請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53915完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峰輝(Feng-Huei Lin) | |
| dc.contributor.author | Jian-Yuan Huang | en |
| dc.contributor.author | 黃建元 | zh_TW |
| dc.date.accessioned | 2021-06-16T02:33:18Z | - |
| dc.date.available | 2016-07-31 | |
| dc.date.copyright | 2015-07-31 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2015-07-28 | |
| dc.identifier.citation | [1] Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer. 2010;127:2893-917.
[2] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: A Cancer Journal for Clinicians. 2013;63:11-30. [3] Pao W, Girard N. New driver mutations in non-small-cell lung cancer. The lancet oncology. 2011;12:175-80. [4] Subramanian J, Govindan R. Lung cancer in never smokers: a review. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007;25:561-70. [5] Liaw YP, Huang YC, Lien GW. Patterns of lung cancer mortality in 23 countries: application of the age-period-cohort model. BMC public health. 2005;5:22. [6] Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y. The new World Health Organization classification of lung tumours. The European respiratory journal. 2001;18:1059-68. [7] Smith J. Erlotinib: small-molecule targeted therapy in the treatment of non-small-cell lung cancer. Clinical therapeutics. 2005;27:1513-34. [8] Cagle PT. Advances in surgical pathology. Lung cancer. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011. [9] Stewart DJ. Lung Cancer:: Prevention, Management, and Emerging Therapies: Humana Press; 2010. [10] Manegold C. Non-Small Cell Lung Cancer Treatment: UNI-MED Verlag AG; 2007. [11] Argiris A, Abraham J. Lung Cancer: Demos Medical Publishing; 2012. [12] Niiranen A, Niitamo-Korhonen S, Kouri M, Assendelft A, Mattson K, Pyrhonen S. Adjuvant chemotherapy after radical surgery for non-small-cell lung cancer: a randomized study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1992;10:1927-32. [13] Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of Four Chemotherapy Regimens for Advanced Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2002;346:92-8. [14] Gralla RJ, Casper ES, Kelsen DP, Braun JDW, Dukeman ME, Martini N, et al. Cisplatin and Vindesine Combination Chemotherapy for Advanced Carcinoma of the Lung: A Randomized Trial Investigating Two Dosage Schedules. Annals of Internal Medicine. 1981;95:414-20. [15] Le Chevalier T, Arriagada R, Quoix E, Ruffle P, Martin M, Tarayre M, et al. Radiotherapy Alone Versus Combined Chemotherapy and Radiotherapy in Nonresectable Non-Small-Cell Lung Cancer: First Analysis of a Randomized Trial in 353 Patients. Journal of the National Cancer Institute. 1991;83:417-23. [16] Delbaldo C, Michiels S, Syz N, Soria J-C, Le Chevalier T, Pignon J-P. Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non–small-cell lung cancer: a meta-analysis. Jama. 2004;292:470-84. [17] Nilsson JR. Cytotoxic effects of cisplatin, cis-dichlorodiammineplatinum (II), on Tetrahymena. Journal of cell science. 1988;90:707-16. [18] Reed E, Yuspa SH, Zwelling LA, Ozols RF, Poirier MC. Quantitation of cis-diamminedichloroplatinum II (cisplatin)-DNA-intrastrand adducts in testicular and ovarian cancer patients receiving cisplatin chemotherapy. Journal of Clinical Investigation. 1986;77:545. [19] Carter S. Cisplatin—past, present and future. Platinum Coordination Complexes in Cancer Chemotherapy: Springer; 1984. p. 359-76. [20] Liang W, Hu C, Gu Q, Song M, Luo W. [Effects of Expression of ERCC1, RRM1 on Survival Trend of Lung Cancer with Cisplatin Combine Gemcitabine Chemotherapy after Surgical Resection.]. Zhongguo fei ai za zhi= Chinese journal of lung cancer. 2009;12:403-7. [21] Giaccone G. Twenty-five years of treating advanced NSCLC: what have we achieved. Ann Oncol. 2004;15:81-3. [22] Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia – description of a method and a review of clinical applications. Reports of Practical Oncology & Radiotherapy. 2007;12:267-75. [23] Konings A. Effects of heat and radiation on mammalian cells. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry. 1987;30:339-49. [24] Hall EJ, Giaccia AJ. Radiobiology for the Radiologist: Lippincott Williams & Wilkins; 2006. [25] Breipohl W, van Beuningen D, Ummels M, Streffer C, Schönfelder B. Effect of hyperthermia on the intestinal mucosa of mice. Verh Anat Ges. 1983;77:567-9. [26] Moroz P, Jones S, Gray B. Magnetically mediated hyperthermia: current status and future directions. International Journal of Hyperthermia. 2002;18:267-84. [27] Ito A, Honda H, Kobayashi T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of 'heat-controlled necrosis' with heat shock protein expression. Cancer immunology, immunotherapy : CII. 2006;55:320-8. [28] Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proceedings of the National Academy of Sciences. 1992;89:3070-4. [29] Perez R. Cellular and molecular determinants of cisplatin resistance. European Journal of Cancer. 1998;34:1535-42. [30] Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clinical Cancer Research. 2008;14:1291-5. [31] Issels RD. Hyperthermia adds to chemotherapy. European Journal of Cancer. 2008;44:2546-54. [32] Kampinga HH. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 2006;22:191-6. [33] Ohtsubo T, Saito H, Tanaka N, Matsumoto H, Sugimoto C, Saito T, et al. Enhancement of cisplatin sensitivity and platinum uptake by 40 C hyperthermia in resistant cells. Cancer letters. 1997;119:47-52. [34] Barry MA, Behnke CA, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochemical pharmacology. 1990;40:2353-62. [35] Wiedemann G, Mella O, Roszinski S, Weiss C, Wagner T. Hyperthermia enhances mitoxantrone cytotoxicity on human breast carcinoma and sarcoma xenografts in nude mice. International Journal of Radiation Oncology* Biology* Physics. 1992;24:669-73. [36] Masuda H, Tanaka T, Matsushima S. Hyperthermic enhancement of cisplatin-induced generation of active oxygen radicals in a cell-free system. Anticancer research. 1997;18:1473-7. [37] Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, et al. Efficacy of Liposomes and Hyperthermia in a Human Tumor Xenograft Model: Importance of Triggered Drug Release. Cancer Research. 2000;60:6950-7. [38] Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of controlled release. 2001;70:1-20. [39] Cho K, Wang X, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research. 2008;14:1310-6. [40] Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials. 2005;293:483-96. [41] Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews. 2003;55:329-47. [42] Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS nano. 2008;2:889-96. [43] Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano letters. 2007;7:3065-70. [44] Anglin EJ, Cheng L, Freeman WR, Sailor MJ. Porous silicon in drug delivery devices and materials. Advanced drug delivery reviews. 