇訊息 230
附錄六 SWEETEnvironment_zh-tw.owl 233
附錄七 跨語言知識本體建置之操作手冊 282
dc.language.isozh-TW
dc.subject跨語言知識本體對應方法zh_TW
dc.subjectSWEET知識本體zh_TW
dc.subject知識本體zh_TW
dc.subjectontologyen
dc.subjectSWEET ontologyen
dc.subjectcross-lingual ontology mappingen
dc.title跨語言知識本體建置實務之探討—以地理空間資訊領域為例zh_TW
dc.titleA Study on the Best Practice for Constructing a Cross-lingual Geospatial Information Ontologyen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光華(Kuang-hua Chen),孫志鴻(Chih-Hong Sun)
dc.subject.keyword知識本體,跨語言知識本體對應方法,SWEET知識本體,zh_TW
dc.subject.keywordontology,cross-lingual ontology mapping,SWEET ontology,en
dc.relation.page288
dc.rights.note有償授權
dc.date.accepted2015-07-28
dc.contributor.author-college文學院zh_TW
dc.contributor.author-dept圖書資訊學研究所zh_TW
顯示於系所單位:圖書資訊學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  未授權公開取用
13.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved