Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53861
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周崇熙
dc.contributor.authorCheng-I Fanen
dc.contributor.author范正一zh_TW
dc.date.accessioned2021-06-16T02:31:40Z-
dc.date.available2020-07-31
dc.date.copyright2015-07-31
dc.date.issued2015
dc.date.submitted2015-07-29
dc.identifier.citation[1] 李雁鈴。台灣地區Riemerella anatipestifer質體核酸序列分析與抗藥基因檢測應用。碩士論文,國立中興大學獸醫學研究所,台中,台灣。2004。
[2] 洪柏懿。Riemerella anatipestifer之生物學特性。碩士論文,國立台灣大學獸醫學研究所,台北,台灣。1996。
[3] 陳燕萍、李淑慧。台灣水禽雷氏桿菌血清型別之調查。行政院農業委員會家畜衛生試驗所研究報告。2008 43:35-42。
[4] 陳燕萍、李淑慧、蔡向榮。2008年至2012年台灣水禽雷氏桿菌血清型別調查。行政院農業委員會家畜衛生試驗所研究報告。2013 48:21-28。
[5] Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted disruption of the MYD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity. 1998 9:143-150.
[6] Asplin FD. A septicemic disease of ducklings. Vet Res. 1955 67:854-858.
[7] Auger MJ, Ross JA. The biology of the macrophage. in: The Natural Immune System. The Macrophage. C. E. Lewis and J.O.D. McGee, ed. Oxford University Press, New York, NY. 1992:3-74.
[8] Baquero-Perez B, Kuchipudi SV, Ho J, Sebastian S, Puranik A, Howard W, Brookes SM, Brown IH, Chang KC. Chicken and duck myotubes are highly susceptible and permissive to influenza virus infection. J Virol. 2015 89:2494-506
[9] Bisgaard M. Antigenic studies on Pasteurella anatipestifer, species incertae sedis, using slide and tube agglutination. Avian Pathol. 1982 11:341-350.
[10] Bliss TW, Dohms JE, Emara MG, Keeler CL Jr. Gene expression profiling of avian macrophage activation. Vet Immunol Immunopathol. 2005 105:289-99.
[11] Bonney RJ, Davies P. Possible autoregulatory functions of the secretory products of mononuclear phagocytes. Contemp. Top. Immunobiol. 1984 14:199-223.
[12] Bosisio D, Polentarutti N, Sironi M, Bernasconi S, Miyake K, Webb GR, Martin MU, Mantovani A, Muzio M. Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-gamma: a molecular basis for priming and synergism with bacterial lipopolysaccharide. Blood. 2002 99:3427-31.
[13] Bozzola JJ, Russell LD. Electron Microscopy Principles and Techniques for Biologists. Jones and Bartlett Publishers, Sudbury, MA. 1999:31-37.
[14] Brogden KA, Rhoades KR, Rimler RB. Serologic types and physiologic characteristics of 46 avian Pasteurella anatipestifer cultures. Avian Dis. 1982 26:891-896.
[15] Bruner DW, Angstrom CI, Price JI. Pasteurella anatipestifer infection in pheasants. A case report. Cornell Vet. 1970 60:491-494.
[16] Bruner DW, Fabricant J. A strain of Moraxella anatipestifer (Pfeifferella anatipestifer) isolated from ducks. Cornell Vet. 1954 44:461-464.
[17] Calati R, Crisafulli C, Balestri M, Serretti A, Spina E, Calabro M, Sidoti A, Albani D, Massat I, Hofer P, Amital D, Juven-Wetzler A, Kasper S, Zohar J, Souery D, Montgomery S, Mendlewicz J. Evaluation of the role of MAPK1 and CREB1 polymorphisms on treatment resistance, response and remission in mood disorder patients. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013 44:271-278.