2008;60:1266-77. [45] Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomaterialia. 2010;6:2212-8. [46] Fritsch A, Dormieux L, Hellmich C, Sanahuja J. Mechanical behavior of hydroxyapatite biomaterials: an experimentally validated micromechanical model for elasticity and strength. Journal of biomedical materials research Part A. 2009;88:149-61. [47] Singh A. Hydroxyapatite, a biomaterial: Its chemical synthesis, characterization and study of biocompatibility prepared from shell of garden snail, Helix aspersa. Bulletin of Materials Science. 2012;35:1031-8. [48] Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011;3:1351-71. [49] Damien E, Revell P. Coralline hydroxyapatite bone graft substitute: A review of experimental studies and biomedical applications. Journal of applied biomaterials & biomechanics: JABB. 2003;2:65-73. [50] Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical reviews. 2008;108:4754-83. [51] Ma QY, Traina SJ, Logan TJ, Ryan JA. Effects of aqueous Al, Cd, Cu, Fe (II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental science & technology. 1994;28:1219-28. [52] Iwasaki T, Nakatsuka R, Murase K, Takata H, Nakamura H, Watano S. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route. International Journal of Molecular Sciences. 2013;14:9365-78. [53] Boskey AL, Posner AS. Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion. The Journal of Physical Chemistry. 1973;77:2313-7. [54] Tram Do TN, Lee W-H, Loo C-Y, Zavgorodniy AV, Rohanizadeh R. Hydroxyapatite nanoparticles as vectors for gene delivery. Therapeutic delivery. 2012;3:623-32. [55] Huang J-Y, Liu C-C, Yen K-C, Kang P-L, Sadhasivam S, Lin F-H. Cholaminchloride hydrochloride-cationized gelatin/calcium-phosphate nanoparticles as gene carriers for transgenic chicken production. Process Biochemistry. 2012;47:1919-25. [56] Uddin MH, Matsumoto T, Okazaki M, Nakahira A, Sohmura T. Biomimetic fabrication of apatite related biomaterials. 2010. [57] Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science. 2011;166:8-23. [58] Olaussen KA, Dunant A, Fouret P, Brambilla E, André F, Haddad V, et al. DNA repair by ERCC1 in non–small-cell lung cancer and cisplatin-based adjuvant chemotherapy. New England Journal of Medicine. 2006;355:983-91. [59] Nayak AK. Hydroxyapatite Synthesis Methodologies: An Overview. International Journal of ChemTech Research. 2010;2. [60] Sanchez-Dominguez M, Liotta LF, Di Carlo G, Pantaleo G, Venezia AM, Solans C, et al. Synthesis of CeO2, ZrO2, Ce0. 5Zr0. 5O2, and TiO2 nanoparticles by a novel oil-in-water microemulsion reaction method and their use as catalyst support for CO oxidation. Catalysis today. 2010;158:35-43. [61] Shaw DJ. Introduction to Colloid and Surface Chemistry: Butterworth-Heinemann; 1992. [62] Liu Y, Goebl J, Yin Y. Templated synthesis of nanostructured materials. Chemical Society Reviews. 2013;42:2610-53. [63] Liu J, Kim A, Wang L, Palmer B, Chen Y, Bruinsma P, et al. Self-assembly in the synthesis of ceramic materials and composites. Advances in colloid and interface science. 1996;69:131-80. [64] Eastoe J, Hollamby MJ, Hudson L. Recent advances in nanoparticle synthesis with reversed micelles. Advances in colloid and interface science. 2006;128:5-15. [65] Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265-79. [66] Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacology & therapeutics. 