Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53871
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源
dc.contributor.authorPo-Hsuan Chienen
dc.contributor.author簡柏勛zh_TW
dc.date.accessioned2021-06-16T02:31:58Z-
dc.date.available2020-07-09
dc.date.copyright2015-07-30
dc.date.issued2015
dc.date.submitted2015-07-29
dc.identifier.citation戶刈義次。1963。作物學試驗法。東京農業技術學會印行。159–176頁。
王衍安、朱愛林、李永文、鄒秀華。2009。植物與植物生理。高等教育出版社。
何鳳生、王世俊、任引津。1999。中華職業醫學。人民衛生出版社。
陳思偉。2004。新竹科學工業園區高科技產業廢水分析與對承受水體之影響研究。國立清華大學化學系博士論文。
龍柏華。2003。濕蝕刻製程介紹暨機台原理簡介。光連雙月刊,48 期。
環保署。2008。產業廢水污染特性調查及自我污染削減推動計畫。
環保署。2011。產業廢水污染調查及管制措施研議計畫 (第三年)。
Asami, T., A. Yoshimo, M. Kubota, and S. Gotoh. 1990. Background level of indium and gallium in soil with special reference to pollution of the soils from zinc and lead smelters. Z. Pflanzenernähr. Bodenkd. 153:257-260.
Achary, A.M.M., S. Jena, K.K. Panda, and B.B. Panda. 2008. Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotox. Environ. Safe. 70:300-310.
Bowen, H.J.M. 1979. Environmental Chemistry of the Elements. Academic Press, New York.
Balogh, A., F. Kiss, and L. Szabolcsi. 1987. Influence of gallium on growth of green and blue green algae. 127-132.
Bradley, S.M., R.A. Kydd, and R. Yamdagni. 1990. Detection of a New Polymeric Species formed through the Hydrolysis of Gallium (III) Salt Solutions. J. Chem. Soc. Dalton. Trans. 413-417.
Berg, T., and E. Steinnes. 1997. Recent trends in atmospheric deposition of trace elements in Norway as evident from the 1995 moss survey. Sci. Total Environ. 208:197-206.
Betoulle, S., J.C. Etienne, and G. Vernet. 2002. Acute immunotoxicity of gallium to carp (Cyprinus carpio L.). Bull. Environ. Contam. Toxicol. 68:817-823.
Burt, R., M.A. Wilson, M.D. Mays, and C.W. Lee. 2003. Major and trace elements of selected pedons in the USA. J. Environ. Qual. 32:2109-2121.
Babula, P., V. Adam, R. Opatrilova, J. Zehnalek, L. Havel, and R. Kizek. 2008. Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ. Chem. Lett. 6:189-213.
Benedicto, A., C. Degueldre, and T. Missana. 2014. Gallium sorption on montmorillonite and illite colloids: Experimental study and modelling by ionic exchange and surface complexation. Appl. Geochem. 40:43-50.

Chattopadhyay, A., and R.E. Jervis. 1974. Multielement determination in market-garden soils by instrumental photon activation analysis. Anal. Chem. 46:1630-1639.
Conner, E.A., H. Yamauchi, and B.A. Fowler. 1995. Alterations in the heme biosynthetic pathway from the III-V semiconductor metal, indium arsenide. Chem. Biol. Interact. 96:273-285.
Čurlík, J., and P. Šefčík. 1999. Geochemical atlas of the Slovak Republic. Ministry of the Environment of the Slovak Republic.
Chen, H.W. 2006. Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bull. Environ. Contam. Toxicol. 77:289-296.
Chen, H.W. 2007. Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull. Environ. Contam. Toxicol. 78:5-9.
Cuypers, A., S. Karen, R. Jos, O. Kelly, K. Els, R. Tony, H. Nele, V. Nathalie, V.S. Suzy, V.B. Frank, G. Yves, C. Jan, and V. Jaco. 2011. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J. Plant Physiol. 168:309-316.

Dvornikov, A.G., L.B. Ovsyannikova, and O.G. Sidenko. 1976. Some peculiarities of biological absorption coefficients and of biogeochemical coefficient in hydrothermal deposits of the Donbas in connection with the prognostication of hidden mercury mineralization. Geokhimiya. 4:626-633.
Delhaize, E., and P.R. Ryan. 1995. Aluminum toxicity and tolerance in plants. Plant Physiol. 107:315-321.