[18] Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, Hunkapiller K, Jensen RV, Knight CR, Lee KY, Ma Y, Maqsodi B, Papallo A, Peters EH, Poulter K, Ruppel PL, Samaha RR, Shi L, Yang W, Zhang L, Goodsaid FM. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol. 2006 24:1115-22.
[19] Cao S, Han X, Ding C, Wang S, Tian M, Wang X, Hou W, Yue J, Wang G, Yu S. Molecular cloning of the duck mitogen-activated protein kinase 1 (MAPK1) gene and the development of a quantitative real-time PCR assay to detect its expression. Poult Sci. 2014 93:2158-67.
[20] Chu Y, Dietert RR. The chicken macrophage response to carbohydrate-based irritants: temporal changes in peritoneal cell populations. Dev Comp Immunol. 1988 12:109-19.
[21] de Zoete MR, Bouwman LI, Keestra AM, van Putten JP. Cleavage and activation of a Toll-like receptor by microbial proteases. Proc Natl Acad Sci U S A. 2011 108:4968-73.
[22] Dietert RR, Golemboski KA, Bloom SE, Qureshi MA. The avian macrophages in cellular immunity. Avian Cellular Immunology . J. M. Sharma, ed, CRC Press, Boca Raton, FL. 1991:71-95.
[23] Dil N, Qureshi MA. Differential expression of inducible nitric oxide synthase is associated with differential Toll-like receptor-4 expression in chicken macrophages from different genetic backgrounds. Vet Immunol Immunopathol. 2002 84:191-207
[24] Dougherty E, Saunders LZ, Parsons EH. The pathology of infectious serositis of ducks. Am J Pathol.1955 31:475-487.
[25] Duncan RL, McArthur WP. Partial characterization and the distribution of chicken mononuclear cells bearing the Fc receptor. J. Immunol. 1978 120:1014-1020.
[26] Dziarski R, Jin YP, Gupta D. Differential activation of extracellular signal-regulated kinase (ERK) 1, ERK2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan. J. Infect. Dis. 1996 174:777-785.
[27] Fredericksen TL, Gilmour DG. Ontogeny of ConA and PHA responses of chicken blood cells in MHC-compatible line 63 and 72. J. Immunol. 1983 130:2528-2534.
[28] Galdiero M, Martino LD, Pagnini U, Pisciotta MG, Galdiero E. Interactions between bovine endothelial cells and Pasteurella multocida: Association and invasion. Res. Microbiol. 2001 152:57-65.
[29] Garcia-Rodriguez S, Callejas-Rubio JL, Ortego-Centeno N, Zumaquero E, Rios-Fernandez R, Arias-Santiago S, Navarro P, Sancho J, Zubiaur M. Altered AKT1 and MAPK1 gene expression on peripheral blood mononuclear cells and correlation with T-helper-transcription factors in systemic lupus erythematosus patients. Mediators Inflamm. 2012:495934. doi: 10.1155/2012/495934.
[30] Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR. Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed. 2003.
[31] Golemboski KA, Whelan J, Shaw S, Kinsella JE, Dietert RR. Avian inflammatory macrophages functions: shifts in arachidonic acid metabolism, respiratory burst, and cell-surface phenotypes during the response to Sephadex. J.Leuk. Biol.1990 48:495-501.
[32] Graham R, Brandly CA, Dunlap GL. Studies on duck septicemia. Cornell Vet. 1938 28:1-8.
[33] Guegan JP, Ezan F, Theret N, Langouet S, Baffet G. MAPK signaling in cisplatin-induced death: Predominant role of ERK1 over ERK2 in human hepatocellular carcinoma cells. Carcinogenesis. 2013 34:38-47.
[34] Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996 6:986-994.
[35] Hendrickson JM, Hilbert KF. A New and Serious Septicaemic Disease of Young Ducks with a Description of the Causative Organism Pfeifferella anatipestifer, n.s. Rep. N.Y. St. vet. Coll. 1933:61-72.
[36] Harry EG. Pasteurella (Pfeifferella) anatipestifer serotypes isolated from cases of anatipestifer septicemia in ducks. Vet Rec. 1969 84:673.
[37] Higgs R, Cormican P, Cahalane S, Allan B, Lloyd AT, Meade K,James T, Lynn DJ, Babiuk LA, O'Farrelly C. Induction of a novel chicken Toll-like receptor following Salmonella enterica serovar Typhimurium infection. Infect Immun. 2006 74:1692-1698
[38] Hu Q, Han X, Zhou X, Ding C, Zhu Y, Yu S. OmpA is a virulence factor of Riemerella anatipestifer. Vet Microbiol. 2011 150:278-83.
[39] Huang Q, Yue H, Zhang B, Nie P, Tang C. Development of a real-time quantitative PCR for detecting duck hepatitis a virus genotype C. J Clin Microbiol. 2012 50:3318-23.
[40] Hultmark D. Macrophage differentiation marker MYD88 is a member of the Toll/IL-1 receptor family. Biochem. Biophys. Res. Commun. 1994 199:144-146.
[41] Jia H, Li G, Li J, Tian Y, Wang D, Shen J, Tao Z, Xu J, Lu L. Cloning, expression and bioinformatics analysis of the duck TLR4 gene. Br Poult Sci. 2012 53:190-7.
[42] Jones TC,Minick R, Yang L. Attachment and ingestion of mycoplasmas by mouse macrophages. II. Scanning electron microscopic observations. Am J Pathol. 1977 87:347-358.
[43] Kaiser P, Rothwell L, Galyov EE, Barrow PA, Burnside J,Wigley P. Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium, Salmonella enteritidis and Salmonella gallinarum. Microbiology. 2000 146:3217-26.
[44] Kaiser P, Underwood G, Davison TF. Differential cytokine responses following Marek’s disease virus infection in chicken genotypes differing in resistance to Marek’s disease.J Virol. 2003 77:762-8.
[45] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol. 2010 11:373-384.
[46] Keestra AM, de Zoete MR, van Aubel RAMH, van Putten JPM. Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol. Immunol. 2008 45:1298-1307.
[47] Keestra AM, de Zoete MR, Bouwman LI, Vaezirad MM, van Putten JP. Unique features of chicken Toll-like receptors. Dev Comp Immunol. 2013 41:316-23.
[48] Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L, Ståhlberg A, Zoric N. The real-time polymerase chain reaction. Mol Aspects Med. 2006 27:95-125.
[49] Laurent F., Mancassola R., Lacroix S., Menezes R., Naciri M. Analysis of chicken mucosal immune response to Eimeria tenella and Eimeria maxima infection by quantitative reverse transcription-PCR. Infect. Immun. 2001 69:2527-2534.
[50] Leveque G, Forgetta V, Morroll S, Smith AL, Bumstead N, Barrow P, Loredo-Osti JC, Morgan K, Malo D. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immun. 2003 71:1116-1124
[51] Li L, Zhu DK, Zhou Y, Wang MS, Cheng AC, Jia RY, Chen S, Liu F, Yang QM, Chen XY. Adhesion and invasion to duck embryo fibroblast cells by Riemerella anatipestifer. Poult Sci. 2012 91:3202-8.
[52] Loh H, Teo TP, Tan HC. Serotypes of 'Pasteurella' anatipestifer isolates from ducks in Singapore: a proposal of new serotypes. Avian Pathol. 1992 21:453-459.
[53] Lord, KA, Hoffman-Liebermann B, Liebermann DA. Nucleotide sequence and expression of a cDNA encoding MYD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene. 1990 5:1095-1097.
[54] Mclean RC, Cook I. Plant Science Formulae. Macmillan, London.1952
[55] Morillo SM, Abanto EP, Roman MJ, Frade JM. Nerve growth factor-induced cell cycle reentry in newborn neurons is triggered by p38 (MAPK)-dependent E2F4 phosphorylation. Mol. Cell. Biol. 2012 32:2722-2737.
[56] Muzio M, Ni J, Feng P, Dixit VM. IRAK (Pelle) family member IRAK-2 and MYD88 as proximal mediators of IL-1 signaling. Science. 1997 278:1612-1615.
[57] Nerren JR, Swaggerty CL, MacKinnon KM, Genovese KJ, He H, Pevzner I, Kogut MH. Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and -resistant chickens. Immunogenetics. 2009 61:71-77.
[58] Nerren JR, He H, Genovese K, Kogut MH. Expression of the avian-specific toll-like receptor 15 in chicken heterophils is mediated by Gram-negative and Gram-positive bacteria, but not TLR agonists. Vet Immunol Immunopathol. 2010 136:151-156.
[59] Nicolas-Bolnet C, Qureshi MA, Ciesynski JA, Taylor RL Jr. Avian hematopoiesis in response to avian cytokines. Poultry Sci. 1995 74:1970-1976.
[60] Nix P, Hisamoto N, Matsumoto K, Bastiani M. Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc. Natl. Acad. Sci. USA. 2011 108:10738-10743.
[61] Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, Nakanishi K, Kimoto M, Miyake K, Takeda K, Akira S. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol. 2000 164:3476-9.
[62] Pathanasophon P, Phuektes P, Tanticharoenyos T, Narongsak W, Sawada T. A potential new serotype of Riemerella anatipestifer isolated from ducks in Thailand. Avian Pathol. 2002 31:267-270.
[63] Pathanasophon P, Sawada T, Tanticharoneyos T. New serotypes of Riemerella anatipestifer isolated from ducks in Thailand. Avian Dis. 1995 24:195-199.
[64] Pathanasophon P, Tanticharoneyos T, Sawada T. Physiological characteristics, antimicrobial susceptibility and serotypes of Pasteurella anatipestifer isolated from ducks in Thailand. Vet Microbiol. 1994 39:179-185.
[65] Peck R, Murthy KK, Vanio O. Expression of B-L (Ia-like) antigens on macrophages from chicken lymphoid organs. J. Immunol. 1982 129:4-11.
[66] Powell PC. Macrophages and other non-lymphoid cells contributing to immunity. in: Avian Immunology: Basis and Practice. Vol. I. Toivanen A and Toivanen P, ed. CRC Press, Boca Raton, FL. 1987:195-212
[67] Prud'homme GJ, Kono DH, Theofilopoulos AN. Quantitative polymerase chain reaction analysis reveals marked overexpression of interleukin-1 beta, interleukin-1 and interferon-gamma mRNA in the lymph nodes of lupus-prone mice. Mol Immunol. 1995 32:495-503.
[68] Qureshi MA, Dietert RR, Bacon LD. Genetic variation in the recruitment and activation of chicken peritoneal macrophages. Proc. Soc. Exp. Biol. Med. 1986 181:560-566.
[69] Qureshi MA, Miller L. Signal requirements for the acquisition of tumoricidal competence by chicken peritoneal macrophages. Poultry Sci. 1991 70:530-538.
[70] Qureshi MA, Marsh JA, Dietert RR, Sung YJ, Nicolas-Bolnet C, Petitte JN. Profiles of chicken macrophage effector functions. Poultry Sci. 1994 73:1027-1034.
[71] Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene. 2007 26:3100-3112.
[72] Riemer VS. Kurze Mitteilung ueber eine bei Gaensen beobachtete exudative septikeamie und deren Erreger. Zentr, Bakteriol Parasitenk Abt I Orig. 1904 37: 641-648.
[73] Roach JC , Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A. The evolution of vertebrate Toll-like receptors. Proc Natl AcadSci USA. 2005 102:9577-9582.
[74] Rose ME, Hesketh P. Fowl peritoneal exudate cells, collection and use for the macrophage migration inhibition test. Avian Pathol. 1974 3:297-302.
[75] Rosenbeld LE. Pasteurella anatipestifer infection in fowls in Australia. Aust Vet J. 1973 49:55-56.
[76] Ryll M, Christensen H, Bisgaard M, Christensen JP, Hinz KH, Köhler B.Studies on the prevalence of Riemerella anatipestifer in the upper respiratory tract of clinically healthy ducklings and characterization of untypable strains. J Vet Med B Infect Dis Vet Public Health. 2001 48:537-46.
[77] Sabet T, Hsia WC, Stanisz M, El-Domeiri A, Alten VP. A simple method for obtaining peritoneal macrophages from chickens. J. Immunol. Methods. 1977 14:103-106.
[78] Sandhu T, Harry EG. Serotypes of Pasteurella anatipestifer isolated from commercial White Pekin ducks in the United States. Avian Dis. 1981 25:497-502.
[79] Sandhu T, Leister ML. Serotype of Pasteurella anatipestifer isolate from poultry in different countries. Avian Pathol. 1991 20:233-239.
[80] Sandhu T, Rimler RB. Riemerella anatipestifer infection. Diseases of poultry, 11th ed. In: Calnek BW, Barner HJ, Beard CW, Reid WM, Yoder HW Jr., eds. Iowa State Univerity Press, Ames, Iowa. 2003:676-682.
[81] Sarver CF, Morishita TY, Nersessian B. The effect of route of inoculation and challenge dosage on Riemerella anatipestifer infection in Pekin ducks (Anas platyrhynchos). Avian Dis. 2005 49:104-107.
[82] Schaefer AE, Scafuri AR, Fredericksen TL, Gilmour DG. Strong suppression by monocytes of T cell mitogenesis in chickens peripheral blood leukocytes. J. Immunol. 1985 135:1653–1659.
[83] Schall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV. Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med. 1993 177:1821-6.
[84] Segers P, Mannheim W, Vancanneyt M, De Brandt K, Hinz KH, Kersters K, Vandamme P. Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. Int J Syst Evol Microbiol. 1993 43:768-776.
[85] Skamene E, Gros P. Role of macrophages in resistance against infectious diseases. Clinics Immunol. Allergy. 1983 3:539-560.
[86] Smith JE. Genus Pasteurella Trevisan 1987. In Buchanan RE and Gibbon NE (eds.). Bergey's Manual of Determinative Bacteriology, 8th ed. Williams and Wilkins, Baltimore, MD. 1974:370-373.
[87] Subramaniam S, Chua KL, Tan HM, Loh H, Kuhnert P, Frey J. Phylogenetic position of Riemerella anatipestifer based on 16S rRNA gene sequences. Int J Syst Evol Microbiol. 1997 47:562-565.
[88] Sung YJ, Hotchkiss H, Austic RE, Dietert RR. Larginine-dependent production of a reactive nitrogen intermediate by macrophages of a uricotelic species. J. Leukocyte Biol. 1991 51:49-56.
[89] Swaggerty CL, He H, Genovese KJ, Pevzner IY, Kogut MH. Protein tyrosine kinase and mitogen-activated protein kinase signaling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers. Avian Pathol. 2011 40:289-297.
[90] Trembicki KA, Qureshi MA, Dietert RR. Avian peritoneal exudate cells: a comparison of stimulation protocols. Dev. Comp. Immunol. 1984 8:395-402.
[91] Unanue ER, Allen PM. The basis for the immunoregulatory role of macrophages and other accessory cells. Science. 1987 236:551-557.
[92] Upadhya D, Ogata M, Reneker LW. MAPK1 is required for establishing the pattern of cell proliferation and for cell survival during lens development. Development. 2013 140:1573-1582.
[93] Vainio O, Peck R, Koch C, Toivanen A. Origin of peripheral blood macrophages in bursa-cell-reconstituted chickens. Scand. J. Immunol. 1983 17:193-199.
[94] VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008 44:619-26.
[95] Vanier G, Szczotka A, Friedl P, Lacouture S, Jacques M, Gottschalk M. Haemophilus parasuis invades porcine brain microvascular endothelial cells. Microbiology. 2006 152:135-142.
[96] Wei L, Jiao P, Yuan R, Song Y, Cui P, Guo X, Zheng B, Jia W, Qi W, Ren T, Liao M. Goose Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MYD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response. Vet Immunol Immunopathol. 2013 153:99-106.
[97] Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MYD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997 7:837-847.
[98] Withanage GS, Kaiser P, Wigley P, Powers C, Mastroeni P, Brooks H, Barrow P,Smith A, Maskell D, McConnell I. Rapid expression of chemokines and pro-inflammatory cytokines in newly hatched chickens infected with Salmonella enterica serovar Typhimurium. Infect. Immun. 2004 72:2152-2159.
[99] Wuyts A, Proost P, Van Damme J. Interleukin-8 and other CXC hemokines. In: AW Thomson (editor). The Cytokine Handbook 3rd edition. Academic Press, San Diego. 1998:229-269.
[100] Yang Y, Jiang Y, Yin Q, Liang H, She R. Chicken intestine defensins activated murine peripheral blood mononuclear cells through the TLR4-NF-kappaB pathway. Vet Immunol Immunopathol. 2010 133:59-65.
[101] Yu CF, Huang CC, Chao PH. Development and Application of a Trivalent Inactivated Bacterin against Riemerella anatipestifer Infection. Exp. Rep AHRI. 2008 43:43-52.
[102] Zhang YY, Wu JW, Wang ZX. Mitogen-activated protein kinase (MAPK) phosphatase 3-mediated cross-talk between MAPKs ERK2 and p38 alpha. J. Biol. Chem. 2011 286:16150-16162.
[103] Zhao W, Huang Z, Chen Y, Zhang Y, Rong G, Mu C, Xu Q, Chen G. Molecular cloning and functional analysis of the duck TLR4 gene. Int J Mol Sci. 2013 14:18615-18628.
[104] Zhou Z, Li X, Xiao Y, Wang X, Tian W, Peng X, Bi D, Sun M, Li Z. Gene expression responses to Riemerella anatipestifer infection in the liver of ducks. Avian Pathol. 2013 42:129-136.
[105] Zhou Z, Peng X, Xiao Y, Wang X, Guo Z, Zhu L, Liu M, Jin H, Bi D, Li Z, Sun M. Genome sequence of poultry pathogen Riemerella anatipestifer strain RA-YM. J Bacteriol. 2011 193:1284-1285.
[106] Zhou Z, Zheng J, Tian W, Li J, Zhang W, Zhang J, Meng X, Hu S, Bi D, Li Z. Identification of Riemerella anatipestifer genes differentially expressed in infected duck livers by the selective capture of transcribed sequences technique. Avian Pathol. 2009 38:321-329.
[107] Zuckerman SH, Evans GF, Snyder YM, Roeder WD. Endotoxin-macrophage interaction posttranscriptional regulation of tumor necrosis factor expression. J. Immunol. 1989 143:1223-1227.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/53861-
dc.description.abstract水禽雷氏桿菌 (Riemerella anatipestifer,RA)感染症為水禽重要疾病之一,好發於3-4週齡雛禽,可經由呼吸道及破損皮膚感染鴨隻,特別是透過受傷的脚蹼,可造成急性或慢性敗血症和全身性漿膜炎,其感染率幾近100%,致死率可高達75%,造成嚴重經濟損失。RA共有21種血清型,其中台灣以第2血清型為最主要。不活化菌疫苗在不同血清型間無交叉保護。RA目前對於其發病機制,特別是感染後宿主的生理反應,了解甚少。本研究使用3-5月齡褐色菜鴨 (Brown Tsaiya Duck)來進行研究,本研究以3% Sephadex G-50注入鴨隻腹腔42小時後,成功誘導活化的腹腔巨噬細胞 (Peritoneal Macrophages,PMs)平均約為5x107 cells/mL。接著以MOI(Multiplicity of infection)=10、20及40等菌量攻擊1x106 PMs,並觀察1、3或5小時等時間點後打破細胞並回收胞內細菌,回收率為0~0.45%,其中MOI=10且攻菌3小時組入侵效果最佳,回收率最高。其後以MOI=10攻菌3小時及7小時並回收細胞供後續比較基因表現量高低之用。同時,在孔盤中置入玻片讓PMs貼附後以MOI=10攻菌3小時,將玻片製作成掃描式電子顯微鏡樣品觀察,成功觀察到RA菌與PMs交互作用之影像。在即時定量反轉錄聚合酶連鎖反應的基因表現結果中,包含IL-1β、IL-8、MIP-1β、TLR15等基因表現量上升,TLR4、MYD88、MAPK1等基因的表現量呈下降,代表在面對RA菌感染時,菜鴨腹腔巨噬細胞選擇與之對抗的策略可能以TLR15受RA菌所分泌的蛋白酶刺激後所活化的訊息傳導途徑為主,並進而活化NF-κB使得下游發炎前驅物質表現量上升,藉此招募更多免疫細胞前來發炎區域抵抗RA之感染。本研究以攻菌回收率、電顯拍攝細胞外部型態證實雷氏桿菌可成功進入菜鴨腹腔巨噬細胞,並以此建立雷氏桿菌入侵菜鴨巨噬細胞試驗之操作模式,同時也期待菜鴨巨噬細胞之實驗模式及相關基因表現實驗結果,能對於畜牧場防治RA感染鴨隻或後續以菜鴨巨噬細胞為試驗模式等方面能有貢獻。zh_TW
dc.description.abstractRiemerella anatipestifer (RA) is a major cause of disease and economic loss in farm ducks worldwide, with ducklings up to 3-4 weeks of age being the most susceptible. RA infection is typically transmitted through nasal passages or broken skin on the feet. The main lesions are fibrinous serositis, caseous salpingitis and arthritis. Twenty-one serotypes have been isolated and serotype II is the most endemic in Taiwan. Vaccines based on a single serotype of inactivated bacterin or live or cell-free culture filtrate have not provided significant cross-protection among the serotypes. Research about RA pathogenesis is scant, and information about host physiological responses in RA infection is limited. We injected 3% Sephadex G-50 into duck peritoneal cavity and harvested activated peritoneal macrophages (PMs). Next, infected 1×106 PMs by RA and MOI are approximately 10, 20 and 40 separately. PMs and lysis cell counts were assessed at 1,3 and 5h to determine the recovery rates. The overall recovery rate were approximately 0-0.45% and macrophages infected by RA under MOI=10 and 3 hours condition have recovered the most RA. We next infected macrophages by MOI = 10 and recovered cells at 3 h and 7h for further detection of genes expression. Scanning Electron micrography revealed adhesion of RA to PMs within 1 h of incubation ; significant surface modification was also evident, indicating that the interaction between RA and PMs may be a potential mechanism of activation ,then the surface of PMs’- gradually changes. We used quantitative real-time PCR (qRT-PCR) to analyze target genes expression. Our results showed that IL-1β, IL-8, MIP-1β, and TLR15 are up-regulated and TLR4, MYD88, and MAPK1 are down-regulated. These findings indicate that when PMs are infected by RA, TLR15 pathway plays an important role in defense. The mechanism of TLR15 activation may be through the RA-secreting protease. Therefore, NF-κB was activated and the downstream pro-inflammatory cytokine can recruit more immune cells to fight RA infection. In conclusion, we used an RA invasion assay and SEM photography to establish experimental procedures for following Real-time PCR tests. Eventually, we will be able to determine how macrophages function in RA infection, which will facilitate the development of adequate policy and disease control strategies to help farmers prevent RA infection.en
dc.description.provenanceMade available in DSpace on 2021-06-16T02:31:40Z (GMT). No. of bitstreams: 1
ntu-104-R01629022-1.pdf: 1686888 bytes, checksum: ce61260288439c7a1666426577946f47 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontents誌謝 i
縮寫表 ii
中文摘要 iii
ABSTRACT v
目錄 vii
表次 x
圖次 xi
Chapter 1 緒言 1
Chapter 2 文獻探討 3
2.1水禽雷氏桿菌 3
2.2水禽雷氏桿菌感染症 5
2.3禽類巨噬細胞及相關免疫途徑 7
2.4掃描式電子顯微鏡 11
2.5即時定量聚合酶連鎖反應 13
Chapter 3 材料與方法 15
3.1試劑製備 15
3.1.1 Phosphate buffered Saline (PBS) 15
3.1.2 RPMI Medium 1640(RPMI 1640)細胞培養液 15
3.1.3 Sorensen’s Phosphate Buffer 15
3.1.4 Glutaraldehyde 15
3.1.5 Osmium Tetroxide 16
3.1.6 Ethyl Alcohol 16
3.1.7 3% Sephadex G-50 16
3.2實驗鴨隻及腹腔巨噬細胞之誘導 17
3.3雷氏桿菌之置備 19
3.3.1雷氏桿菌之培養與定量 19
3.3.2攻菌用之雷氏桿菌製備 19
3.4褐色菜鴨腹腔巨噬細胞製備 21
3.4.1腹腔巨噬細胞製備 21
3.4.2腹腔巨噬細胞培養 21
3.5雷氏桿菌攻擊鴨腹腔巨噬細胞 22
3.6萃取mRNA 23
3.7掃描式電子顯微鏡樣本製作 24
3.7.1樣品固定(Fixation) 24
3.7.2樣品脫水(Dehydration) 24
3.7.3樣品臨界點乾燥(Critical Point Dehydration, CPD) 24
3.7.4樣品鍍金屬膜(Sputter Coating) 25
3.8即時定量聚合酶連鎖反應 26
3.8.1反轉錄合成cDNA 26
3.8.2即時定量聚合酶連鎖反應 26
Chapter 4 實驗結果 28
4.1以Sephsdex G-50進行褐色菜鴨腹腔巨噬細胞誘導 28
4.2雷氏桿菌入侵鴨腹腔巨噬細胞回收率 29
4.3掃描式電子顯微鏡 30
4.4即時定量聚合酶連鎖反應結果 31
Chapter 5 討論 33
5.1以Sephadex G-50誘導菜鴨腹腔巨噬細胞模式 33
5.2掃描式電子顯微鏡樣品製作流程 34
5.3菜鴨腹腔巨噬細胞感染RA菌後型態發生改變 35
5.4鴨腹腔巨噬細胞的基因表現 36
Chapter 6 結論 41
Chapter 7 參考文獻 44
dc.language.isozh-TW
dc.title水禽雷氏桿菌感染菜鴨腹腔巨噬細胞之模式建立及相關基因反應探討zh_TW
dc.titleThe Model for Riemerella anatipestifer infection in Tsaiya Duck Peritoneal Macrophages and Characterization of Gene Responses in Macrophagesen
dc.typeThesis
dc.date.schoolyear103-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡向榮,張紹光,陳燕萍,陳俊任
dc.subject.keyword菜鴨,雷氏桿菌,巨噬細胞,掃描式電子顯微鏡,即時定量聚合?鏈鎖反應,zh_TW
dc.subject.keywordTsaiya Duck,RA,Macrophages,SEM,qRT-PCR,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2015-07-30
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved