請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53917完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Cheng-Hsun Tsai | en |
| dc.contributor.author | 蔡承勳 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:33:22Z | - |
| dc.date.available | 2020-08-07 | |
| dc.date.copyright | 2020-08-07 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-05 | |
| dc.identifier.citation | Chapter 1: 1. Flexible Electronic Devices Are The Future — Here’s Why , September, 2018 2. Nathan, A., Ahnood, A., Cole, M. T., Lee, S., Suzuki, Y., Hiralal, P., ... Haque, S. Flexible electronics: the next ubiquitous platform. Proc. IEEE, 100 (Special Centennial Issue), 1486-1517 (2012). 3. Wong, W. S., Salleo, A. (Eds.). Flexible electronics: materials and applications (Vol. 11). Springer Science Business Media. (2009). 4. Five Benefits of Flexible Electronics for displays and sensors — FlexEnable Truly flexible electronics, February, 2020. 5. Schwartz, G., Tee, B. C. K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H., Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun., 4, 1859 (2013). 6. Knopfmacher, O., Hammock, M. L., Appleton, A. L., Schwartz, G., Mei, J., Lei, T., . Bao, Z. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun., 5, 2954 (2014). 7. Zhang, F., Di, C. A., Berdunov, N., Hu, Y., Hu, Y., Gao, X., ... Zhu, D. Ultrathin film organic transistors: precise control of semiconductor thickness via spin‐coating. Adv. Mater., 25(10), 1401-1407 (2013). 8. Guo, Y., Yu, G., Liu, Y. Functional organic field‐effect transistors. Adv. Mater., 22(40), 4427-4447 (2010). 9. Johnson, M., Bennett, B. R., Yang, M. J., Miller, M. M., Shanabrook, B. V. Hybrid Hall effect device. Appl. Phys. Lett., 71(7), 974-976 (1997). 10. Thiele, S., Vincent, R., Holzmann, M., Klyatskaya, S., Ruben, M., Balestro, F., Wernsdorfer, W. Electrical readout of individual nuclear spin trajectories in a single-molecule magnet spin transistor. Phys. Rev. Lett., 111(3), 037203 (2013). 11. Bogani, L. Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater., 7, 179–186 (2008). 12. Miller, M. M., Sheehan, P. E., Edelstein, R. L., Tamanaha, C. R., Zhong, L., Bounnak, S., ... Colton, R. J. A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J. Magn. Magn. Mater., 225(1-2), 138-144 (2001). 13. Dogaru, T., Smith, S. T. Giant magnetoresistance-based eddy-current sensor. IEEE Trans. Magn., 37(5), 3831-3838 (2001). 14. Chang, T. C., Chang, K. C., Tsai, T. M., Chu, T. J., Simon M. Sze Resistance random access memory. Mater. Today, 19, 254 (2016). 15. Tzou, C. Y., Cai, S. Y., Tseng, C. Y., Chang, C. Y., Chiang, S. Y., Jiang, C. Y., ... Chen, Y. F. An ultra-fast two-terminal organic phototransistor with vertical topology for information technologies. Appl. Phys. Lett., 114(19), 193301 (2019). 16. Cai, S. Y., Chang, C. H., Lin, H. I., Huang, Y. F., Lin, W. J., Lin, S. Y., ... Tzou, C. Y. Ultrahigh sensitive and flexible magnetoelectronics with magnetic nanocomposites: Toward an additional perception of artificial intelligence. ACS Appl. Mater. Interfaces, 10(20), 17393-17400. (2018). 17. Meng Li, Yu Wang, Aiping Chen, Arin Naidu, Bradley S. Napier, Wenyi Li, ... Fiorenzo G. Omenetto Flexible magnetic composites for light-controlled actuation and interfaces. PNAS, vol. 115, no 32, 8119-8124. (2018). 18. Cing-Yu Jiang, Cheng-Hsun Tsai, Chen-Yang Tzou, Fang-Chi Hsu, Yang-Fang Chen. Magnetically controllable and flexible photodetectors for artificial intelligent skin with additional perception. Organic electronics, (2020). Chapter 2: 1. Flexible Electronic Devices Are The Future — Here’s Why , September, 2018 2. Nathan, A., Ahnood, A., Cole, M. T., Lee, S., Suzuki, Y., Hiralal, P., ... Haque, S. Flexible electronics: the next ubiquitous platform. Proc. IEEE, 100(Special Centennial Issue), 1486-1517 (2012). 3. Wong, W. S., Salleo, A. (Eds.). Flexible electronics: materials and applications (Vol. 11). Springer Science Business Media. (2009) 4. Harris, K. D., Elias, A. L., Chung, H. J. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J. Mater. Sci., 51(6), 2771-2805 (2016). 5. Choong, C. L., Shim, M. B., Lee, B. S., Jeon, S., Ko, D. S., Kang, T. H., ... Jeong, Y. J. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater., 26(21), 3451-3458 (2014). 6. Kim, K. H., Jang, N. S., Ha, S. H., Cho, J. H., Kim, J. M. Highly sensitive and stretchable resistive strain sensors based on microstructured metal nanowire/elastomer composite films. Small, 14(14), 1704232 (2018). 7. Mannsfeld, S. C., Tee, B. C., Stoltenberg, R. M., Chen, C. V. H., Barman, S., Muir, B. V., ... Bao, Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater., 9(10), 859 (2010). 8. Pang, C., Lee, G. Y., Kim, T. I., Kim, S. M., Kim, H. N., Ahn, S. H., Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater., 11(9), 795 (2012). 9. Meng Li, Yu Wang, Aiping Chen, Arin Naidu, Bradley S. Napier, Wenyi Li, ... Fiorenzo G. Omenetto Flexible magnetic composites for light-controlled actuation and interfaces. PNAS, vol. 115, no 32, 8119-8124. (2018). 10. Cing-Yu Jiang, Cheng-Hsun Tsai,Chen-Yang Tzou, Fang-Chi Hsu, Yang-Fang Chen. Magnetically controllable and flexible photodetectors for artificial intelligent skin with additional perception. Organic electronics. (2020). 11. Giuliana Di Martino Stefan Tappertzhofen. Optically accessible memristive devices. Nanophotonics, Volume 8: Issue 10, 2192-8614. (2019). 12. Prakash, A., Jana, D. Maikap, S. TaO x -based resistive switching memories: prospective and challenges. Nanoscale Res Lett 8, 418 (2013). 13. Curie temperature From Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/Curie_temperature. Chapter 3: 1. Cing-Yu Jiang, Cheng-Hsun Tsai, Chen-Yang Tzou, Fang-Chi Hsu, Yang-Fang Chen. Magnetically controllable and flexible photodetectors for artificial intelligent skin with additional perception. Organic electronics, (2020). 2. Tzou, C. Y., Cai, S. Y., Tseng, C. Y., Chang, C. Y., Chiang, S. Y., Jiang, C. Y., ... Chen, Y. F. An ultra-fast two-terminal organic phototransistor with vertical topology for information technologies. Appl. Phys. Lett., 114(19), 193301 (2019). 3. Meng Li, Yu Wang, Aiping Chen, Arin Naidu, Bradley S. Napier, Wenyi Li, ... Fiorenzo G. Omenetto Flexible magnetic composites for light-controlled actuation and interfaces. PNAS, vol. 115, no 32, 8119-8124. (2018). 4. Polydimethylsiloxane From Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/Polydimethylsiloxane. 5. Poly(methyl methacrylate) From Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/Poly(methyl_methacrylate). Chapter 4: 1. Tzou, C. Y., Cai, S. Y., Tseng, C. Y., Chang, C. Y., Chiang, S. Y., Jiang, C. Y., ... Chen, Y. F. An ultra-fast two-terminal organic phototransistor with vertical topology for information technologies. Appl. Phys. Lett., 114(19), 193301 (2019). 2. Dutta, S., Narayan, K. S. Photoinduced charge transport in polymer field effect transistors. Synth. Met., 146, 321-324 (2004). 3. Bogani, L. Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater., 7, 179–186 (2008). 4. Jansen, R. The spin-valve transistor: a review and outlook. J. Phys. D, 36(19), R289 (2003). 5. Junqing Zhao, Hang Guo, Yao Kun Pang, Fengben Xi, Zhi Wei Yang, Guoxu Liu, Tong Guo, Guifang Dong, Chi Zhang, and Zhong Lin Wang . Flexible Organic Tribotronic Transistor for Pressure and Magnetic Sensing. ACS Nano , 11 (11) , 11566-11573 (2017). 6. Yaping Zang, Fengjiao Zhang, Dazhen Huang, Chong-an Di, Daoben Zhu. Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic-Functionalized Suspended Gate Electrodes. Adv. Mater., 27 (48) , 7979-7985 (2015). 7. Li-Fi-From Wikipedia, the free encyclopedia, https://en.wikipedia.org/wiki/Li-Fi 8. Y. Bi, X. S. Hu, Y. Jin, M. Niemier, K. Shamsi, X. Yin, 'Enhancing hardware security with emerging transistor technologies', Proc. 26th Ed. Great Lakes Symp. VLSI, pp. 305-310 (2016). 9. Bermúdez, G. S. C., Fuchs, H., Bischoff, L., Fassbender, J., Makarov, D. Electronic-skin compasses for geomagnetic field-driven artificial magnetoreception and interactive electronics. Nat. Electron., 1(11), 589 (2018). 10. Cing-Yu Jiang, Cheng-Hsun Tsai, Chen-Yang Tzou, Fang-Chi Hsu, Yang-Fang Chen. Magnetically controllable and flexible photodetectors for artificial intelligent skin with additional perception. Organic electronics, (2020). 11. Meng Li, Yu Wang, Aiping Chen, Arin Naidu, Bradley S. Napier, Wenyi Li, ... Fiorenzo G. Omenetto Flexible magnetic composites for light-controlled actuation and interfaces. PNAS, vol. 115, no 32, 8119-8124. (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53917 | - |
| dc.description.abstract | 此研究提出一種可應用於通訊的磁控電晶體,是一種結合了可變電阻式記憶體(ITO/PMMA/Ag)和具有金字塔結構的磁電薄膜元件(Fe-Ni/PDMS/AgNWs)的垂直整合結構。這兩種元件分別感應電場和磁場來結合形成電晶體。此器件可以做為開關使用,並且可以藉由不同的電場和磁場來調控輸出的訊號。另外,我們將磁電薄膜中的鐵鎳材料替換為一樣具有磁性的二氧化鉻(CrO2),利用二氧化鉻遇熱會消磁的特性,使此元件多了一項熱感應。此研究中的電晶體具有一些優點,包含低成本、高開關電流比率、快速響應時間、非接觸式人機互動等等。這些特性使這項磁控電晶體有著發展通訊、監控系統和資訊安全的潛力。 | zh_TW |
| dc.description.abstract | We propose an electric/magnetic hybrid nonvolatile transistor memory that can be controlled by both external electric and magnetic fields. This transistor possesses a tandem structure composed of a resistive random-access memory (RRAM) of ITO/PMMA/Ag and a magnetoelectronic film with micropyramid structure of FeNi/PDMS/AgNWs. This novel device carries the properties of each individual component enable to sense electric and magnetic fields and form a unique hybrid transistor memory. It can function as a switch and nonvolatile memory, and can control the output signal by different electric and magnetic fields. In addition, we replaced the iron-nickel in the magnetoelectronic film with chromium dioxide (CrO2). Using the characteristic of CrO2 demagnetization when heated, makes this device produce an additional thermal induction and optically controllable capability. Furthermore, this transistor has several advantages, including cost effectiveness, high ON/OFF ratio, fast response time, and touchless human–machine interaction. All these characteristics enable the newly designed electric/magnetic hybrid nonvolatile transistor memory have a great potential to be applied in many areas, including communications, monitoring systems, information security, and etc. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:33:22Z (GMT). No. of bitstreams: 1 U0001-0408202013352400.pdf: 2118482 bytes, checksum: 2754b164f14254d4747c168da65601cd (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi Chapter 1 Introduction 1 Reference 4 Chapter 2 Theoretical Background 7 2.1 Resistance random access memory (RRAM) 7 2.1.1 Resistive switching behaviors 8 2.1.2 Resistive switching mechanisms 9 2.2 Magnetoelectronic device 10 2.2.1 Flexible electronics 10 2.2.2 The stretchable resistive sensor 12 2.3 Curie temperature (TC) 13 2.3.1 Curie temperature 13 2.3.2 Curie temperature of various materials 14 Reference 16 Chapter 3 Experimental details 18 3.1 Instrument 18 3.1.1 The list of equipment 18 3.1.2 Scanning electron microscope (SEM) 18 3.1.3 Thermal evaporation 19 3.2 Materials 21 3.2.1 The list of materials 21 3.2.2 PMMA 21 3.2.3 Polydimethylsiloxane (PDMS) 22 3.2.4 Silver nanowires (AgNWs) 22 3.2.5 Preparation of ITO glass 22 3.3 Device fabrication 23 3.3.1 RRAM cells 23 3.3.2 Flexible magnetoelectronic device 23 Reference 24 Chapter 4 Results and Discussion 25 4.1 Characteristics of flexible magnetoelectronic device (Fe-Ni) 25 4.2 Characteristics of flexible magnetoelectronic device (CrO2) 29 4.3 Characteristics of organic resistive random access memory (RRAM) 30 4.4 Characteristics of the electric/magnetic hybrid transistor 32 4.5 Demonstration of the CrO2 based magnetoelectronic device 40 Reference 44 Chapter 5 Conclusion 46 | |
| dc.language.iso | en | |
| dc.subject | 磁感應 | zh_TW |
| dc.subject | 可變電阻式記憶體 | zh_TW |
| dc.subject | 非接觸式元件 | zh_TW |
| dc.subject | 磁電元件 | zh_TW |
| dc.subject | 電晶體 | zh_TW |
| dc.subject | magnetoreception | en |
| dc.subject | touchless | en |
| dc.subject | transistor | en |
| dc.subject | magnetoelectronic device | en |
| dc.subject | resistive random access memory | en |
| dc.title | 雙極電/磁場混合非揮發性記憶體 | zh_TW |
| dc.title | Two-Terminal Electric/Magnetic Hybrid Nonvolatile Transistor Memory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 許芳琪(Fang-Chi Hsu) | |
| dc.contributor.oralexamcommittee | 沈志霖(Ji-Lin Shen),王偉華(Wei-Hua Wang) | |
| dc.subject.keyword | 可變電阻式記憶體,磁電元件,電晶體,磁感應,非接觸式元件, | zh_TW |
| dc.subject.keyword | resistive random access memory,magnetoelectronic device,transistor,magnetoreception,touchless, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU202002364 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0408202013352400.pdf 未授權公開取用 | 2.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