1987;34:155-66. [67] Arany I, Safirstein RL. Cisplatin nephrotoxicity. Seminars in nephrology: Elsevier; 2003. p. 460-4. [68] Andrä W, Nowak H. Magnetism in Medicine: A Handbook: Wiley; 2007. [69] Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry. 2004;14:2161-75. [70] Néel L. Some theoretical aspects of rock-magnetism. Advances in physics. 1955;4:191-243. [71] Fannin P, Charles S. The study of a ferrofluid exhibiting both Brownian and Neel relaxation. Journal of Physics D: Applied Physics. 1989;22:187. [72] Song CW, Kang MS, Rhee JG, Levitt SH. Effect of hyperthermia on vascular function in normal and neoplastic tissues. Annals of the New York Academy of Sciences. 1980;335:35-47. [73] Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer research. 1984;44:4721s-30s. [74] Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 2011;10:417-27. [75] Nishizaki M, Meyn RE, Levy LB, Atkinson EN, White RA, Roth JA, et al. Synergistic inhibition of human lung cancer cell growth by adenovirus-mediated wild-type p53 gene transfer in combination with docetaxel and radiation therapeutics in vitro and in vivo. Clinical cancer research : an official journal of the American Association for Cancer Research. 2001;7:2887-97. [76] Urano M. Invited review: for the clinical application of thermochemotherapy given at mild temperatures. International Journal of Hyperthermia. 1999;15:79-107. [77] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995-4021. [78] Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences. 2008;105:11613-8. [79] Desnick RJ, Schuchman EH. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nature Reviews Genetics. 2002;3:954-66. [80] Luzio JP, Gray S, Bright N. Endosome-lysosome fusion. Biochemical Society Transactions. 2010;38:1413-6. [81] Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. Journal of Biological Chemistry. 2000;275:39435-43. [82] Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: a clear and present danger. Physiological reviews. 2010;90:1165. [83] Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell death & differentiation. 1999;6. [84] Basu A, Krishnamurthy S. Cellular responses to cisplatin-induced DNA damage. Journal of nucleic acids. 2010;2010. [85] Pisanic II TR, Blackwell JD, Shubayev VI, Fiñones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials. 2007;28:2572-81. [86] Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano reviews. 2010;1. [87] Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, et al. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics. 2012;3:116-26. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53915 | - |
| dc.description.abstract | 近三十年來惡性腫瘤一直是國內十大死因排名之首,其中肺癌更居所有癌症之冠。儘管當今之醫療水準已有相當的進展,肺腺癌的平均五年之存活率依舊難以有效率的增加。化療一直是治療肺癌的標準療程之一,其中第一線化療用藥順鉑(cisplatin, CDDP)或其混合處方對非小細胞肺癌有不錯的療效。由於順鉑在使用上常有抗藥性的問題,所以需合併其他治療方式提高療效以及克服抗藥性。
本研究為利用氧化鐵-奈米氫氧基磷灰石-順鉑磁性藥物載體於肺癌合併化療與熱治療之研究,達到協同增效(synergistic effect)的治療作用。奈米氫氧基磷灰石(HAp)具有良好的生物相容性與生物可分解性,其已廣泛應用於生物醫學領域。由於傳統的共沉法無法有效地將藥物載於氫氧基磷灰石上,故本實驗利用微乳化法來合成氫氧基磷灰石-順鉑奈米粒子(HAp/CDDP)能有效將達到22.9%順鉑載藥率。再利用鹼性環境下將氧化鐵共沉在氫氧基磷灰石-順鉑奈米粒子上形成氧化鐵-氫氧基磷灰石-順鉑奈米粒子(mHAp/CDDP)。此磁性粒子晶體主結構經由X光與電子束繞射分析為氫氧基磷灰石。氧化鐵的結構為磁鐵礦。經由穿透式電子顯微鏡可得知所合成之奈米晶格大小範圍介於50 – 80 nm。由SQUID測得mHAp/CDDP為超順磁性。在37ºC以及磁場條件為f = 750 KHz, H = 10 Oe時,SAR值為72.91W/g。此磁性粒子在磁場的作用下具有足夠的能力使溫度由室溫在10分鐘上升20ºC。 經由穿透式電子顯微鏡可得知磁性粒子與人類肺腺癌細胞(A549)共培養,細胞會藉由吞噬作用將奈米粒子內吞至核內體(endosome)內。共培養12小時候,以共軛顯微鏡觀察,奈米粒子在與細胞會分布在溶小體(lysosome)內。由於溶小體內為酸性環境會將氫氧基磷灰石奈米粒子溶解並產生滲透壓將溶小體撐破釋出化療藥物。因此順鉑將能進入到細胞核內與DNA結合形成一複合體影響細胞正常複製生長,進而造成癌細胞走向凋亡。 由細胞相容性實驗可發現,HAp與mHAp具有良好的生物相容性,但HAp/CDDP與mHAp/CDDP會持續釋出順鉑造成細胞死亡。再搭配熱治療實驗能發現熱療與化療能造成之協同增效作用提高抗癌效果,實驗三天後儘13%癌細胞存活,療效明顯比單一治療方法高。由西方點墨實驗(Western blot)得知,在研究中所釋出的順鉑會透過胞外訊號調節激酶(Extracellular signal-regulated kinases, ERK)途徑造成細胞凋亡(apoptosis)。 在小鼠動物實驗中,以免疫不全裸鼠(BALB/c Nude mice)後肢皮下植入A549細胞作為癌症動物模式。將小鼠分組成六組不同之治療方式,其中施打mHAp/CDDP並暴露於外加磁場下的組別其療效最佳,腫瘤生長明顯受到抑制。此外,本研究方式並未對實驗動物造成肝腎毒性以及其他的副作用。因此本研究所開發之氧化鐵-氫氧基磷灰石-順鉑奈米粒子是一種同時包含化療與熱療於單一奈米系統上,其具有增效作用應用於抗癌研究上。 | zh_TW |
| dc.description.abstract | A malignant neoplasm is abnormal cell growth in a tissue and affect human quality of life and lifespan. Lung cancer was the second most commonly estimated cancer case and the first leading cause of cancer death both in human. Therefore, lung cancer brought out over one million death worldwide each year. However, in the era of medical technology developed, the five-year relative survival rates of lung cancer, especially in advanced stage, would not significantly improve. Various chemotherapeutic drugs, such as cisplatin, were widely accepted as a standard first-line treatment for advanced NSCLC (non-small cell lung cancer). However, cisplatin performs excellent treatment, but the drug resistance may be the major obstacle to affect the treatment.
This study proposed a micro-emulsion method to synthesize cisplatin-loaded magnetite-hydroxyapatite nanoparticles (mHAp/CDDP) to combine chemotherapy and hyperthermia in one nanoparticle system for lung cancer therapy. Magnetite can act as a thermal seed under an alternating magnetic field for hyperthermia. The loading efficiency of the cisplatin in the synthesized nanoparticles was 22.9%. The major phase of the synthesized mHAP/CDDP nanoparticle was identified as hydroxyapatite by XRD; with where the magnetite and CDDP crystal were precipitated on the surface of hydroxyapatite along [211] and [200], respectively. The individual grain size of synthetic nanoparticles were in the range of 50-80 nm directly under TEM examination. The magnetic particles revealed a superparamagnetic property by SQUID; that could induce heat generation within minutes by an external alternating magnetic field and can be used for hyperthermia application. Moreover, the synthesized nanoparticle can be engulfed by A549 cells through endocytosis process. Therefore, hydroxyapatite can be dissolved in endosome-lysosome hybrid which would be breakdown by osmotic pressure and then cisplatin would escape from the vesicles into nucleus leading A549 cells toward apoptosis via ERK signaling pathway. Based on the results of in vitro and in vivo studies, to combine hyperthermia and chemotherapy in mHAp/CDDP nanoparticle could provide synergistic effect to inhibit A549 proliferation and tumor growth. We believed that the mHAp/CDDP nanoparticles have great potential on lung cancer treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T02:33:18Z (GMT). No. of bitstreams: 1 ntu-104-D98548007-1.pdf: 4943201 bytes, checksum: 8da7887f68c6253ab5a560e38ed4488b (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 III Abstract V Abbreviation list VII Chapter 1 Introduction 1 1.1 Lung cancer 1 1.1.1 Pathologic classification of lung cancer 3 1.1.2 Lung cancer stage 6 1.1.3 Current lung cancer treatment 10 1.1.3.1 Surgical resection 10 1.1.3.2 Radiotherapy 11 1.1.3.3 Chemotherapy 12 1.1.3.3.1 Cisplatin 13 1.1.3.4 Hyperthermia 14 1.1.3.5 Combination therapy: chemotherapy and hyperthermia 17 1.2 The application of nanoparticles in drug delivery and cancer therapy 19 1.2.1 Inorganic nanoparticles for drug delivery 19 1.2.2 Application of hydroxyapatite nanoparticles 21 1.3 The purpose of study 23 Chapter 2 Theoretical Basis 24 2.1 Background knowledge of hydroxyapatite 24 2.2 Microemulsion method for nanoparticle preparation 25 2.3 Antitumor effect by forming cisplatin adducts 27 2.4 The heating mechanisms of the magnetic nanoparticles 29 2.6 Synergistic effect of combination of chemotherapy and hyperthermia for cancer therapy 34 Chapter 3 Materials and Methods 37 3.1 Materials Preparation 37 3.2 Preparation of iron oxide-hydroxyapatite-cisplatin nanoparticles (mHAp/CDDP) for in vitro and in vivo study 39 3.2.1 Preparation of hydroxyapatite-cisplatin nanoparticles (HAp/CDDP) 40 3.2.2 Preparation of iron oxide-hydroxyapatite-cisplatin nanoparticles (mHAp/CDDP) 40 3.3 Characterization of synthesized nanoparticles 42 3.3.1 Particles size distribution 42 3.3.2 X-ray diffraction 42 3.3.3 Transmission electron microscopy 42 3.3.4 Superconducting quantum interference devices 43 3.3.5 Heat generation 43 3.4 In vitro study 44 3.4.1 Cell culture 44 3.4.2 In vitro cell viability study 44 3.4.3 In vitro hyperthermia study 44 3.4.4 Cellular uptake examined by Transmission electron microscopy 45 3.4.5 Cellular distribution observed by confocal microscopy 46 3.4.6 Western blot analysis 46 3.5 In vivo study 48 3.5.1 In vivo antitumor evaluation: cancer model 48 3.5.2 Nephrotoxicity and hepatotoxicity testing 51 3.5.3 Evaluation of anticancer effect: TUENL assay 51 3.6 Statistical methods 51 Chapter 4 Results 52 4.1 Characterization of the nanoparticles 52 4.2 Magnetic properties 59 4.3 Evaluation of heat generation 60 4.4 Cisplatin release profile 62 4.5 In vitro cellular uptake study 64 4.7 In vitro hyperthermia study 69 4.8 Cisplatin-activate the ERK signaling pathway 71 4.9 In vivo antitumor effect 72 4.10 Nephrotoxicity and hepatotoxicity for blood test 75 Chapter 5 Discussion 79 5.1 The preparation and characterization of mHAp/CDDP nanoparticles 79 5.2 Synthesized nanoparticle for in vitro study 82 5.3 Discussion of synthesized nanoparticle for in vivo study 85 Chapter 6 Conclusion 88 Reference 90 Curriculum Vitae 101 | |
| dc.language.iso | en | |
| dc.subject | 生醫奈米 | zh_TW |
| dc.subject | 肺癌治療 | zh_TW |
| dc.subject | 熱治療 | zh_TW |
| dc.subject | 氫氧基磷灰石 | zh_TW |
| dc.subject | 微乳化法 | zh_TW |
| dc.subject | Lung cancer therapy | en |
| dc.subject | Nanomedicine | en |
| dc.subject | microemulsion | en |
| dc.subject | hydroxyapatite | en |
| dc.subject | hyperthermia | en |
| dc.title | 評估奈米氧化鐵-氫氧基磷灰石-順鉑藥物載體應用於肺癌之熱治療與化療之合併療法之研究 | zh_TW |
| dc.title | The characterization and evaluation of cisplatin-loaded magnetite-hydroxyapatite nanoparticles as dual treatment of hyperthermia and chemotherapy for lung cancer therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 103-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 郭士民(Shyh-Ming Kuo),張淑真(Shwu-Jen Chang),林惠娟(Huey-Jiuan Lin),許志雄(Chi-Shiung Hsi),宋信文(Hsing-Wen Sung) | |
| dc.subject.keyword | 肺癌治療,熱治療,氫氧基磷灰石,微乳化法,生醫奈米, | zh_TW |
| dc.subject.keyword | Lung cancer therapy,hyperthermia,hydroxyapatite,microemulsion,Nanomedicine, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2015-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-104-1.pdf 未授權公開取用 | 4.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