Eriksson, J.E. 2001. Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertilizers, precipitation and in oil and crops. Swedish EPA. 5159.
EPA. 2003. The elements in the second rank: an environmental problem now or in the future? Danish. Environ. Project No.770.
Forno, D.A., C.T. Asher, and S. Yoshida. 1975. Zinc deficiency in rice. II. Studies on two varieties differing in susceptibility to Zinc deficiency. Plant Soil 42:551-563.
Furr, A.K., S.G. Stoewsand, C.A. Bache, and D.J. Lisk. 1976. Study of guinea pigs fed Swiss chard grown on municipal sludge-amended soil. Arch. Environ. Health. 31:87-91.
Fergusson, J.E. 1990. The heavy metals: chemistry, environmental impact and health effects. Pergamon Press, New York.
Fowler, B.A., H. Yamauchi, E.A. Conner, and M. Akkerman. 1993. Cancer risks for humans from exposure to semiconductor metals. Scand. J. Work Environ. Health 19:101-103.
Gribovskaya, I.F., S.W. Letunova, and S.N. Romanova. 1968. Microelements in the organs of legume plants. Agrokhimiya 3:81.
Goering, P.L., R.R. Maronpot , and B.A. Fowler. 1988. Effect of intratracheal gallium arsenide administration on d-aminolevulinic acid dehydratase in rat: relationship to urinary extraction of aminolevulinic acid. Toxicol. Appl. Pharmacol. 9:179-193.
Govindaraju, K. 1994. 1994 compilation of working values and sample description for 383 geostandards. Geostand. Newsl. 18:1-158.
Hedrick, J.B. 1995. The global rare-earth cycle. J. Alloys Compds. 225:609-618.
Ivanoff, C.S., A.E. Ivanoff, and T.L. Hottel. 2012. Gallium poisoning: A rare case report. Food. Chem. Toxicol. 50:212-215.
Johnson, G.V., and L.L. Barton. 2007. Inhibition of iron deficiency stress response in cucumber by rare earth elements. Plant Phys. Biochem. 45:302-308.
Kiss, F., G. Deak, M. Feher, A. Balogh, L. Szabolcsi, and I. Pais.1985. The effect of titanium and gallium on photosynthetic rate of algae. J. Plant Nutr. 8:825-831.
Kiss, F., G. Vincze, G. Kalucza, L. Szabolcsi, and A. Balogh. 1987. Study of the effect of gallium on Synechococcus AN 6301 blue-green alga. Acta. Acad. Pegag. Nyiregyh. 11:63-69.
Kinraide, T.B. 1997. Reconsidering the rhizotoxicity of hydroxyl, sulphate, and fluoride complexes of aluminum. J. Exp. Bot. 48:1115-1124.
Kabata-Pendias, A., and H. Pendias. 1999. Biogeochemistry of trace elements. Second Edition.
Kaneko, Y., M. Thoendel, O. Olakanmi, B.E. Britigan, and P.K. Singh. 2007. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest. 117:877-888.
Kopittke, P.M., B.A. McKenna, F.P.C. Blamey, J.B. Wehr, and N.W. Menzies. 2009. Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant Soil 322:303-315.
Kabata-Pendias, A. 2011. Trace elements in soils and plants. Fourth Edition.
Kopittke, P.M., F.P.C. Blamey, B.A. McKenna, P. Wang, and N.W. Menzies. 2011. Toxicity of metals to roots of cowpea in relation to their binding strength. Environ. Toxicol. Chem. 30:1827-1833.
Liebig, G.F., JR., A.P. Vanselow, and H.D. Chapman. 1943. Effects of gallium and indium on the growth of citrus plants in solution cultures. Soil Sci. 56:173-186.
Liu, W.J., Y.G. Zhu, F.A. Smith, and S.E. Smith. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J. Exp. Bot. 55:1707-1713.
Licht, O.A.B. 2005. Geochimica de solo do Estano do Parana. Vol 1/2. Mineropar, Curidiba, Parana.
McIntyre, A.J., and B.J. Sherin. 1989. Solid State Technology. 32:119.
Merian, E. 1991. Metals and their compounds in the environment: occurrence, analysis and biological relevance. VCH Verlagsgesellschaft mbH.
Merryman, J.I., C.C. Capen, and T.J. Rosol. 1994. Effects of gallium nitrate in nude mice bearing a canine adenocarcinoma (CAC-8) model of humoral hypercalcemia of malignancy. J. Bone Miner. Res. 9:725-732.
Michéli, E., P. Schad, O. Spaargaren, D. Dent, and F. Nachtergaele. 2006. World reference base for soil resources: A framework for international classification, correlation and communication. FAO (Food and Agriculture Organization).
NIH/NIEH. 1998. Chairperson’s Report Pathology Working Group (PWG) of Gallium Arsenide Administered by Inhalation to Fischer 344 Rats. EPA. 1298-1345.
Ohyama, S., N. Ishinishi, A. Hisanaga, and A. Yamamoto. 1988. Chronic toxicity, including tumorigenicity, of gallium arsenide to the lung of hamsters. Appl. Organomet. Chem. 2:333-337.
Omura, M., K. Yamazaki, A. Tanaka, M. Hirata, Y. Makita, and N. Inoue. 2000. Changes in the testicular damage caused by indium arsenide and indium phosphide in hamsters during two years after intratracheal instillations. J. Occup. Health 42:196-214.
Połedniok, J. 2008. Speciation of scandium and gallium in soil. Chemosphere 73:572-579.
Połedniok, J., A. Kita, and P. Zerzucha. 2012. Spectrophotometric and inductively coupled plasma-optical emission spectroscopy determination of gallium in natural soils and soils polluted by industry: relationships between elements. Commun. Soil Sci. Plant Anal. 43:1121-1135.
Reid, R.J., Z. Rengel, and F.A. Smith. 1996. Membrane fluxes and comparative toxicities of aluminium, scandium and gallium. J. Exp. Bot. 47:1881-1888.
Reimann, C., and P. Caritat. 1998. Chemical elements in the environment. Springer-Verlag, Berlin.
Rumack, B.H. 2010. Information system micromedex. 146.

Steinberg, R.A. 1938. The essentiality of gallium to growth and reproduction of Aspergillus niger. J. Agric. Res. 57:569-574.
Shacklette, H.T., J.A. Erdman, and T.F. Harms. 1978. Trace elements in plant foodstuffs. Marcel Dekker, New York.
Smith, I.C., B.L. Carson, and F. Hoffmeister. 1978. Trace metals in the environment. Ann. Arbor. Scientific Publications, Ann Arbor, MI.
Shacklette, H.T., and J.G. Boerngen. 1984. Element concentrations in soils and other surficial materials of the conterminous United States. USGPO. No. 1270
Sabot, J.L., and H. Lauvray. 1994. Gallium and gallium compounds. John Wiley and Sons, New York, pp. 299-317.
Shiomi, N., S. Kitoh, and E. Uheda. 1997. Accumulation of gallium (Ga) in Azolla. Plant nutrition for sustainable food production and environment. 537-538.
Stellman, J.M. 1998. Gallium. International Labour Organisation, Geneva, pp. 17.
Salminen, R., J.A. Plant, and S. Reeder. 2005. Geochemical atlas of Europe. Part 1, Background information, methodology and maps. 526.
Tanaka, A., and S. Yoshida. 1970. Nutritional disorders of the rice plant in Asia. IRRI Technical Bulletin 10.
Tanada, S., M. Kabayama, N. Kawasaki, T. Sakiyama, T. Nakamura, M. Araki, and T. Tamura. 2003. Removal of phosphate by aluminum oxide hydroxide. J. Colloid Interf. Sci. 257:135-140.
Takeda, A., K. Kimura, and S.I. Yamasaki. 2004. Analysis of 57 elements in Japanese soils, with special reference to soil group, and agricultural use. Geoderma 119:291–307.
Tyler, G., and T. Olsson. 2005. Rare earth elements in forest-floor herbs as related to soil conditions and mineral nutrition. Biol. Trace Elem. Res. 106:177–191.
Tume, P., J. Bech, L. Tume, F. Reverter, L. Longan, and P. Cendoya. 2008. Concentrations and distributions of Ba, Cr, Sr, V, Al, and Fe in Torrelles soil profiles (Catalonia, Spain). J. Geochem. Explor. 96:94-105.
Venugopal, B., and D. Luckey, 1978. Toxicity of Group III Metals. In: Metal Toxicity in Mammals, 2: Chemical Toxicity of Metals and Metalloids. Plenum Press, New York, pp. 113–115.
Wells, N. 1968. Element composition of soils and plants, in soils of New Zealand. New Zealand Soil Bureau, Wellington.
Webb, D.R., S.E. Wilson, and D.E. Carter. 1986. Comparative pulmonary toxicity of gallium arsenide, gallium(III) oxide, or arsenic(III) oxide intratracheally instilled into rats. Toxicol. Appl. Pharmacol. 82:405-416.
Wilson, S.A., P.K. Briggs, J.S. Mee, and D.F. Siems. 1994. Determination of thirty-two major and trace elements in three NIST soil SRMs using ICP-AES and WDXRF. Geostandard. Newslett. 18:85-89.
Wheeler, D.M., and I.L. Power. 1995. Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172:167-173.
Zeng F, W. Zhou, B. Qiu, S. Ali, F. Wu, and G. Zhang. 2011. Subcellular distribution and chemical forms of chromiumin rice plants suffering from different levels of chromium toxicity. J. Plant Nutr. Soil Sci. 174:249-256.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53871-
dc.description.abstract鎵和銦之化合物常被應用於半導體及光電產業,然而,人們可能會經由食物鏈而攝食到含有鎵和銦的食物,導致健康風險增加。現今國內外鮮少有鎵和銦對作物影響的相關研究,因此本研究以水耕試驗,探討鎵和銦對於水稻幼苗生長之影響及其對兩元素的吸收和累積。水稻先於修正半強度木村氏B養液育苗兩星期後,再移植至含有鎵和銦的修正全強度木村氏B養液進行暴露,處理分為:鎵處理 (控制組、1、3、5、10、15 mg L-1)、低濃度銦處理 (控制組、0.04、0.08、0.1、0.15、1、2 mg L-1) 與高濃度銦處理 (控制組、0.1、1、3、5、10 mg L-1)。鎵與低濃度銦處理於11、12月種植,共40天;高濃度銦處理則於7、8月種植,共25天,各處理水稻種植於台灣大學人工氣候室,環境條件為日溫25℃、夜溫20℃、相對溼度70-95%、自然光。結果顯示水稻會吸收鎵和銦,且兩元素能在植體內被運輸,但大部分累積於根部。鎵濃度低於10 mg L-1時,水稻之株高生長量、根伸長量、地上部生質量和根生質量會被促進,而銦濃度為0.08 mg L-1時,水稻之株高生長量、根伸長量、地上部生質量和根生質量會受到抑制。鎵處理水稻SPAD值會增加,銦處理水稻則是在高濃度處理之1 mg L-1,SPAD值會顯著下降。本研究亦發現鎵處理下會促進水稻對氮和鉀的吸收,但會減少對鐵、錳和磷的吸收,低濃度銦處理下會減少水稻對鈣、鎂和鐵的吸收,而高濃度銦處理下則會使水稻對鈣、鎂、鐵、錳和鋅的吸收受到抑制。zh_TW
dc.description.abstractGallium (Ga) and indium (In) compounds are commonly used in semiconductor manufacturing industry and electro-optical industry. Human beings may also expose to Ga and In via food-chain, which could lead to increase of health risks. To our best knowledge, there are few studies to investigate the effects of Ga and In on the growth of crops. Thus hydroponic experiments were conducted to evaluate the effects of Ga and In on the growth and uptake of these two elements of rice seedlings. Rice (Oryza sativa L.) seedlings were cultivated in modified half-strength Kimura B nutrient solutions for two weeks, after that rice seedlings were exposed to modified full-strength Kimura B nutrient solutions containing various Ga and In concentrations. The treatments included: Gallium (control, 1, 3, 5, 10, 15 mg L-1), Low-In concentration (L-In) (control, 0.04, 0.08, 0.1, 0.15, 1, 2 mg L-1) and High-In concentration (H-In) (control, 0.1, 1, 3, 5, 10 mg L-1) treatments. Ga and L-In treatments were grown in Nov. and Dec. for 40 days; H-In treatment was grown in July and Aug. for 25 days. All hydroponic cultures were performed in the Phytotron of National Taiwan University at day 25°C / night 20°C, relative moisture 70-95% and natural light. The results revealed that rice seedlings could absorb Ga and In, and transfer these two elements from root to shoot in the plant, but most of them were accumulated in root. Gallium stimulated growth of rice seedlings when concentration was below 10 mg Ga L-1, however, growth of rice seedlings was inhibited by In as concentration reached 0.08 mg L-1. SPAD value increased in Ga treatment, nevertheless, chlorosis would occur when concentration of In was 1 mg L-1 in H-In treatment. Our results suggested that Ga might promote N and K uptake, but decrease the uptake of Fe, Mn and P by rice seedlings. The absorption of Ca, Mg and Fe in rice seedlings was inhibited in L-In treatment. The uptake of Ca, Mg, Fe, Mn and Zn by rice seedlings was inhibited in H-In treatment.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:31:58Z (GMT). No. of bitstreams: 1
ntu-104-R02623013-1.pdf: 2442317 bytes, checksum: 011fd6643002d712f03c8f4b0571c694 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents目錄
摘要 I
Abstract II
目錄 III
表次 VI
圖次 VII
第一章 緒論 1
1.1 鎵 1
1.1.1 鎵的型態、化學特性與應用 1
1.1.2 土壤中的鎵 5
1.1.3 鎵對動物與人類的影響 7
1.1.4 鎵對植物的影響 8
1.2 銦 9
1.2.1 銦的型態、化學特性與應用 9
1.2.2 土壤中的銦 9
1.2.3 銦對動物與人類的影響 11
1.2.4 銦對植物的影響 11
1.3 鎵與銦於臺灣之現況 12
1.4 研究目的 14
第二章 材料與方法 15
2.1 水稻幼苗之鎵與銦暴露試驗 15
2.1.1 水稻育苗方法 15
2.1.2 鎵與銦之處理 18
2.1.3 植體採收 18
2.1.4 DCB溶液移除吸持在根部之離子 (Liu et al., 2004) 18
2.2 植體分析 21
2.2.1 葉綠素測定 21
2.2.2 株高生長量、根伸長量與生質量 21
2.2.3 水稻植體鎵、銦及其他營養元素之含量分析 21
2.2.4 水稻植體氮含量分析 22
2.2.5 鎵與銦於水耕液中之物種推估 23
2.2.6 累積速率計算 23
2.2.7 水稻生長與養液中鎵、銦濃度之劑量-反應關係 23
2.3 統計分析 23
2.4 試藥配製 26
第三章 結果與討論 29
3.1 水稻幼苗於不同鎵濃度水耕液中生長之差異 29
3.1.1 鎵處理水稻幼苗生長情形 29
3.1.2 植體中鎵濃度與吸收量 33
3.1.3 鎵物種分佈及對水稻幼苗吸收之影響 36
3.1.4 水稻對鎵之累積速率 38
3.1.5 鎵處理之劑量-反應關係 38
3.1.6 水稻植體營養元素分析 41
3.1.6.1 主要巨量營養元素氮、磷、鉀於鎵處理植體之濃度與吸收量 41
3.1.6.2 鎵處理之植體內鈣、鎂、鐵、錳和鋅濃度 43
3.2 水稻幼苗於不同銦濃度水耕液中生長之差異 45
3.2.1 銦處理水稻幼苗生長 45
3.2.2 植體中銦濃度與吸收量 50
3.2.3 銦物種分佈及對水稻幼苗吸收之影響 55
3.2.4 水稻對銦之累積速率 57
3.2.5 銦處理之劑量-反應關係 59
3.2.6 水稻植體營養元素分析 61
3.2.6.1 氮、磷、鉀於銦處理植體之濃度與吸收量 61
3.2.6.2 銦處理之植體內鈣、鎂、鐵、錳和鋅濃度 64
第四章 結論 67
第五章 參考文獻 68
附錄 79
dc.language.isozh-TW
dc.title新興污染物鎵和銦對水耕栽培水稻生長之影響zh_TW
dc.titleThe Effects of Gallium and Indium on the Growth of Rice Seedling (Oryza sativa L.) in Solution Culturesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁炫,陳尊賢,鍾仁賜,莊愷瑋
dc.subject.keyword鎵,銦,水稻幼苗,水耕,養分吸收,zh_TW
dc.subject.keywordgallium,indium,rice seedling,solution culture,nutrient uptake,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2015-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved